首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition metal-promoted oxidation impacts the quality, shelf life, and nutrition of many packaged foods. Metal-chelating active packaging therefore offers a means to protect foods against oxidation. Herein, we report the development and characterization of nonmigratory metal-chelating active packaging. To prepare the films, carboxylic acids were grafted onto the surfaces of polypropylene films by photoinitiated graft polymerization of acrylic acid. Attenuated total reflectance/Fourier transform infrared spectroscopy, contact angle, scanning electron microscopy, and iron-chelating assay were used to characterize film properties. Graft polymerization yielded a carboxylic acid density of 68.67 ± 9.99 nmol per cm(2) film, with ferrous iron-chelating activity of 71.07 ± 12.95 nmol per cm(2). The functionalized films extended the lag phase of lipid oxidation in a soybean oil-in-water emulsion system from 2 to 9 days. The application of such nonmigratory active packaging films represents a promising approach to reduce additive use while maintaining food quality.  相似文献   

2.
Antioxidant capacities of vetiver (Vetiveria zizanioides) oil were evaluated by two different in vitro assays: the DPPH* free radical scavenging assay and the Fe2+-metal chelating assay. Results showed that the vetiver oil (VO) possessed a strong free radical scavenging activity when compared to standard antioxidants such as butylated hydroxytoluene (BHT) and alpha-tocopherol. However, its metal chelating capacity was relatively weak. VO (10 microL/mL) dissolved in methanol exhibited approximately 93% free radical scavenging activity in the DPPH* assay and approximately 34% Fe2+ chelating activity in the metal chelating assay. By contrast, 10 mM BHT and 0.1 mM alpha-tocopherol exhibited 93 and 89% free radical scavenging activities in the DPPH* assay, respectively, and 1 mM EDTA exhibited approximately 97% activity in the metal chelating assay. Among the complex constituents in the crude VO, beta-vetivenene, beta-vetivone, and alpha-vetivone, which had shown strong antioxidant activities, were isolated and identified using various chromatographic techniques including silica gel open column chromatography, silica HPLC, and GC-MS. These results show that VO and some of its inherent components can be potential alternative natural antioxidants.  相似文献   

3.
《Journal of plant nutrition》2013,36(10-11):1927-1941
Abstract

The interaction between polygalacturonic acid and Fe(III) was studied in the presence and in the absence of pyruvic, malic, and citric acids. Kinetical data and FT‐IR analyses show that the polysaccharidic matrix acts as an accumulator of Fe(III) and that the metal ion interacts electrostatically with both the carboxylic and other functional groups of the polysaccharidic matrix. Copper(II) ions, which have a high affinity towards the carboxylic groups of the polysaccharide, do not influence markedly the Fe(III) absorption indicating that the carboxylic groups are not determining in the Fe(III) accumulation process. Furthermore, the results suggest that iron inside the fibrils is under an hydrolyzed form or as Fe(III) hydroxy polymer. In the presence of malic and citric acids the amount of Fe(III) accumulated at pH 4.7 and 6.0 is markedly lower than that found in the presence of pyruvic acid what was attributed to the higher affinity of citric and malic acid towards the metal ion.  相似文献   

4.
铁矿物作为土壤的重要组成成分,一般可通过吸附、络合和共沉淀等方式影响重金属的生物有效性和毒性.此外,土壤中有机物的存在会影响铁矿物的转化,导致转化产物的结构和表面特性发生改变,进一步影响重金属的环境行为.本文从铁矿物、有机质和重金属等要素入手,综述了反应pH、温度、亚铁和微生物等因素影响下土壤铁矿物非生物和生物转化过程...  相似文献   

