首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In a black tea (Dimbula) infusion, the potent "sweet and/or juicy" odorants were identified as the cis- and trans-4,5-epoxy-(E)-2-decenals by comparison of their gas chromatography retention indices, mass spectra, and odor quality to those of the actual synthetic compounds. Of the two odorants, cis-4,5-epoxy-(E)-2-decenal has been identified for the first time in the black tea. On the basis of the aroma extract dilution analysis on the flavor distillate obtained using the solvent-assisted flavor evaporation technique from the black tea infusion, these isomers showed higher flavor dilution (FD) factors. The FD factors and concentrations of these odorants in the black tea infusion were observed to be much higher than those from Japanese green tea. In addition, the model studies showed that these odorants were generated from linoleic acid and its hydroperoxides by heating, but the generated amounts of these odorants from linoleic acid were much less than those of its hydroperoxides. It can be assumed from these results that the withering and fermentation, which are characteristic processes during the manufacturing of the black tea, which includes the enzymatic reaction such as lipoxygenase, is one of the most important factors for the formation of the epoxydecenal isomers.  相似文献   

2.
By application of the aroma extract dilution analysis on the volatile fraction isolated from a black tea infusion (Darjeeling Gold Selection), vanillin (vanilla-like), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel), 2-phenylethanol (flowery), and (E,E,Z)-2,4,6-nonatrienal (oat-flake-like) were identified with the highest flavor dilution (FD) factors among the 24 odor-active compounds detected in the FD factor range of 4-128. Quantitative measurements performed by means of stable isotope dilution assays and a calculation of odor activity values (OAVs; ratio of concentration to odor threshold in water) revealed, in particular, the previously unknown tea constituent (E,E,Z)-2,4,6-nonatrienal as a key odorant in the infusion and confirmed the important role of linalool and geraniol for the tea aroma. An aroma recombinate performed by the 18 odorants for which OAVs > 1 were determined in their "natural" concentrations matched the overall aroma of the tea beverage. In the black tea leaves, a total of 42 odorants were identified, most of which were identical with those in the beverage prepared thereof. However, quantitative measurements indicated that, in particular, geraniol, but also eight further odorants were significantly increased in the infusion as compared to their concentration in the leaves.  相似文献   

3.
Application of aroma extract dilution analysis using the volatile fraction of a Japanese green tea (Sen-cha) sample resulted in the detection of 36 odor-active peaks with flavor dilution (FD) factors between 10 and 5000. Thirty-six potent odorants were identified from 36 odor-active peaks by gas chromatography/mass spectrometry (GC/MS) and/or the multidimensional GC/MS (MDGC/MS) system. Among these components, 4-methoxy-2-methyl-2-butanethiol (meaty), (Z)-1, 5-octadien-3-one (metallic), 4-mercapto-4-methyl-2-pentanone (meaty), (E,E)-2,4-decadienal (fatty), beta-damascone (honey-like), beta-damascenone (honey-like), (Z)-methyl jasmonate (floral), and indole (animal-like) showed the highest FD factors. Therefore, these odorants were the most important components of the Japanese green tea odor. In addition, 4-methoxy-2-methyl-2-butanethiol, 4-mercapto-4-methyl-2-pentanone, methional, 2-ethyl-3, 5-dimethylpyrazine, (Z)-4-decenal, beta-damascone, maltol, 5-octanolide, 2-methoxy-4-vinylphenol, and 2-aminoacetophenone were newly identified compounds in the green tea.  相似文献   

