首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A collection of 30 strains of Verticillium dahliae, recovered during 2004–2006 from 12 cultivars of chrysanthemum (Chrysanthemum morifolium) in five districts of İzmir province in Turkey, was assigned to vegetative compatibility groups (VCGs) based on pairings of complementary nitrate-nonutilizing (nit) mutants induced on a chlorate-containing medium. Of these strains, nine were assigned to VCG1, seven to VCG2A, 11 toVCG2B and one to VCG4B. The remaining two strains could not be tested for vegetative compatibility because of their inability to yield nit mutants. Pathogenicity tests conducted by the root-dip method, demonstrated that wilt of chrysanthemum in Turkey is caused by V. dahliae, and most strains in VCG1 were significantly more aggressive to chrysanthemum than those in VCGs 2 and 4B. This is the first known study in the world of the VCGs of V. dahliae isolates from chrysanthemum.  相似文献   

2.
K. Elena 《Phytoparasitica》2000,28(2):115-120
Vegetative compatibility among 17 isolates ofVerticillium dahliae obtained from watermelon, originating from eight regions of Greece, was investigated using complementation tests between nitrate-nonutilizing(nit) mutants. Among 529 chlorate-resistant sectors obtained, only 107 werenit mutants. These mutants were paired with tester strains (from Greece and other countries) of previously described vegetative compatibility groups (VCGs), and also were paired in many combinations among themselves. All isolates were self-compatible. Sixteen isolates were found to belong to VCG2. Only isolate V75 could not be assigned to a VCG, because the threenit mutants obtained from it showed negative reactions with the tester strains of four VCGs and with complementary mutants from other isolates. Based on this sample, we conclude that the population ofV. dahliae from watermelon in Greece is homogeneous in respect to VCG.  相似文献   

3.
Verticillium dahliae Kleb. with a complicated genetic diversity is a widely distributed major pathogen resulting in cotton wilt, which causes high economic losses in cotton lint production in the cotton belt of Turkey. A collection of 70 TurkishV. dahliae isolates (68 from wilted cotton plants in 28 districts and two from watermelon plants in two districts) were tested for vegetative compatibility by observing heterokaryon formation among complementary nitrate-nonutilizing (nit) mutants. The mutants were tested against international reference tester isolates and also were paired with one another. Thirty-nine isolates were assigned to vegetative compatibility group (VCG) 2B, 19 to VCG2A and three to VCG4B. One isolate was self-incompatible and eight others could not be assigned to any of the identified VCGs because theirnit mutants showed negative reactions with the tester isolates of four VCGs or theirnit mutants reverted back to the wild type. This is the first report of VCGs inV. dahliae from cotton in Turkey.  相似文献   

4.
Complementary auxotrophic nitrate-nonutilizing (nit) mutants were used to investigate vegetative compatibility within 27 strains ofVerticillium dahliae isolated from several hosts originating from Africa, Asia, Europe and the United States. Using about 500nit mutants generated from these strains, three vegetative compatibility groups, 1, 2 and 4, were identified. Simultaneously, virulence of each strain was assessed on cultivars ofGossypium hirsutum, G. barbadense andG. arboreum, based upon Foliar Alteration Index (FAI) and Browning Index (BI) estimation. The strains in VCG1 were of both the cotton-defoliating pathotype and race 3 (on cotton) but were non pathogenic on tomato; those in VCG2 and VCG4 were of the nondefoliating pathotype and belonged to different races on cotton and on tomato. Hyaline mutants deriving from parental wild-type strain showed differences in pathogenicity but were always assigned to the parental VCG. A relationship was established between VCGs and the taxonomic position of host plants. Data fromnit pairings indicated that the sub-populations ofV. dahliae (VCGs) may not be completely isolated genetically.  相似文献   