5.
为探明4℃冷藏和-18℃冻藏对牦牛瘤胃平滑肌脂肪和蛋白质氧化及其加工特性的影响,以PE薄膜和PE真空包装的牦牛瘤胃为研究对象,分别测定其在贮藏过程中的脂肪氧化(硫代巴比妥酸)、蛋白质氧化(羰基值、总巯基、表面疏水性)和加工品质(失水率、蒸煮损失率、剪切力、质构特性)的变化。结果表明,不同贮藏温度和包装方式下的瘤胃均发生了不同程度的脂肪和蛋白质氧化,与薄膜包装相比,真空包装可延缓牦牛瘤胃脂肪和蛋白质氧化的发生,且-18℃冻藏下更为显著。此外,冷(冻)藏条件下不同包装牦牛瘤胃的失水率和蒸煮损失率均显著增大(P<0.05),剪切力值显著降低(P<0.05),硬度先减小后增大,且薄膜包装在冷藏0~5 d和冻藏0~28 d时,其加工特性均优于真空包装。综上表明,2种包装下的牦牛瘤胃在冷(冻)藏过程中均发生了脂肪和蛋白质氧化,但真空包装可以有效地延缓氧化反应的发生。此外,在冷藏0~5 d和冻藏0~28 d时,薄膜包装更有利于改善瘤胃的加工特性,增加其嫩度和弹性,但长时间贮藏会导致瘤胃加工特性下降,冷藏条件下薄膜包装瘤胃的变化表现最为显著。本研究可为瘤胃贮藏过程中食用品质的控制提供参考。  相似文献   

6.
Active membranes and food packaging containing antioxidants like catechin and epicatechin, combined with the use of materials made of biopolymers obtained from renewable sources, could create a novel alternative to reduce oxidation in food, pharmaceutical, and cosmetic products. Poly(94% L-lactic acid) films containing 1.28% catechin and 1.50% epicatechin were extruded in a pilot plant-scale extrusion machine. The diffusion kinetics of catechin and epicatechin into 95% ethanol at 20, 30, 40, and 50 °C and 50% ethanol at 40 °C displayed Fickian release behavior and diffusion coefficients between 0.5 and 50 × 10(-11) cm(2)/s. According to the Arrhenius equation, the energy of activation for the diffusion of catechin and epicatechin in the films was 110.43 and 98.92 kJ/mol, respectively. The antioxidant activity of the films was measured in methanol extracts containing 46.42 μg/mL of catechin and 57.52 μg/mL of epicatechin as 32.90 and 36.68% of scavenging the 2,2-diphenyl-1-picrylhydrazyl radical, respectively.  相似文献   

7.
The antioxidant activity of oregano, parsley, olive mill wastewaters (OMWW), Trolox, and ethylenediaminetetraacetic acid (EDTA) was evaluated in bulk oils and oil-in-water (o/w) emulsions enriched with 5% tuna oil by monitoring the formation of hydroperoxides, hexanal, and t-t-2,4-heptadienal in samples stored at 37 degrees C for 14 days. In bulk oil, the order of antioxidant activity was, in decreasing order (p < 0.05), OMWW > oregano > parsley > EDTA > Trolox. The antioxidant activity in o/w emulsion followed the same order except that EDTA was as efficient an antioxidant as OMWW. In addition, the total phenolic content, the radical scavenging properties, the reducing capacity, and the iron chelating activity of OMWW, parsley, and oregano extracts were determined by the Folin-Ciocalteau, oxygen radical absorbance capacity, ferric reducing antioxidant power, and iron(II) chelating activity assays, respectively. The antioxidant activity of OMWW, parsley, and oregano in food systems was related to their total phenolic content and radical scavenging capacity but not to their ability to chelate iron in vitro. OMWW was identified as a promising source of antioxidants to retard lipid oxidation in fish oil-enriched food products.  相似文献   