4.
Heat processing is responsible for the change in the flavor of a coffee drink. In this study, the application of gas chromatography-olfactometry of headspace samples (GCO-H) using the vapor fraction before and after heat processing of the coffee samples resulted in the detection of 12 odor-active peaks for which the flavor dilution (FD) factors changed. Eight potent odorants were identified from these peaks by gas chromatography-mass spectrometry (GC-MS). Among these components, methanethiol (putrid), acetic acid (sour), 3-methylbutanoic acid (sour), 2-furfuryl methyl disulfide (meaty), and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like) increased after heating of the coffee sample, whereas 2-furfurylthiol (roasty), methional (potato-like), and 3-mercapto-3-methylbutyl formate (roasty) decreased compared with the coffee sample before heat treatment. In addition, extensive studies have been carried out on the pH effects on the change in the concentration of 2-furfurylthiol during heat processing and in the pH range of 5-7; it was found that the concentration of this compound in the model solutions had significantly changed.  相似文献   

5.
Two kinds of pan-fired green teas (Japanese Kamairi-cha and Chinese Longing tea) were compared with the common Japanese green tea (Sen-cha). Application of the aroma extract dilution analysis (AEDA) using the volatile fraction of the Sen-cha, Kamairi-cha and Longing tea infusions revealed 32, 51, and 52 odor-active peaks with flavor dilution factors between 16 and 1024, respectively. (Z)-1,5-Octadien-3-one (metallic, geranium-like), 4-mercapto-4-methyl-2-pentanone (meaty, black currant-like), methional (potato-like), (E,Z)-2,6-nonadienal (cucumber-like), and 3-methylnonane-2,4-dione (green, fruity, hay-like) showed high flavor dilution factors in all varieties. In addition, 2-acetyl-1-pyrroline (popcorn-like), 2-ethyl-3,5-dimethylpyrazine (nutty), 2,3-diethyl-5-methylpyrazine (nutty), and 2-acetyl-2-thiazoline (popcorn-like) belonged to the most potent odorants only in the pan-fired green teas. Among these odorants, 2-acetyl-1-pyrroline and 2-acetyl-2-thiazoline were identified for the first time among the tea volatiles.  相似文献   

6.
The volatile components of Hallabong ([C. unshiu Marcov x C. sinensis Osbeck] x C. reticulata Blanco) cold-pressed peel oil were quantitatively and qualitatively determined by use of two internal standards with GC, GC-MS, and GC-olfactometry. According to instrumental analysis by GC and GC-MS, limonene (90.68%) was the most abundant compound, followed by sabinene (2.15%), myrcene (1.86%), and gamma-terpinene (0.88%). Flavor dilution (FD) factors of the volatile flavor components from Hallabong peel oil were determined by aroma extract dilution analysis. Furthermore, relative flavor activity was investigated by means of FD factor and weight percent. The highest FD factors were found for citronellal and citronellyl acetate, and delta-murollene showed a higher relative flavor activity. Results of sniff testing of the original oil and its oxygenated fraction revealed that citronellal, cis-beta-farnesene, and citronellyl acetate were regarded as the character impact odorants of Hallabong peel oil, and citronellal gave the most odor-active character of Hallabong aroma.  相似文献   

7.
By application of aroma extract dilution analysis (AEDA) on the volatile fraction isolated by solvent extraction and solvent-assisted flavor evaporation (SAFE) from unifloral rape honey harvested in July 2009, 28 odor-active areas could be detected within a flavor dilution factor (FD) range of 4-2048. The highest FD factors were found for (E)-β-damascenone (cooked apple-like), phenylacetic acid (honey-like), 4-methoxybenzaldehyde (aniseed-like), 3-phenylpropanoic acid (flowery, waxy), and 2-methoxy-4-vinylphenol (clove-like). Twenty-three odorants were then quantitated by application of stable isotope dilution assays, and their odor activity values (OAV, ratio of concentration to odor threshold) were calculated on the basis of newly determined odor thresholds in an aqueous fructose-glucose solution. The highest OAVs were calculated for (E)-β-damascenone, 3-phenylpropanoic acid, phenylacetic acid, dimethyl trisulfide, and phenylacetaldehyde. Quantitative measurements on a rape honey produced in 2011 confirmed the results. A model mixture containing the 12 odorants showing an OAV ≥ 1 at the same concentrations as they occurred in the rape honey was able to mimick the aroma impression of the original honey. The characterization of the key odorants in rape flowers from the same field suggested 3-phenylpropanoic acid, phenylacetic acid, and three further odorants to be transferred via the bees into the honey.  相似文献   

