首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

Better diagnostic tools are needed to predict Mn deficiency and sufficiency to ensure maximum yield with the minimum of fertilizer inputs. An alternative to the sufficiency range method (SRM) is to use the balance of nutrients approach as in the DRIS (Diagnosis and Recommendation Integrated System) method. A computer program has been developed as a diagnostic tool with plant nutrient levels as inputs and plant indices as outputs that indicate which element is most deficient. This program, SOY‐DRIS, was evaluated for Mn predictions using plant data from four field experiments. Data for check plots (0 Mn) for each non‐Mn treatment were used as input for the program and the Mn index indicating deficiency or sufficiency was the output. The predicted deficiencies and sufficiencies were tested against yield responses to Mn. Of 74 check plots, SOY‐DRIS correctly diagnosed the Mn nutrient status in 62 cases. There were 32 true positives (Mn deficient) and 30 true negatives (Mn sufficient) indicating that both deficiency and sufficiency were accurately predicted. If borderline cases and cases where insufficient Mn was added to give a yield response were eliminated, only one incorrect diagnosis was made giving a 99% correct diagnosis by the SOY‐DRIS program. The SRM gave results nearly identical tothe SOY‐DRIS progam.  相似文献   

3.
Degradation and binding of atrazine in surface and subsurface soils   总被引:1,自引:0,他引:1  
Understanding the dissipation rates of chemicals in unsaturated and saturated zones of subsurface soils will help determine if reductions of concentrations to acceptable levels will occur. Chemical properties and microbial biomass and activity were determined for the surface (0-15 cm), lower root (50-105 cm), and vadose (175-220 cm) zones in a Huntington silty clay loam (Fluventic Hapludoll) collected from an agricultural field near Piketon, OH. The rates of sorption, mineralization, and transformation (formation of bound residues and metabolites) of atrazine were determined. Microbial activity was estimated from the mineralization of (14)C-benzoate. We observed decreased levels of nutrients (total organic carbon, N, and P) and microbial biomass with depth, while activity as measured with benzoate metabolism was higher in the vadose zone than in either the surface or the root zones. Sorption coefficients (K(f)) declined from 8.17 in the surface to 3.31 in the vadose zone. Sorption was positively correlated with organic C content. Rates of atrazine mineralization and bound residues formation were, respectively, 12-2.3-fold lower in the vadose than in the surface soil. Estimated half-lives of atrazine ranged from 77 to 101 days in the surface soil, but increased to over 900 days in the subsurface soils. The decreased dissipation of atrazine with increasing depth in the profile is the result of decreased microbial activity toward atrazine, measured either as total biomass or as populations of atrazine-degrading microorganisms. The combination of reduced dissipation and low sorption indicates that there is potential for atrazine movement in the subsurface soils.  相似文献   

4.
土壤中流失的磷进入水体容易引起富营养化污染。目前对于铁矿物胶体结合态磷在土壤孔隙介质中的稳定性和迁移能力的认识还存在不足。本研究采用吸附试验,考察水铁矿对磷的吸附特征以及pH、离子强度和胡敏酸对磷在液相、水铁矿胶体和水铁矿固体上分布的影响;通过DLVO理论,预测水铁矿胶体结合态磷的稳定性和迁移能力。结果表明,假二级动力学模型(R~2=0.964)更适合用于描述磷在水铁矿上的吸附过程,磷在水铁矿上的吸附受液膜扩散、内部扩散和化学吸附等过程控制。Freundlich模型(R2=0.970)对等温吸附的拟合效果好,说明水铁矿对磷的吸附为多层吸附过程。从Langmuir模型参数可知,水铁矿对磷的最大理论吸附量为22.55mg·g~(-1)。水铁矿对磷的吸附能力随pH的升高而降低,随离子强度的升高而升高。然而,低离子强度和高pH有利于反应体系中水铁矿胶体的释放。无论胡敏酸是否存在,在碱性且离子强度不高(1~10mmol·L~(-1))的条件下,有约5%~20%的磷会与水铁矿胶体结合,且这些磷-水铁矿胶体之间的静电斥力较大。根据DLVO理论计算可知,这些带负电荷的胶体之间稳定性较好,在土壤中有一定迁移能力。在实际农业活动中,磷肥的过量施用可能会使大量的磷酸根离子吸附在铁矿物上,促进土壤孔隙水中形成稳定的、带负电的铁矿物胶体,这种磷-铁矿物复合胶体的迁移很可能成为磷迁移的另一种形式。本研究结果可为胶体促进下磷淋失风险评估提供理论和数据支撑。  相似文献   