8.
Ferric ethylenediamine- N, N'-bis-(o-hydroxyphenylacetic)acid chelate (Fe(o, o-EDDHA)) is one of the most effective Fe fertilizers in calcareous soils. However, humic substances are occasionally combined with iron chelates in drip irrigation systems in order to lower costs. The reactivity of iron chelate-humic substance mixtures in several soil components and in calcareous soils was investigated through interaction tests, and their behavior was compared to the application of iron chelates and humic substances separately. Two commercial humic substances and two Fe(o, o-EDDHA) chelates (one synthesized in the laboratory and one commercial) were used to prepare iron chelate-humic substance mixtures at 50% (w/w). Various soil components (calcium carbonate, gibbsite, amorphous iron oxide, hematite, tenorite, zincite, amorphous Mn oxide, and peat) and three calcareous soils were shaken for 15 days with the mixtures and with iron chelate and humic substance solutions. The kinetic behavior of Fe(o, o-EDDHA) and Fe non-(o,o-EDDHA) (Fe bonded to (o,p-EDDHA) and other polycondensated ligands) and of the different nutrients solubilized after the interaction assay was determined. The results showed that the mixtures did not significantly reduce the retention of Fe(o, o-EDDHA) and Fe non-(o,o-EDDHA) in the soil components and the calcareous soils compared to the iron chelate solutions, but they did produce changes in the retention rate. Moreover, the competition between humic substances and synthetic chelating agents for complexing metal cations limited the effectiveness of the mixtures to mobilize nutrients from the substrates. The presence of Fe(o, p-EDDHA) and other byproducts in the commercial iron chelate had an important effect on the evolution of Fe(o, o-EDDHA) and the nutrient solubilization process.  相似文献   

9.
Assays comprising three probes for different mechanisms of antioxidant activity in food products have been modified to allow better comparison of the contributions of the different mechanisms to antioxidant capacity (AOC). Incorporation of a common format for oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), and iron(II) chelating activity (ICA) assays using 96-well microplates provides a comprehensive and high-throughput assessment of the antioxidant capacity of food extracts. The methods have been optimized for aqueous extracts and validated in terms of limit of quantification (LoQ), linearity, and precision (repeatability and intermediate reproducibility). In addition, FRAP and ORAC assays have been validated to assess AOC for lipophilic extracts. The relative standard deviation of repeatability of the methods ranges from 1.2 to 6.9%, which is generally considered to be acceptable for analytical measurement of AOC by in vitro methods. Radical scavenging capacity, reducing capacity, and iron chelating properties of olive mill wastewaters (OMWW), oregano, and parsley were assessed using the validated methods. OMWW showed the highest radical scavenging and reducing capacities, determined by ORAC and FRAP assays, respectively, followed by oregano and parsley. The ability to chelate Fe (2+) was, in decreasing order of activity ( p > 0.05) parsley congruent with oregano > OMWW. Total phenol content, determined by the Folin-Ciocalteu method, correlated to the radical scavenging and reducing capacities of the samples but not to their chelating properties. Results showed that the optimized high-throughput methods provided a comprehensive and precise determination of the AOC of lipophilic and hydrophilic food extracts in vitro.  相似文献   

10.
Drying oils, such as linseed oil and tung oil, have the potential as coating materials to improve barrier properties of biobased packaging films. Oil drying is a chemical reaction in which polyunsaturated fatty acids undergo autoxidation. During drying, oils polymerize and form water-resistant films. However, drying rates tend to be too slow for practical applications. Metal driers are used in the paint industry to accelerate drying, but often driers are not safe for food contact. The objective of this work was to investigate the effect of ionizing radiation on the oxidation or drying rate of drying oils. The effect of irradiation dose on the drying rate of linseed and tung oils was monitored by FTIR spectroscopy. The peak at 3010 cm (-1) was found to be a useful index of oxidation rate. The decrease in peak intensity with time was fitted with exponential functions of the form Abs = Abs 0 exp (- t/ k), where Abs 0 is the initial absorbance and 1/ k is the rate constant for the oxidation process. Values for k were 9.91 ( R (2) = 0.98), 6.59 ( R (2) = 0.95)n and 6.44 ( R (2) = 0.97) for radiation levels of 0, 50, and 100 kGy, respectively. The k values suggested that the oxidation rate increased as the radiation dose increased from 0 to 50 kGy. A further increase to 100 kGy had only a limited effect.  相似文献   