8.
4-Mercapto-4-methyl-2-pentanone is one of the most strongly contributing odorants in the volatile fraction of a Japanese green tea (sen-cha) infusion, and on the basis of the results of an aroma extract dilution analysis, the contribution of this compound to the flavor of the sen-cha infusion varied according to the degree of heating of the tea leaves during the roasting process. The concentration of this odorant in the sen-cha infusion, as with other roasty odorants, increased with the increasing roasting temperature. However, the slope of the increase curve differed with the odor compound, and even if roasting was done at a low temperature, at which the other roasty odorants hardly increased, 4-mercapto-4-methyl-2-pentanone still increased and reached a maximum at 112 degrees C. On the other hand, the amount of 4-mercapto-4-methyl-2-pentanone in sen-cha was a maximum in the first crop, then decreasing in the order of the second and third crops. These results suggested that the amount of 4-mercapto-4-methyl-2-pentanone was closely involved with the quality of sen-cha and that the concentration was dependent on the roasting conditions for the green tea leaves, which might be accompanied by an enzymatic reaction.  相似文献   

9.
This research aims to optimize roasted green tea (Houjicha) processing by using roasting treatments to achieve acrylamide mitigation without compromising the quality. 2-Ethyl-3,5-dimethylpyrazine and 2-ethyl-3,6-dimethylpyrazine were identified as potent odorants by aroma extract dilution analysis. In preliminary sensory experiments, the desirable Houjicha flavor was produced in products roasted at 160 degrees C for 30 min and at 180 degrees C for 15 min. Under these conditions, potent odorants were formed at levels adequate for contributing to the Houjicha flavor. Acrylamide amounts in tea infusions were 2.0 and 4.0 microg/L by roasting at 160 degrees C for 30 min and at 180 degrees C for 15 min, respectively. Compared to roasting at 180 degrees C, the degradation of tea catechins was suppressed by roasting at 160 degrees C. Hence, roasting at 160 degrees C for is recommended for Houjicha processing for acrylamide mitigation, formation of potent odorants, and suppression of degradation of tea catechins.  相似文献   

10.
Application of the aroma extract dilution analysis (AEDA) on the volatile fraction carefully isolated from an American Bourbon whisky revealed 45 odor-active areas in the flavor dilution (FD) factor range of 32-4096 among which (E)-beta-damascenone and delta-nonalactone showed the highest FD factors of 4096 and 2048, respectively. With FD factors of 1024, (3S,4S)-cis-whiskylactone, gamma-decalactone, 4-allyl-2-methoxyphenol (eugenol), and 4-hydroxy-3-methoxy-benzaldehyde (vanillin) additionally contributed to the overall vanilla-like, fruity, and smoky aroma note of the spirit. Application of GC-Olfactometry on the headspace above the whisky revealed 23 aroma-active odorants among which 3-methylbutanal, ethanol, and 2-methylbutanal were identified as additional important aroma compounds. Compared to published data on volatile constituents in whisky, besides ranking the whisky odorants on the basis of their odor potency, 13 aroma compounds were newly identified in this study: ethyl (S)-2-methylbutanoate, (E)-2-heptenal, (E,E)-2,4-nonadienal, (E)-2-decenal, (E,E)-2,4-decadienal, 2-isopropyl-3-methoxypyrazine, ethyl phenylacetate, 4-methyl acetophenone, alpha-damascone, 2-phenylethyl propanoate, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, trans-ethyl cinnamate, and (Z)-6-dodeceno-gamma-lactone.  相似文献   