5.
Pesticides leaching through a soil profile will be exposed to changing environmental sorption and desorption conditions as different horizons with distinct physical and chemical properties are encountered. Soil cores were taken from a clay soil profile and samples taken from 0.0 to 0.3 m (surface), 1.0–1.3 m (mid) and 2.7–3.0 m (deep) and treated with the chloroacetanilide herbicide, acetochlor. Freundlich isotherms revealed that sorption and desorption behaviour varied with each depth sampled. As soil depth increased, the extent and strength of sorption decreased, indicating that the potential for leaching was increased in the subsoils compared with the surface soil. Hysteresis was evident at each of the three depths sampled, although no significant correlations between soil properties and the hysteresis coefficients were evident. Desorption studies using soil fractions with diameters of > 2000, 250–2000, 53–250, 20–53, 2–20, 0–2 and 0–1 µm separated from each of the three soil depths showed that differential desorption kinetics occurred and that the retention of acetochlor significantly correlated (R2 = 0.998) with organic matter content. A greater understanding of the influence of soil components on the overall sorption and desorption potential of surface and subsurface soils is required to allow accurate prediction of acetochlor retention in the soil. In addition, it is likely that the proportion of each size fraction in a soil horizon would influence acetochlor bioavailability and movement to groundwater.  相似文献   

6.
In many studies on soil pollution, authors conclude that there is no downward migration of metal elements if no evidence for enrichment can be inferred from profiles of total metal contents. We assessed possible transfer of mobile and less mobile metal pollutants to depth in subsurface horizons of a heavy metal contaminated soil, by a study of specific pedofeatures in thin sections by optical microscopy, and their corresponding Zn and Pb distribution patterns by synchrotron‐based X‐ray microfluorescence. In the B horizon (70 cm depth), Zn accumulation was predominantly associated with clay–iron coatings. Strong correlation was found between Zn and Fe (r = 0.94), Zn and Mn (r = 0.75), Zn and Ti (r = 0.84), and Zn and K (r = 0.88), but significant correlation was absent between Zn and Pb. In the C horizon (100 cm depth), clear Pb accumulation was observed in distinct iron coatings, with large correlation coefficients found between Pb and Fe (r = 0.94–0.75), whereas correlation between Zn and Fe was absent. Detected Zn concentrations were small and attributed to the local natural geochemical background. These results were then compared with data of the composition of gravitational soil water collected in other soils from the same study area. Thus, Zn accumulation in the B horizon was ascribed to interception of dissolved Zn2+ by negatively charged constituents of clay–iron coatings. In contrast, Pb accumulation in C horizons was related to precipitation of Pb‐bearing iron colloids leading to neoformed, optically pure iron oxyhydroxide crystals and coatings. We demonstrate very localized accumulation of almost immobile Pb which occurs at greater depth than the more mobile Zn. The common, but strongly localized, occurrence of Pb‐bearing iron coatings in the soil groundmass explained the absence of changes in the total Pb concentrations of the C horizon compared with the concentrations in the B horizon.  相似文献   

7.
外包土工布暗管排盐条件下水盐运移规律   总被引:10,自引:7,他引:3  
为揭示外包土工布暗管埋设在非饱和带时淋洗后水分和盐分的运移规律,该文设计了模拟暗管排水的室内试验,研究2种土壤初始状态下(非饱和状态和田持状态),排水初期暗管与地下水位的相对位置及其排水排盐情况,从开始淋洗至暗管停止排水全过程中地下水埋深及含盐量变化规律、暗管的排水排盐效果及土壤剖面的水盐动态运移规律。结果表明:在暗管周围包裹土工布的情况下,土壤初始状态无论是非饱和还是田持,当暗管开始排水时地下水均已完全淹没暗管,此时的排盐量最大,流量呈先增大后减小的变化趋势,且地下水位先升高后降低,地下水含盐量随着淋洗水量的增加由累积转变为脱盐。对比淋洗非饱和土壤(试验1)和淋洗田持土壤(试验2)的试验结果,试验2中暗管的排水、排盐效果优于试验1,在试验1中淋洗非饱和土壤时,土壤脱盐率在垂直方向上随土壤深度的增加逐渐降低,0~20 cm土层的脱盐率(>85%)最大,降至无盐水平,暗管周围土壤脱盐率相对较小(<60%),仍处于中度盐渍化水平;水平方向上,0~20 cm土层的脱盐率差异不大,20~40 cm土层中距暗管越远其脱盐率越小。试验2在试验1基础上进行,淋洗田持土壤时,0~20 cm土层盐分不再变化,30~40 cm土层的脱盐率增大(>60%)。此外,试验1中淋洗脱盐效果大于暗管排盐效果,暗管主要排出暗管以上土壤盐分;试验2中暗管排盐效果增强,暗管不仅排出暗管周围土壤盐分,而且排出暗管以下土层及地下水中盐分,随着淋洗水量的增加,土壤由脱盐型转变为排盐型。研究结果表明外包土工布暗管的应用效果受地下水与暗管相对位置的影响,合理提高淋洗水量可以增强暗管排水排盐效果及土壤脱盐效果,有效改善土壤盐渍化。研究结果可为西北内陆干旱地区不同地下水埋深条件下暗管排盐技术的推广和应用提供理论支撑和科学指导。  相似文献   