11.
This paper investigated the feasibility of manipulating packaging polymers with various degrees of hydrophobicity to release two antioxidants, tocopherol and quercetin, at rates suitable for long-term inhibition of lipid oxidation in food. For example, one antioxidant can be released at a fast rate to provide short-term/intermediate protection, whereas the other antioxidant can be released at a slower rate to provide intermediate/long-term protection of lipid oxidation. Controlled-release packaging films containing tocopherol and quercetin were produced using ethylene vinyl alcohol (EVOH), ethylene vinyl acetate (EVA), low-density polyethylene (LDPE), and polypropylene (PP) polymers; the release of these antioxidants to 95% ethanol (a fatty food simulant) was measured using UV-vis spectrophotometry, and Fickian diffusion models with appropriate initial and boundary conditions were used to fit the data. For films containing only quercetin, the results show that the release of quercetin was much faster but lasted for a much shorter time for hydrophilic polymers (EVOH and EVA) than for hydrophobic polymers (LDPE and PP). For binary antioxidant films containing tocopherol and quercetin, the results show that tocopherol released more rapidly but for a shorter period of time than quercetin in LDPE and EVOH films, and the difference is more pronounced for LDPE films than EVOH films. The results also show the presence of tocopherol can accelerate the release of quercetin. Although none of the films produced is acceptable for long-term lipid oxidation inhibition, the study provides encouraging results suggesting that acceptable films may be produced in the future using polymer blend films.  相似文献   

12.
In the past several years, concern about the environmental fate of recalcitrant synthetic ligands (e.g., EDTA) has increased. The used of new biodegradable chelating agents such as imidodisuccinic acid (IDHA) has been proposed as an alternative. However, its application as an iron ligand to correct iron chlorosis in agriculture has not yet been studied. Then the objective of this work is to determine the fertilizer capacity of IDHA/Fe3+ using interaction assays with soils and soil materials and evaluating Fe nutrition of efficient and susceptible plants. Interaction of IDHA/Fe3+ with soil materials produces a reduction of the amount of soluble Fe. This is in good agreement with studies on the stability of the IDHA/Fe3+ chelate. In general, plant response to IDHA/Fe3+ in hydroponics is acceptable and better than that to EDTA/Fe3+. This good behavior seems to be related to the lower coordination of the iron in IDHA/Fe3+ with respect to EDTA/Fe3+.  相似文献   

13.
磷饥饿诱导水稻根表铁膜形成机理初探   总被引:11,自引:1,他引:10  
采用溶液培养的方法,初步探索了磷饥饿诱导水稻根表铁膜形成的机理。磷饥饿24h后水稻的根表出现了明显的红棕色物质的沉积,扫描电镜的能谱分析结果显示,红棕色物质是铁的氧化物。针对这一现象,首先研究了没有水稻生长的正常磷营养液和缺磷营养液的变化,结果表明二者之间全波长的扫描图谱没有出现差异。采用酸碱混合指示剂的琼脂染色方法,观察了水稻根系表面及根际pH值的变化情况,并分别测定了正常磷营养(P)和缺磷(P0)2种条件下水稻的根系活力。结果看出,缺磷时水稻根系活力高于磷营养正常的处理,尤其是基因型Jin23A,其P和P0处理间根系活力差异极显著。水稻根表三价铁的浓度高于二价铁,并且缺磷根系表面三价铁和二价铁浓度均明显高于供磷处理;缺磷处理水稻根质外体沉积的铁浓度也明显高于供磷处理。因此,初步确定磷饥饿诱导水稻根表铁膜形成是生物学基础上的化学反应过程。  相似文献   