5.
A weed survey conducted in 2004 and 2005 in Aydin province of Turkey showed that Solanum nigrum, Xanthium strumarium, Amaranthus retroflexus, Portulaca oleracea, Sonchus oleraceus and Datura stramonium were the most prevalent weeds in the cotton fields exhibiting Verticillium wilt. Verticillium dahliae Kleb. was recovered from A. retroflexus and X. strumarium in those cotton fields. This is the first report of V. dahliae occurring naturally in A. retroflexus in Turkey. Pathogenicity tests on cotton and weeds showed that the virulence of V. dahliae isolates from weeds was higher on cotton plants than on weeds, with the disease severity ranging from 31.7% to 98.0%. Disease severity of V. dahliae isolates was 54.7–93.9% on eggplant, 23.7–51.6% on cucumber and 11.0–16.4% on tomato, whereas it did not cause any disease symptoms, or only low levels, on pepper and bell pepper. Two vegetative compatibility groups (VCGs) were identified among seven tested weed isolates: VCG2A (two isolates) and VCG2B (three isolates) using international reference strains.  相似文献   

6.
Eighty isolates ofVerticillium dahliae from the southeastern Anatolia region and 20 isolates from the east Mediterranean region from wilted cotton plants were used for vegetative compatibility analysis employing nitrate non-utilizing mutants and reference tester strains of vegetative compatibility groups (VCGs) 1A, 2A, 2B, 3, 4A and 4B. Of the 100V. dahliae isolates, 49 were assigned to VCG1A, 39 to VCG2B, nine to VCG2A and three to VCG4B. Pathogenicity assays were conducted on susceptible cotton cv. Çukurova 1518 in the greenhouse. All VCG1A isolates induced defoliation and all VCG2B isolates caused partial defoliation symptoms. Isolates of VCG2A and VCG4B caused typical symptoms of leaf chlorosis without defoliation. This is the first report on VCGs ofV. dahliae in the southeastern Anatolia region of Turkey, which demonstrates that VCG1A of the cotton-defoliating type and VCG2B of the partially defoliating type are prevalent in this region.  相似文献   

7.
During 2005 to 2007, eggplant fields in 19 provinces from three different regions (western, southern and southeastern Anatolia regions) of Turkey were surveyed for Verticillium wilt. Sixty-seven isolates of Verticillium dahliae from wilted eggplants were collected and used for vegetative compatibility analysis using nitrate non-utilizing mutants and reference tester strains of vegetative compatibility groups (VCGs) 1A, 2A, 2B, 3, 4A and 4B. Among all isolates, 33 (12 from western, 15 from southern and six from southeastern Anatolia) were assigned to VCG2B, 23 (four from western, eight from southern and 11 from southeastern Anatolia) to VCG2A, six (four from southern, one from western, and one from southeastern Anatolia) to VCG4B and five (one from western, one from southern and three from southeastern Anatolia) to VCG1A, whereas VCG3 and VCG4A were not defined among isolates. In order to test if there is a correlation between VCG and pathogenicity in V. dahliae, pathogenicity of 30 isolates, representing the four multimember VCGs, were tested on Solanum melongena cvs. ‘Kemer’ and ‘Aydın Siyahı’ in an unheated greenhouse. All isolates were found to be pathogenic on both cultivars and there was no difference in susceptibility between the two cultivars. VCG4B isolates collectively led to higher vascular discoloration index (VDI) on both cultivars and higher disease severity index (DSI) on ‘Kemer’ compared with other VCGs. Similarly, VCG1A caused lower VDI on both cultivars and lower DSI on ‘Kemer’. Isolates within each of VCGs 1A, 2A and 4B caused similar VDI on both cultivars. Isolates of VCG2B were found to vary in their VDI values on both cultivars. To the best of our knowledge, the present study is the first report of natural infections of eggplant by VCG1A.  相似文献   