8.
Earthworm casts, formed when organic substrates and soil minerals pass through the digestive tract, may protect soil organic matter from biological degradation if they persist in the soil. Yet, the stability of casts is affected by their location in the soil profile because surface casts are exposed to more disruptive forces (wetting-drying, freezing-thawing) than subsurface casts. It is not known whether environmental conditions affect the proportions of surface and subsurface casts produced by earthworms. This study investigated how surface and subsurface cast production by juveniles of Aporrectodea spp. and Lumbricus spp. was affected by temperature. Two juveniles of Aporrectodea spp. or Lumbricus spp. were added to plexiglass chambers filled with soil, and five replicate chambers were incubated in the dark at 5°C, 10°C, 15°C or 20°C for 1 week. Most of the casts produced by Aporrectodea spp. and Lumbricus spp. were surface casts, with <10% of casts deposited below the soil surface. The earthworms studied produced more casts, and a greater proportion of surface casts, as the soil temperature increased. These results can be used to estimate the quantity of surface and subsurface casts produced by earthworm populations under field conditions and determine the susceptibility of cast-associated organic matter to decomposition in the medium- to long-term.  相似文献   

9.
An accurate and management sensitive simulation model for tile-drained Midwestern soils is needed to optimize the use of agricultural management practices (e.g., winter cover crops) to reduce nitrate leaching without adversely affecting corn yield. Our objectives were to enhance the Agricultural Production Systems Simulator (APSIM) for tile drainage, test the modified model for several management scenarios, and then predict nitrate leaching with and without winter wheat cover crop. Twelve years of data (1990-2001) from northeast Iowa were used for model testing. Management scenarios included continuous corn and corn-soybean rotations with single or split N applications. For 38 of 44 observations, yearly drain flow was simulated within 50 mm of observed for low drainage (< 100 mm) or within 30% of observed for high drain flow. Corn yield was simulated within 1500 kg/ha for 12 of 24 observations. For 30 of 45 observations yearly nitrate-N loss in tile drains was simulated within 10 kg N/ha for low nitrate-N loss (< 20 kg N/ha) or within 30% of observed for high nitrate-N loss. Several of the poor yield and nitrate-N loss predictions appear related to poor N-uptake simulations. The model accurately predicted greater corn yield under split application (140-190 kg N/ha) compared to single 110 kg N/ha application and higher drainage and nitrate-N loss under continuous corn compared to corn/soybean rotations. A winter wheat cover crop was predicted to reduce nitrate-N loss 38% (341 vs. 537 kg N/ha with and without cover) under 41-years of corn-soybean rotations and 150 kg N/ha applied to corn. These results suggest that the modified APSIM model is a promising tool to help estimate the relative effect of alternative management practices under fluctuating high water tables.  相似文献   

10.
Acidity in the soil surface and subsurface is of major concern in horticulture, cropping and pasture production systems in southern Australia. Broadcast applications of lime to the surface have proved to be ineffective in ameliorating subsurface acidity in the short term. Two calcium-saturated coal-derived organic products, an ‘oxi-product’ (OXPR) and an ‘oxi-fulvate’ (OXFU), were evaluated for use as liming materials with specific consideration given to amelioration of subsurface acidity. The effects of these two organic products and of lime on the chemical composition of the A1 and A2 horizons of an acid red podzol were investigated in leaching columns, 20 cm long. OXPR and OXFU supplying 80 or 160 g Ca m?2 were compared to 160 g Ca m?2 applied as CaCO3 and a control receiving no amendments. The effects of CaCO3 on exchangeable Al and pH were limited to the surface 2 cm. In contrast, the two organic amendments were effective in decreasing exchangeable Al and increasing pH and exchangeable Ca to depth, the extent being a function of amendment and rate applied. The formation of inorganic and organic complexes were assumed to be responsible for the movement of Al out of the column in the leachate, although significant quantities of Al were precipitated in the column. Significant linear regressions were observed between the ionic strength and Al in the leachate. Significant quantities of Mg and K were displaced by Ca and leached from the column; consequently, this loss must be considered against the benefits of decreased exchangeable Al when assessing fertility for plant production.  相似文献   

