首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Direct observation of percolation in a manganite thin film   总被引:1,自引:0,他引:1  
Upon cooling, the isolated ferromagnetic domains in thin films of La0.33Pr0.34Ca0.33MnO3 start to grow and merge at the metal-insulator transition temperature TP1, leading to a steep drop in resistivity, and continue to grow far below TP1. In contrast, upon warming, the ferromagnetic domain size remains unchanged until near the transition temperature. The jump in the resistivity results from the decrease in the average magnetization. The ferromagnetic domains almost disappear at a temperature TP2 higher than TP1, showing a local magnetic hysteresis in agreement with the resistivity hysteresis. Even well above TP2, some ferromagnetic domains with higher transition temperatures are observed, indicating magnetic inhomogeneity. These results may shed more light on the origin of the magnetoresistance in these materials.  相似文献   

2.
The electric field effect in ferromagnetic semiconductors enables switching of the magnetization, which is a key technology for spintronic applications. We demonstrated electric field-induced ferromagnetism at room temperature in a magnetic oxide semiconductor, (Ti,Co)O(2), by means of electric double-layer gating with high-density electron accumulation (>10(14) per square centimeter). By applying a gate voltage of a few volts, a low-carrier paramagnetic state was transformed into a high-carrier ferromagnetic state, thereby revealing the considerable role of electron carriers in high-temperature ferromagnetism and demonstrating a route to room-temperature semiconductor spintronics.  相似文献   

3.
A two-dimensional antiferromagnetic structure within a pseudomorphic monolayer film of chemically identical manganese atoms on tungsten(110) was observed with atomic resolution by spin-polarized scanning tunneling microscopy at 16 kelvin. A magnetic superstructure changes the translational symmetry of the surface lattice with respect to the chemical unit cell. It is shown, with the aid of first-principles calculations, that as a result of this, spin-polarized tunneling electrons give rise to an image corresponding to the magnetic superstructure and not to the chemical unit cell. These investigations demonstrate a powerful technique for the understanding of complicated magnetic configurations of nanomagnets and thin films engineered from ferromagnetic and antiferromagnetic materials used for magnetoelectronics.  相似文献   

4.
Magnetic bistability, as manifested in the magnetization of ferromagnetic materials or spin crossover in transition metal complexes, has essentially been restricted to either bulk materials or to very low temperatures. We now present a molecular spin switch that is bistable at room temperature in homogeneous solution. Irradiation of a carefully designed nickel complex with blue-green light (500 nanometers) induces coordination of a tethered pyridine ligand and concomitant electronic rearrangement from a diamagnetic to a paramagnetic state in up to 75% of the ensemble. The process is fully reversible on irradiation with violet-blue light (435 nanometers). No fatigue or degradation is observed after several thousand cycles at room temperature under air. Preliminary data show promise for applications in magnetic resonance imaging.  相似文献   

5.
A large electric field at the surface of a ferromagnetic metal is expected to appreciably change its electron density. In particular, the metal's intrinsic magnetic properties, which are commonly regarded as fixed material constants, will be affected. This requires, however, that the surface has a strong influence on the material's properties, as is the case with ultrathin films. We demonstrated that the magnetocrystalline anisotropy of ordered iron-platinum (FePt) and iron-palladium (FePd) intermetallic compounds can be reversibly modified by an applied electric field when immersed in an electrolyte. A voltage change of -0.6 volts on 2-nanometer-thick films altered the coercivity by -4.5 and +1% in FePt and FePd, respectively. The modification of the magnetic parameters was attributed to a change in the number of unpaired d electrons in response to the applied electric field. Our device structure is general and should be applicable for characterization of other thin-film magnetic systems.  相似文献   

6.
Functional integration between semiconductors and ferromagnets was demonstrated with the spin-valve transistor. A ferromagnetic multilayer was sandwiched between two device-quality silicon substrates by means of vacuum bonding. The emitter Schottky barrier injected hot electrons into the spin-valve base. The collector Schottky barrier accepts only ballistic electrons, which makes the collector current very sensitive to magnetic fields. Room temperature operation was accomplished by preparing Si-Pt-Co-Cu-Co-Si devices. The vacuum bonding technique allows the realization of many ideas for vertical transport devices and forms a permanent link that is useful in demanding adhesion applications.  相似文献   

7.
Ferromagnetism in manganese compound semiconductors not only opens prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds but also addresses a question about the origin of the magnetic interactions that lead to a Curie temperature (T(C)) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1-)(x)Mn(x)Te and is used to predict materials with T(C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.  相似文献   

8.
Single two-dimensional (2D) atomically thick magnetic particles of cobalt and iron with variable size and shape were fabricated by combining a mask technique with standard molecular beam epitaxy. Reduction of the lateral size of in-plane magnetized 2D cobalt films down to about 100 nanometers did not essentially modify their magnetic properties; although the separation of boundaries decreased greatly, neither domain penetrated the particle, nor was any sizable shape anisotropy observed. The mutual interaction of 2D cobalt particles was negligible, and the magnetic state of a single particle could be switched without modifying the state of the neighbors. Perpendicularly magnetized iron particles did not exhibit such responses. These results suggest that only a few atoms forming a 2D in-plane magnetized dot may provide a stable elementary bit for nanorecording.  相似文献   

9.
介绍了应用计算机对反映铁磁材料动态磁化过程的主要特征进行实时记录的方法,并给出直接测量饱和磁感应强度、剩磁和矫顽力等动态磁参数的应用实例.实验证明,该方法不仅可以再现铁磁材料的磁化规律,而且测量更便捷、结果更直观、精度更高,为铁磁材料动态磁参数的实时测量提供了一条有效、快捷的途径.  相似文献   