14.
湿地植物铅的富集特征及根际铅移动性的影响因素研究   总被引:1,自引:0,他引:1  
【目的】 揭示湿地植物铅的富集特征及根际铅移动性影响因素的作用机理,为人工湿地修复重金属污染水体提供理论指导和依据。 【方法】 通过根箱法研究了五种挺水湿地植物 (大叶皇冠草、黑籽荸荠、圆币草、草龙、小婆婆纳) 根际 pH、氧化还原电位 (Eh)、Fe2+ 和 Fe3+ 浓度、铅 (Pb) 的化学形态及移动性的变化。 【结果】 与非根际相比,五种植物根际pH下降,Fe2+ 和 Fe3+ 浓度显著下降,Eh显著升高,Pb的移动性显著降低 (P<0.05)。与非根际相比,根际pH下降幅度为 0.1~0.4个单位,根际Fe2+和 Fe3+浓度下降幅度为0.6~2.7 mmol/kg。土壤中铅的存在形态主要以残渣态为主 (36.39%~47.54%),其次是铁锰氧化物结合态 (30.16%~41.64%)、有机质结合态 (8.85%~15.08%) 和碳酸盐结合态 (6.89%~12.46%)。五种湿地植物根际Pb的移动性降低的主要原因是根际碳酸盐结合态Pb含量显著下降,其中大叶皇冠草受根际pH、Eh、Fe3+和Fe2+的影响导致其根际Pb移动性降低效应最为显著。 【结论】 五种供试植物Pb主要分布在根部;根表富集的铁膜数量显著高于锰膜数量;供试植物根际Fe3+含量与Pb的移动性因子呈极显著正相关,湿地植物根系铁氧化能力对降低其根际重金属的移动性有重要作用。本研究为人工湿地修复重金属污染水体提供了有力的理论依据。   相似文献   

15.
《Journal of plant nutrition》2013,36(10-11):1909-1926
Abstract

Phenolic substances in the soil–plant system can be oxidized by metal ions, inorganic components, molecular oxygen as well as by phenoloxidases, giving rise to the formation of products of low or high molecular weight. Interactions of these products with iron, in both reduced and oxidized form, can affect the iron mobility in soil and rhizosphere, and thus its availability to plants. Here we report the results of a study on the complexing and reducing activity of the oxidation products from caffeic acid (CAF), obtained via electrochemical means, towards Fe(III) and Fe(II) in aqueous solution in the 3.0–6.0 pH range. The HPLC analysis of the filtered solutions after the CAF oxidation showed the formation of two main groups of products: (i) CAF oligomers formed through radicalic reactions which do not involve the double bond of the CAF lateral chain and (ii) products where this bond is involved. These oxidation products (COP) were found to interact with both Fe(III) and Fe(II) with formation of soluble and insoluble Fe(III)‐, and Fe(II)‐COP complexes. The COP were found to be able to reduce Fe(III) to Fe(II) mainly at pH < 4.0. A low redox activity was observed at pH ≥ 4.5 due to Fe(III) hydrolysis reactions as well as to the decrease in the redox potential of the Fe(III)/Fe(II) couple. Formation of hydroxy Fe(III)‐COP polymers occurs at pH > 3.5.  相似文献   

16.
17.
姚远  余光辉  滕辉 《土壤》2023,55(4):718-728
铁氧化物和溶液相亚铁常在厌氧土壤环境中共存。铁氧化物能够加快亚铁的氧化速率,且控制亚铁氧化成矿产物的类型,同时,亚铁与铁氧化物组成的系统是一种良好的还原剂,能够有效还原重金属及降解有机污染物。另一方面,亚铁能够催化铁氧化物晶相转变,导致铁氧化物结构和表面性质发生改变,进而影响相关重金属、有机质的环境行为。本文综述了铁氧化物催化亚铁氧化成矿、铁氧化物-亚铁系统还原污染物以及亚铁催化铁氧化物相变的反应机制及影响因素,最后,对未来在自然土壤中研究铁氧化物-亚铁界面反应及其环境影响进行了展望。  相似文献   