8.
Forty-three isolates ofVerticillium lecanii from insects, phytopathogenic fungi and other substrates were tested for vegetative compatibility by observing heterokaryon formation among complementary nitrate-nonutilizing (nit) mutants.nit mutants were isolated from 42/43 strains examined. Twenty-one isolates were self-incompatible, and the remaining 21 isolates were divided into 14 vegetative compatibility groups (VCGs): ten containing only a single strain each, and the remaining four containing two to four isolates each. Members of isolates in each of these VCGs all shared the same IGS haplotype. Further, the isolates within a VCG were correlated with one another in part by fragment patterns of mt-LrDNA, -SrDNA, Bt-2 and H4 region, by PCR-RFLP and -SSCP, but not by dsRNA. Two isolates belonging to VL-J2 have high virulence to aphids, whereas strains from VL-J1 lack this character. These findings indicate that two VCGs (VL-J1 and -J2) may originate from two distinct clonal lineages. Alternatively, high VCG diversity and HSI frequency ofV. lecanii might be associated with an array of distinct lineages. These data not only suggest relationships among DNA polymorphisms, virulence, and VCG, but also demonstrate genetic heterogeneity ofV. lecanii. http://www.phytoparasitica.org posting Sept. 30, 2003.  相似文献   

9.
Verticillium wilt, caused by Verticillium dahliae, is the most serious disease in olive cultivation areas in western Turkey. Two hundred and eight isolates of V. dahliae from olive (Olea europea var. sativa) trees were taken for vegetative compatibility analysis using nitrate non-utilizing (nit) mutants. One isolate did not produce a nit mutant. Nit mutants of 207 isolates were tested against tester strains of internationally known vegetative compatibility groups (VCGs) 1A, 2A, 2B, 3, 4A and 4B, and also paired in many combinations among themselves. One hundred and eighty nine of the isolates (90.9%) were strongly compatible with T9, the tester strain of VCG1A, and thus were assigned to VCG1A. Eight isolates were assigned to VCG2A and four isolates to VCG4B. One isolate was heterokaryon self-incompatible (HSI) and five isolates could not be grouped to any of the VCGs tested. Pathogenicity assays were conducted on a susceptible olive cultivar (O. europea cv. Manzanilla) and a susceptible local cotton cultivar (Gossypium hirsutum cv. Çukurova 1518). Both cotton and olive inoculated with all VCG1A isolates showed defoliating symptoms in greenhouse tests. This is the first report on VCGs in V. dahliae from olive trees in Turkey which demonstrates that VCG1A of the cotton-defoliating type is the most commonly detected form from olive plants in the western part of Turkey.  相似文献   

10.
Genetic diversity and phenotypic diversity in Verticillium dahliae populations on cotton were studied among 62 isolates from Spain and 49 isolates from Israel, using vegetative compatibility grouping (VCG), virulence and molecular assays. In Spain, defoliating V. dahliae isolates (D pathotype) belong to VCG1, and non-defoliating isolates (ND) belong to VCG2A (often associated with tomato) and VCG4B (often associated with potato). The D pathotype was not identified in Israel. The ND pathotype in Israel is comprised of VCG2B and VCG4B. Isolates in VCG2B and VCG4B ranged in virulence from weakly virulent to highly virulent. The highly virulent isolates induced either partial defoliation or no defoliation. Virulence characteristics varied with inoculation method and cotton cultivar. Highly virulent isolates from Israel were as virulent as D isolates from Spain under conditions conducive to severe disease. The D pathotype is pathologically and genetically homogeneous, whereas the ND pathotype is heterogeneous with respect to virulence, VCG, and molecular markers based on single-primer RAPD and on PCR primer pairs.  相似文献   