10.
We report electrical manipulation of magnetization processes in a ferromagnetic semiconductor, in which low-density carriers are responsible for the ferromagnetic interaction. The coercive force HC at which magnetization reversal occurs can be manipulated by modifying the carrier density through application of electric fields in a gated structure. Electrically assisted magnetization reversal, as well as electrical demagnetization, has been demonstrated through the effect. This electrical manipulation offers a functionality not previously accessible in magnetic materials and may become useful for reversing magnetization of nanoscale bits for ultrahigh-density information storage.  相似文献   

11.
Amorphous semiconductor switching in melanins   总被引:2,自引:0,他引:2  
Melanins produced synthetically and isolated from biological systems act as an amorphous semiconductor threshold switch. Switching occurs reversibly at potential gradients two to three orders of magnitude lower than reported for inorganic thin films, and comparable to gradients existing in some biological systems. Of a number of other biological materials tested, only cytochrome c acted similarly, but at the high potential gradients reported for thin film amorphous semiconductors.  相似文献   

12.
Recent discoveries of new magnetic materials may greatly improve the performance of devices containing such materials and may lead to entirely new applications. For example, boron-based temary compounds for permanent magnets make new compact motor designs practical; amorphous transformer materials show greatly reduced losses at high frequencies; and thin magnetic alloy films offer increased data storage densities. The major technical issues associated with the new magnetic materials are identified.  相似文献   

13.
We report a manifestation of first-order magnetic transitions in two-dimensional electron systems. This phenomenon occurs in aluminum arsenide quantum wells with sufficiently low carrier densities and appears as a set of hysteretic spikes in the resistance of a sample placed in crossed parallel and perpendicular magnetic fields, each spike occurring at the transition between states with different partial magnetizations. Our experiments thus indicate that the presence of magnetic domains at the transition starkly increases dissipation, an effect also suspected in other ferromagnetic materials. Analysis of the positions of the transition spikes allows us to deduce the change in exchange-correlation energy across the magnetic transition, which in turn will help improve our understanding of metallic ferromagnetism.  相似文献   

14.
We present data from an induced gallium arsenide (GaAs) quantum wire that exhibits an additional conductance plateau at 0.5(2e2/h), where e is the charge of an electron and h is Planck's constant, in zero magnetic field. The plateau was most pronounced when the potential landscape was tuned to be symmetric by using low-temperature scanning-probe techniques. Source-drain energy spectroscopy and temperature response support the hypothesis that the origin of the plateau is the spontaneous spin-polarization of the transport electrons: a ferromagnetic phase. Such devices may have applications in the field of spintronics to either generate or detect a spin-polarized current without the complications associated with external magnetic fields or magnetic materials.  相似文献   

15.
The basic magnetic properties of three-dimensional nanostructured materials can be drastically different from those of a continuous film. High-resolution magnetic force microscopy studies of magnetic submicrometer-sized cobalt dots with geometrical dimensions comparable to the width of magnetic domains reveal a variety of intricate domain patterns controlled by the details of the dot geometry. By changing the thickness of the dots, the width of the geometrically constrained magnetic domains can be tuned. Concentric rings and spirals with vortex configurations have been stabilized, with particular incidence in the magnetization reversal process as observed in the ensemble-averaged hysteresis loops.  相似文献   

16.
We describe the development of solar water-splitting cells comprising earth-abundant elements that operate in near-neutral pH conditions, both with and without connecting wires. The cells consist of a triple junction, amorphous silicon photovoltaic interfaced to hydrogen- and oxygen-evolving catalysts made from an alloy of earth-abundant metals and a cobalt|borate catalyst, respectively. The devices described here carry out the solar-driven water-splitting reaction at efficiencies of 4.7% for a wired configuration and 2.5% for a wireless configuration when illuminated with 1 sun (100 milliwatts per square centimeter) of air mass 1.5 simulated sunlight. Fuel-forming catalysts interfaced with light-harvesting semiconductors afford a pathway to direct solar-to-fuels conversion that captures many of the basic functional elements of a leaf.  相似文献   

17.
Mussel-inspired surface chemistry for multifunctional coatings   总被引:2,自引:0,他引:2  
We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.  相似文献   

18.
Prinz GA 《Science (New York, N.Y.)》1990,250(4984):1092-1097
Ultrahigh-vacuum growth techniques are now being used to grow single-crystal films of magnetic materials. These growth procedures, carried out in the same molecular beam epitaxy systems commonly used for the growth of semiconductor films, have yielded a variety of new materials and structures that may prove useful for integrated electronics and integrated optical device applications. Examples are given for growth on GaAs and ZnSe, including magnetic sandwiches and patterned structures.  相似文献   

19.
Pulsed laser deposition (PLD) is a conceptually and experimentally simple yet highly versatile tool for thin-film and multilayer research. Its advantages for the film growth of oxides and other chemically complex materials include stoichiometric transfer, growth from an energetic beam, reactive deposition, and inherent simplicity for the growth of multilayered structures. With the use of PLD, artificially layered materials and metastable phases have been created and their properties varied by control of the layer thicknesses. In situ monitoring techniques have provided information about the role of energetic species in the formation of ultrahard phases and in the doping of semiconductors. Cluster-assembled nanocrystalline and composite films offer opportunities to control and produce new combinations of properties with PLD.  相似文献   

20.
Chin GY 《Science (New York, N.Y.)》1980,208(4446):888-894
Three notable new developments in magnetic alloys are highlighted. These include rare earth-cobalt permanent magnets with maximum energy products up to 240 kilojoules per cubic meter; chromium-cobalt-iron permanent magnets that have magnetic properties similar to those of the Alnicos, but contain only about half as much cobalt and are sufficiently ductile to be cold-formable; and high-induction grain-oriented silicon steels that exhibit 20 percent less core loss as transformer core materials than conventional oriented grades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号