18.
Proteins often stabilize food emulsions and are also able to promote or delay lipid oxidation in complex systems. The purpose of this work was to investigate the relationship between metal ion availability and oxidative stability of oil-in-water emulsions stabilized by bovine serum albumin (BSA) or sodium caseinate (NaCas). Emulsions with similar and stable droplet size distributions were prepared with stripped sunflower oil (30 vol %) and protein solutions (20 g L(-)(1); pH = 6.5). In the absence of the water-soluble metal chelator EDTA, oxygen uptake, conjugated dienes, and volatile compounds developed faster in NaCas-stabilized emulsions than in those prepared with BSA. This effect is attributed to the chelating properties of NaCas and to electrostatic interactions that attract some metal ions at the interface where they could initiate lipid oxidation. When EDTA (100 muM) was present, oxidation was delayed to a greater extent in emulsions made with NaCas than in BSA stabilized emulsions. These conditions probably enabled NaCas to exert free-radical-scavenging activity.  相似文献   

19.
Frequently the effectiveness of iron (Fe) chelates is low because they can be retained or destroyed by soil materials. The high cost of these Fe fertilizers makes it necessary to study soil material reaction with Fe chelates. Commercial Fe chelates with EDTA, EDDHA, and EDDHMA as ligands and their standards, prepared in the laboratory, were shaken for one hour with various soil materials [amorphous Fe(III) oxide, acid peat, calcium (Ca)‐montmorillonite and calcium carbonate (CaCO3)] and with a soil standard made in the laboratory. After agitation, the chelate‐soil mixtures were filtered and the micronutrients and chelated Fe that remained in solution were determined. Among the soil materials used, amorphous Fe(III) oxide and acid peat had the greatest affect on the amount of chelated Fe remaining in solution. The type of chelating agent was the next major factor that affected the availability of soluble Fe following reaction with the soil materials. Another factor was the commercial formulation of the Fe chelates. The chelates comprised of EDDHA or EDDHMA maintained the highest percentages of chelated Fe in solution after interaction with the solid phases, except for the acid peat. The last soil material, acid peat, retained more chelated Fe for the Fe chelates with EDDHA or EDDHMA than with EDTA as the chelating agent. The commercial Fe‐EDDHA chelates had greater losses of chelated Fe than their standard after interaction with all the solid phases. The commercial Fe‐EDDHA chelate (Sequestrene) and the commercial Fe‐EDDHMA chelate (Hampirón) solubilized the highest amount of copper (Cu) from soil standard. This was attributed to the presence of by‐products in the commercial formulations since the Fe‐EDDHA standard did not have Cu in solution after the interaction. Therefore, the commercial Fe chelate by‐products are able to form Cu‐complexes which could affect chelated Fe and its availability to plants.  相似文献   

20.
《Journal of plant nutrition》2013,36(10-11):1969-1984
Abstract

Iron chlorosis is a mineral disorder due to low Fe in the soil solution and the impaired plant uptake mechanism. These effects increased with high pH and bicarbonate buffer. The solution to Fe chlorosis should be made by either improving the Fe uptake mechanism or increasing the amount of Fe in the soil solution. Among Fe fertilizers, only the most stable chelates (EDDHA and analogous) are able to maintain Fe in the soil solution and transport it to the plant root. In commercial products with the same chelating agent, the efficacy depends on the purity and the presence of subproducts with complexing activity, that can be determined by appropriate analytical methods such as HPLC. In commercial products declaring 6% as Fe‐EDDHA, purity varied from 0.5% to 3.5% before 1999, but in 2002 products ranging 3–5.4% chelated Fe are common in the Spanish market. Fe‐o,p‐EDDHA, as a synthesis by‐product with unknown efficacy, is present in all Fe‐EDDHA formulations. Commercial Fe‐EDDHMA products also contain methyl positional isomers. Fe‐EDDHSA synthesis produces condensation products with similar chelating capacity to the Fe‐EDDHSA monomer that can account for more than 50% of the chelated iron in the commercial products. Chelates with different molecules should be compared for their efficacy considering firstly their ability to maintain Fe in solution and secondly their capacity to release iron to the roots. Accepting the turnover hypothesis, their efficacy is also dependent thirdly on the ability of the chelating agent to form the chelate using native iron from the soil. The 1st and 3rd points are related to the chemical stability of the chelate, while plants make better use of iron from the less stable chelates. Plant response is the ultimate evaluation method to compare commercial products with the same chelating agent or different chelates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号