11.
A comprehensive survey on the prevalence and incidence of Verticillium wilt of olive in Turkey has been conducted over 6 years (2003–2008). Vegetative compatibility group (VCG) assessment and PCR-based molecular pathotyping were used to evaluate the distribution of the defoliating (D) and nondefoliating (ND) pathotypes of Verticillium dahliae in surveyed areas. Pathogen prevalence was 35% of all olive orchards inspected and incidence of the disease reached 3.1%. VCG1A was predominant (29.3%) and infected all major cultivars grown in Turkey. The other two VCGs detected (2A and 4B) were of minor relevance (4.9% and 0.9%, respectively). Disease incidence caused by VCG1A infections was higher (ranging from 1.1% to 6.9%) than that caused by VCG2A and VCG4B in 10 provinces (Manisa, Aydin, Kahramanmaras, Izmir, Mugla, Kilis, Denizli, Gaziantep, Mardin and Balikesir). However, VCG2A and 4B were more prevalent (and responsible for higher disease incidence) than VCG1A in three provinces (Hatay, Osmaniye and Bursa). Finally, VCG1A isolates were found in all provinces except Canakkale, and simultaneous presence of the three VCGs was only verified in Hatay province. An artificial inoculation bioassay (19 representative V. dahliae isolates included) revealed that VCG1A (13) isolates as a group were more aggressive and caused defoliation, whereas VCG2A (5) and VCG4B (1) isolates induced milder symptoms. Within a VCG group, virulence varied among isolates infecting the same olive cultivar and this virulence was also related to the differential susceptibility of the cultivars (‘Manzanilla’, ‘Ayvalik’ and ‘Gemlik’) tested. Molecular pathotyping allowed the identification of D (VCG1A) and ND (VCG2A/4B) pathotypes, which correlated with results from pathogenicity tests. Remarkably, the V. dahliae VCG1A/D pathotype population infecting olive in Turkey was molecularly different from that one previously identified in Spain.  相似文献   

12.
Races were identified among butterhead lettuce isolates of Fusarium oxysporum f. sp. lactucae collected from three geographical areas of Hokkaido, Shizuoka, and Fukuoka in Japan by inoculation tests using Fujinagas race differential cultivars of lettuce (i.e., Patriot, Costa Rica No. 4, and Banchu Red Fire). Eighteen isolates from Shizuoka and Fukuoka were designated race 3, with two unknown vegetative compatibility groups (VCGs) that differed from Ogisos VCG 1 and 2. These two new VCGs were obtained from both Shizuoka and Fukuoka. On the other hand, three isolates from Hokkaido were classified as race 1 and identified as VCG 1, which represents a VCG of crisphead isolates from Nagano.  相似文献   

13.
A total of 101Verticillium dahliae isolates were recovered from cotton plants at 57 sites in the Aegean region of Turkey between 2003 and 2004. Isolates were tested for vegetative compatibility by observing heterokaryon formation among complementary nitrate-nonutilizing (nit) mutants. Forty-six isolates were assigned to VCG 1, 12 to VCG 2A, 33 to VCG 2B and four to VCG 4B. The remaining six isolates could not be tested for vegetative compatibility because of their inability to yieldnit mutants. All isolates recovered were tested for pathogenicity on cotton cultivars Acala SJ-1 and Deltapine 15-21 by the stem-injection method. The isolates of VCG 2 and 4B, irrespective of their origin, induced weak to severe symptoms on cotton and were similar to the previously described cotton non-defoliating pathotype. In contrast, all cotton isolates of VCG1 caused severe foliar symptoms, stunting, defoliation and often death. This is the first report on VCG 1 ofV. dahliae in Turkey. http://www.phytoparasitica.org posting May 4, 2007.  相似文献   

14.
Improved understanding of the genetic diversity within fungi in the genusVerticillium has resulted from recent studies based on vegetative compatibility analysis and several techniques of molecular biology. Although the method used to identify vegetative compatibility groups (VCGs) does affect the results, vegetative compatibility appears to be a stable characteristic among isolates. Fairly low VCG diversity has been detected withinV. dahliae andV. albo-atrum using nitrate non-utilizing mutants. VCGs do not appear to be related to pathogenicity to particular host species, with the exception ofV. albo-atrum on alfalfa. However, there is some correlation with virulence on certain hosts and with the ability ofV. dahliae to interact with root-lesion nematodes. Studies based on DNA analysis indicate thatV. dahliae andV. albo-atrum are closely related but separate species. Restriction fragment length polymorphism (RFLP) studies have identified several subspecific groups withinV. dahliae, including two non-host-adapted groups and two that are host-adapted. They also have confirmed that alfalfa strains ofV. albo-atrum are a distinct subgroup that is probably a separate population of clonal origin. Using polymerase chain reaction (PCR), a second non-host-adapted subgroup withinV. albo-atrum was identified that was previously unknown.  相似文献   