11.
To identify the character impact odorant of high-heat skim milk powder (HHSMP), a comparative study using ultrahigh-temperature (UHT) milk was performed. Aroma concentrate was prepared by column adsorption combined with simultaneous distillation-extraction. Aroma extract dilution analysis (AEDA) revealed 58 aroma peaks with flavor dilution (FD) factors ranging from 10 to 3000; from these, 41 compounds were identified and 7 compounds were tentatively identified (FD factor > or = 300). Among these HHSMP and UHT milk components, methyl 2-methyl-3-furyl disulfide and bis(2-methyl-3-furyl) disulfide, which appeared to be generated during the processing of each product, were identified. When the results of the AEDA of both samples were compared, it was considered that the characteristic aroma of HHSMP was not explained by a single compound but instead formed from a mixture of several types of compounds contained in common with the UHT milk. The contribution of these compounds to the aroma of HHSMP was confirmed by an aroma simulation experiment.  相似文献   

12.
This study was conducted to determine the composition of kumquat (Fortunella japonica Swingle) cold-pressed peel oil and to determine which volatile components are primarily responsible for the aroma of this oil. Eighty-two compounds were identified in the oil by GC and GC-MS. The major compounds were limonene (93.73%), myrcene (1.84%), and ethyl acetate (1.13%). Flavor dilution (FD) factors and relative flavor activities (RFA) of volatile constituents were evaluated by aroma extract dilution analysis with gas chromatography-olfactometry (GC-O). Camphene, terpinen-4-ol, citronellyl formate, and citronellyl acetate showed high FD factors (>/=5) and RFA (>20). Citronellyl formate and citronellyl acetate were regarded as the characteristic odor components of the kumquat peel oil from the results of FD factor, RFA, and GC-sniffing. Citronellyl acetate is considered to be the odor component most similar to kumquat by organoleptic evaluation with GC-O.  相似文献   

13.
Application of the aroma extract dilution analysis on an extract of white pepper powder showing an intense fecal, cowshed-like off-flavor revealed 3-methylindole (fecal, swine-manure) and 4-methylphenol (fecal, horse-like) with the highest flavor dilution (FD) factors among the 22 odor-active compounds detected. In addition, high FD factors and/or undesirable odor qualities suggested 3-methylphenol (phenolic), butanoic acid (cheese-like), and 2- and 3-methylbutanoic acid (cheese-like) as well as pentanoic acid and hexanoic acid (cheese-like odors) as contributors to the malodor. Although the intensities of the off-note were clearly different in 50 commercial samples of white pepper, quantitation of 3-methylindole and 3- and 4-methylphenol as well as of the five short-chain acids by means of stable isotope dilution assays showed similar concentrations in most of the samples. Storage of a freshly ground white pepper powder for up to 7 months revealed a significant decrease in the typical odor qualities of white pepper and an increase in the fecal odor note with storage time. Because the concentrations of the odorants mentioned above were not much changed during storage, possibly very volatile odorants, such as alpha-pinene, which are able to mask the malodor, are lost during storage of, in particular, pepper powders. On the basis of odor activity values, which were calculated using breakthrough thresholds, in particular, 3-methylindole, 4-methylphenol, 3-methylphenol, and butanoic acid could be suggested as the main sources of the fecal off-flavor.  相似文献   

14.
The volatile components of Hyuganatsu (Citrus tamurana Hort. ex Tanaka) peel oil, isolated by cold-pressing, were investigated by chemical and sensory analyses. According to chemical analysis by GC and GC-MS, limonene (84.0%) was the most abundant compound, followed by gamma-terpinene (6.9%), myrcene (2.2%), alpha-pinene (1.2%), and linalool (1.0%). Monoterpene hydrocarbons were predominant in Hyuganatsu peel oil. The odor-active volatiles in Hyuganatsu flavor were studied by GC-olfactometry and omission tests. The characteristic flavor was present in the oxygenated fraction. Flavor dilution (FD) factors of the volatile flavor components of the Hyuganatsu cold-pressed oil were determined by aroma extraction dilution analysis (AEDA). Furthermore, relative flavor activity was investigated by means of FD factor and weight percent. Ten kinds of odor compounds having Hyuganatsu-like aroma were detected by AEDA: limonene, linalool, octanol, neral, neryl acetate, tridecanal, trans-carveol, cis-nerolidol, trans,trans-farnesyl acetate, and trans,trans-farnesol. Linalool and octanol were regarded as the most odor-active or key compounds of Hyuganatsu aroma. Diluted solutions of linalool and octanol of approximately 2 ppm gave a fresh and fruity aroma note similar to Hyuganatsu flavor.  相似文献   