15.
Gibberella zeae (anamorph Fusarium graminearum) is the main pathogen causing Fusarium head blight of wheat in Argentina. The objective of this study was to determine the vegetative compatibility groups (VCGs) and mycotoxin production (deoxynivalenol, nivalenol and 3-acetyl deoxynivalenol) by F. graminearum populations isolated from wheat in Argentina. VCGs were determined among 70 strains of F. graminearum isolated from three localities in Argentina, using nitrate non-utilizing (nit) mutants. Out of 367 nit mutants generated, 41% utilized both nitrite and hypoxanthine (nit1), 45% utilized hypoxanthine but not nitrite (nit3), 9% utilized nitrite but not hypoxanthine (NitM) and 5% utilized all the nitrogen sources (crn). The complementations were done by pairing the mutants on nitrate medium. Fifty-five different VCGs were identified and the overall VCG diversity (number of VCGs/number of isolates) averaged over the three locations was 0.78. Forty-eight strains were incompatible with all others, thus each of these strains constituted a unique VCG. Twenty-two strains were compatible with other isolates and were grouped in seven multimembers VCGs. Considering each population separately, the VCG diversity was 0.84, 0.81 and 1.0 for San Antonio de Areco, Alberti and Marcos Juarez, respectively. Toxin analysis revealed that of the 70 strains of F. graminearum tested, only 90% produced deoxynivalenol, 10% were able to produce deoxynivalenol and very low amounts of 3-acetyldeoxynivalenol. No isolate produced nivalenol. The results indicate a high degree of VCG diversity in the F. graminearum populations from wheat in Argentina. This diversity should be considered when screening wheat germplasm for Fusarium head blight resistance.  相似文献   

16.
A population of 84?V. dahliae isolates mainly originating from Crete, Greece, was characterized in terms of pathogenicity and virulence on different hosts, in parallel with morphological/physiological characterization, vegetative compatibility grouping and mating type determination. Tomato race 2 was found to have supplanted race 1 and was more virulent on a tomato-susceptible cultivar than race 1. Using a differential host classification system which tests pathogenicity to tomato, eggplant, sweet pepper and turnip, 59 isolates were assigned to tomato, 19 to eggplant, one to sweet pepper and five to tomato-sweet pepper pathogenicity groups. All isolates from Crete fell into VCG subgroups 2A, 2B and 4B, while a remarkably high incidence of bridging isolates (compatible with two or more VCGs) was recorded. The tomato-sweet pepper pathogenicity group was morphologically quite distinct from the others, while conidial length and pigment intensity were discriminatory parameters among VCGs 2A, 2B and 4B. PCR-based molecular marker Tr1/Tr2 was reliable in race prediction among tomato-pathogenic isolates, except for members of VCG 4B, while the application of markers Tm5/Tm7 and 35-1/35-2 was highly successful for tomato-pathogenic isolates. E10 marker was related to VCG 2B, rather than to pathogenicity groups. A single nucleotide polymorphism in the ITS2 region, and two novel molecular markers, M1 and M2, proved useful for the fast and accurate determination of major VCGs 2A, 2B and 4B, and can be used for high-throughput population analyses in future studies. The mating type was unrelated to VCG classification and probably does not control heterokaryon incompatibility in V. dahliae.  相似文献   

17.
In a study of vegetative compatibility in Verticillium dahliae in the Netherlands, a collection of 45 isolates including representatives from woody hosts, several horticultural crops and from the soil of potato fields was examined. In addition an effort was made to compare vegetative compatibility groups (VCGs) from different countries. The results of this study indicate that VCG diversity in V. dahliae in the Netherlands is limited. Only two VCGs were detected: VCG NL-I and VCG NL-II. The former is the predominant VCG for isolates from tree hosts. However, Verticillium wilt in trees can be caused by isolates from both VCGs. It is suggested that the predominance of VCG NL-I in tree hosts is the result of the origin of the tree and the cropping history of its growing site, rather than trees being preferential hosts for isolates from this VCG. Comparison of VCG testers from the Netherlands, from several other European countries and from the USA show that in Europe two major VCGs are present. The first one, including NL-I, is compatible with USA VCG 3 and VCG 4, whereas the second one, including NL-II, is compatible with USA VCG 1 and VCG 2. These groups are not completely separated; in some cases, testers formed heterokaryons with VCG testers from both main groups. Because of the presence of these bridge isolates and because mutants from the same isolate differ in ability to form heterokaryons, it is emphasised that careful selection of isolate testers is an essential step to get a clear picture of VCG diversity.  相似文献   