15.
The odorants in Chinese jasmine green tea scented with jasmine flowers (Jasminum sambac) were separated from the infusion by adsorption to Porapak Q resin. Among the 66 compounds identified by GC and GC/MS, linalool (floral), methyl anthranilate (grape-like), 4-hexanolide (sweet), 4-nonanolide (sweet), (E)-2-hexenyl hexanoate (green), and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (sweet) were extracted as potent odorants by an aroma extract dilution analysis and sensory analysis. The enantiomeric ratios of linalool in jasmine tea and Jasminum sambac were determined by a chiral analysis for the first time in this study: 81.6% ee and 100% ee for the (R)-(-)-configuration, respectively. The jasmine tea flavor could be closely duplicated by a model mixture containing these six compounds on the basis of a sensory analysis. The omission of methyl anthranilate and the replacement of (R)-(-)-linalool by (S)-(+)-linalool led to great changes in the odor of the model. These two compounds were determined to be the key odorants of the jasmine tea flavor.  相似文献   

16.
Isolation of the volatile fraction from cocoa powder (50 g; 20% fat content) by a careful extraction/distillation process followed by application of an aroma extract dilution analysis revealed 35 odor-active constituents in the flavor dilution (FD) factor range of 8-4096. Among them, 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), 2- and 3-methylbutanoic acid (sweaty, rancid), dimethyl trisulfide (cooked cabbage), 2-ethyl-3,5-dimethylpyrazine (potato-chip-like), and phenylacetaldehyde (honey-like) showed the highest FD factors. Quantitation of 31 key odorants by means of stable isotope dilution assays, followed by a calculation of their odor activity values (OAVs) (ratio of concentration to odor threshold) revealed OAVs>100 for the five odorants acetic acid (sour), 3-methylbutanal (malty), 3-methylbutanoic acid, phenylacetaldehyde, and 2-methylbutanal (malty). In addition, another 19 aroma compounds showed OAVs>1. To establish their contribution to the overall aroma of the cocoa powder, these 24 compounds were added to a reconstructed cocoa matrix in exactly the same concentrations as they occurred in the cocoa powder. The matrix was prepared from deodorized cocoa powder, which was adjusted to 20% fat content using deodorized cocoa butter. The overall sensory evaluation of this aroma recombinate versus the cocoa powder clearly indicated that the 24 compounds represented the typical sweet, cocoa-like odor of the real sample.  相似文献   

17.
Application of the aroma extract dilution analysis on a concentrate of volatiles obtained by solvent extraction and high vacuum distillation from roasted seeds (180 degrees C; 15 min) of wild mango (Irvingia gabonensis) revealed 32 odor-active compounds with flavor dilution (FD) factors ranging from 8 (low odor activity) to 2048 (high odor activity). The identification experiments based on the use of reference odorants revealed methional (cooked potato-like) followed by 2-acetyl-1-pyrroline (roasty, popcorn-like), butan-2,3-dione, pentan-2,3-dione, 2-ethyl-3,5-dimethylpyrazine, and 2,3-diethyl-5-methylpyrazine as the key aroma compounds among the 27 odorants identified. All odorants are reported for the first time as components of roasted wild mango seeds.  相似文献   

18.
Application of a comparative aroma extraction dilution analysis on unroasted and roasted Criollo cocoa beans revealed 42 aroma compounds in the flavor dilution (FD) factor range of 1-4096 for the unroasted and 4-8192 for the roasted cocoa beans. While the same compounds were present in the unroasted and roasted cocoa beans, respectively, these clearly differed in their intensity. For example, 2- and 3-methylbutanoic acid (rancid) and acetic acid (sour) showed the highest FD factors in the unroasted beans, while 3-methylbutanal (malty), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), and 2- and 3-methylbutanoic acid (sweaty) were detected with the highest FD factors in the roasted seeds. Quantitation of 30 odorants by means of stable isotope dilution assays followed by a calculation of odor activity values (ratio of the concentration/odor threshold) revealed concentrations above the odor threshold for 22 compounds in the unroasted and 27 compounds in the roasted cocoa beans, respectively. In particular, a strong increase in the concentrations of the Strecker aldehydes 3-methylbutanal and phenylacetaldehyde as well as 4-hydroxy-2,5-dimethyl-3(2H)-furanone was measured, suggesting that these odorants should contribute most to the changes in the overall aroma after roasting. Various compounds contributing to the aroma of roasted cocoa beans, such as 3-methylbutanoic acid, ethyl 2-methylbutanoate, and 2-phenylethanol, were already present in unroasted, fermented cocoa beans and were not increased during roasting.  相似文献   

19.
Application of the aroma extract dilution analysis on a flavor distillate prepared from freshly ground rye flour (type 1150) revealed 1-octen-3-one (mushroom-like), methional (cooked potato), and (E)-2-nonenal (fatty, green) with the highest flavor dilution (FD) factors among the 26 odor-active volatiles identified. Quantitative measurements performed by stable isotope dilution assays and a comparison to the odor thresholds of selected odorants in starch suggested methional, (E)-2-nonenal, and hexanal as contributors to the flour aroma, because their concentrations exceeded their odor thresholds by factors >100. Application of the same approach on a rye sourdough prepared from the same batch of flour revealed 3-methylbutanal, vanillin, 3-methylbutanoic acid, methional, (E,E)-2,4-decadienal, 2,3-butanedione, and acetic acid as important odorants; their concentrations exceeded their odor thresholds in water and starch by factors >100. A comparison of the concentrations of 20 odorants in rye flour and the sourdough made therefrom indicated that flour, besides the fermentation process, is an important source of aroma compounds in dough. However, 3-methylbutanol, acetic acid, and 2,3-butanedione were much increased during fermentation, whereas (E,E)-2,4-decadienal and 2-methylbutanal were decreased. Similar results were obtained for five different flours and sourdoughs, respectively, although the amounts of some odorants in the flour and the sourdough differed significantly within batches.  相似文献   

20.
Application of aroma extract dilution analysis (AEDA) to the volatiles isolated from a commercial Japanese soy sauce revealed 30 odor-active compounds in the flavor dilution (FD) factor range of 8-4096, among which 2-phenylethanol showed the highest FD factor of 4096, followed by 3-(methylsulfanyl)propanal (methional), the tautomers 4-hydroxy-5-ethyl-2-methyl- and 4-hydroxy-2-ethyl-5-methyl-3(2H)-furanone (4-HEMF), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (4-HDF), and 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolone), all showing FD factors of 1024. Thirteen odorants were quantified by stable isotope dilution assays, and their odor activity values (OAVs) were calculated as ratio of their concentrations and odor thresholds in water. Among them, 3-methylbutanal (malty), sotolone (seasoning-like), 4-HEMF (caramel-like), 2-methylbutanal (malty), methional (cooked potato), ethanol (alcoholic), and ethyl 2-methylpropanoate (fruity) showed the highest OAVs (>200). An aqueous model aroma mixture containing 13 odorants, which had been identified with the highest OAVs, in concentrations that occur in the soy sauce showed a good similarity with the overall aroma of the soy sauce itself. Heat treatment of the soy sauce resulted in a clear change of the overall aroma. Quantitation of selected odorants revealed a significant decrease in sotolone and, in particular, increases in 2-acetyl-1-pyrroline, 4-HDMF, and 4-HEMF induced by heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号