18.
The feasibility of identifying races of Fusarium oxysporum f.sp. dianthi by tests for vegetative compatibility type was investigated. Nitrate non-utilizing nitl and NitM mutants were generated from 51 isolates of F. oxysporum f.sp. dianthi , 18 isolates of f. oxysporum from Dianthus spp. not belonging to f.sp. dianthi and, for comparison, 11 isolates of F. proliferatum from Dianthus spp. Vegetative compatibility groups (VCGs) among the isolates were identified by pairing all nitl with all NitM mutants.
Vegetative compatibility was found between isolates of F. oxysporum f.sp. dianthi races 1 and 8 (VCG 0022), races 2, 5 and 6 (VCG 0021) and race 4 (VCG 0020), and wilt-causing isolates previously classified as F. redolens from D. caryophyllus (VCG 0023) and D. barbatus (VCG 0024), Three self-compatible wilt-causing isolates were vegetatively incompatible with all other isolates (VCGs 0025,0026 and 0027), Two VCGs were found among isolates of F. oxysporum from D. caryophyllus not belonging to f.sp. dianthi ; six non-pathogenic isolates were self-compatible but vegetatively incompatible with all other isolates. The foot-rot-associated isolates of F. proliferatum from D. caryophyllus constituted a separate VCG.
Virulence analyses revealed at least four new races among VCGs 0023 to 0027, New Isolates could be categorized as races as a result of VCG analysis and VCG classification correctly indicated that the race identities previously ascribed to two old isolates had been incorrect. Vegetative compatibility tests offer the prospect for rapid identification of races, although inoculation tests continue to be necessary to differentiate races that belong to a single VCG.  相似文献   

19.
为明确引起马铃薯黄萎病的大丽轮枝菌Verticillium dahliae的遗传变异和致病力的差异,对从内蒙古及其周边地区马铃薯发病株上分离得到的29株大丽轮枝菌的营养亲和群、生理小种和交配型进行了测定,利用伤根接种法进行致病力分化研究。结果表明,供试的29株马铃薯大丽轮枝菌菌株被划分为VCG2B、VCG4B和VCG4A三个营养亲和群,其菌株数分别为11、2和16株;供试的29株菌株均鉴定为单一的2号生理小种和MAT1-2-1交配型。供试的29株大丽轮枝菌菌株间致病力存在一定的差异,其中NCP-1菌株的致病力最强,病情指数为83.33;而NWS-5菌株的致病力最弱,病情指数仅为10.85;不同营养亲和群菌株的平均致病力也存在显著差异,VCG4B型菌株的平均致病力最高,平均病情指数为67.18;其次为VCB2B型菌株,平均病情指数为42.50,而VCG4A型菌株致病力最弱,平均病情指数仅为20.54。  相似文献   

20.
Isolates ofF. oxysporum collected from symptomless carnation cuttings from Australian carnation growers properties, together with isolates from national collections, were screened for pathogenicity and grouped according to vegetative compatibility and random amplified polymorphic DNA (RAPD) patterns. The collection of 82 Australian isolates sorted into 23 different vegetative compatibility groups (VCGs). Of 69 isolates tested for pathogenicity, 24 were pathogenic to carnations, while the remaining 45 were non-pathogenic. All pathogenic isolates were within two VCGs, one of which was also compatible with an isolate obtained from an international culture collection, and which is known to represent VCG 0021 and race 2. Race status of the two pathogenic VCGs remains unknown. The RAPD assay revealed distinct DNA banding patterns which could distinguish pathogenic from non-pathogenic isolates as well as differentiate between isolates from the two pathogenic VCGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号