11.
12.
Abstract. In view of the increasing wheel loads of agricultural vehicles, the question arises as to whether soil can recover from the mechanical impact of traffic. The damage to soil quality depends also on the soils resilience. This paper presents a new approach to monitoring vertical soil movement in situ . We assessed the effects of trafficking the soil with excavators and sugarbeet harvesters by monitoring surface and subsurface levels. The caterpillar loads of the crawlers varied from 13 to 19 t, the wheel loads of the sugarbeet harvesters from 6 to 11 t. Classical geodetic levelling was used to record soil surface movement and a hydrostatic settlement meter measured deformation at three depths within the soil profile. The results of three field tests prove the importance of wheel load and soil moisture for soil compaction. Trafficking very dry soil with an excavator did not cause significant plastic deformation in 30 cm depth. Conversely, trafficking wet soil with a sugarbeet harvester led to soil sinkage of 1 to 2 cm even at 60 cm depth. Increased wheel load in subsequent passes led to greater subsidence than during the first pass. Settlement decreased from the soil surface to deeper layers, but it remained throughout the monitoring period of up to 12 days. No soil recovery from plastic deformation was recorded within this time. The measuring system has the potential for long-term monitoring of the mechanical recovery of the soil. Additionally, it can contribute to the validation of mechanical impact models, which are based on soil stresses.  相似文献   

13.
Trichloroethylene (TCE), as one of the most common chlorinated organic compounds in soils and aquifers at many industrial sites, is carcinogenic and often recalcitrant in environment. TCE degradation in artificially contaminated soil samples was conducted using Fenton-like processes, i.e., by addition of excess hydrogen peroxide (H2O2 ). H 2 O 2 could directly oxidize TCE without addition of ferrous iron in contaminated soil. Under the optimal condition (H2O2 concentration of 300 mg kg 1 , pH at 5.0, and reaction time of 30 min), the removal efficiency of TCE in the soil was up to 92.3%. When the initial TCE concentration increased from 30 to 480 mg kg 1 in soil, the TCE removal rates varied from 89.2% to 86.6%; while the residual TCE in soil ranged from 2.28 to 47.57 mg kg 1 . Results from successive oxidations showed that the TCE removal rate with the TCE concentration of 180 mg kg 1 increased slightly from 91.6% to 96.2% as the number of successive oxidation cycle increased from one to four. Therefore, increasing the frequency of H2O2 oxidation was perhaps a feasible way to increase TCE removal rate for TCE-contaminated soil.  相似文献   

14.
Grass buffer strips limit the transfer of pesticides from cultivated fields to rivers. These solutions are generally efficient at reducing polluted surface flows, mainly by infiltration of the soil, raising the question of the fate of the infiltrated pollutants. An environmental evaluation was conducted on the efficiency of a grass strip receiving diuron-contaminated water from an uphill vineyard in France. During two runoff events, the following measurements were taken: surface inflow and outflow with Venturi flumes, vertical percolated flow below the root layer (0-50 cm), and variations in water and solute content of the root layer. One runoff event occurred under natural rainfall conditions, while the other runoff event was artificially provoked with water doped by diuron and bromide. For the natural runoff event, representative of medium intensity events, 94% of the diuron was retained in the root layer, whereas 2% left the grass strip by surface runoff and 4% left the grass strip in the water percolating under the root zone. For the artificial event, representative of intense runoff events, more than half of the incoming diuron was retained by the grass strip, whereas 24% and 18% of it were transferred by surface runoff and percolation, respectively. These results showed that the capacity of the root layer to retain diuron was highly significant despite a large percolation flux. However, for large runoff events, surface and subsurface losses can still be considerable, up to 40% of the pesticide load entering the strip.  相似文献   

15.
Heavy metal contaminations in the top‐soil layers can impose serious threats to groundwater quality. A seepage water prognosis of probable future contaminant entries at the groundwater surface has to take into account the emission characteristics of the source zone and the reactive transport of the contaminated leachate through the unsaturated zone. Here, a possible approach is presented, exemplarily for a site contaminated with chromium, encompassing batch elution experiments, unsaturated soil column leaching experiments with flow interruption, soil monolith lysimeter experiments, and numerical modeling of non‐equilibrium solute transport. The prognosis provides a long‐term prediction of Cr concentrations at the groundwater surface. It must be emphasized, that the modeling results are uncertain, because several of the parameters in the simulations can be determined only with significant errors. Additionally, the approach is not applicable routinely for every hazardous waste site. Our study reveals, however, that reactive contaminants can possibly reach the groundwater at hazardous concentrations within very short time.  相似文献   

16.
模拟撒施肥料下的一维畦灌地表水流与溶质运移过程可为采用先进的畦灌液体施肥方式提供对比依据。该文基于湍流理论垂向流速线性与对数分布规律及不可压缩流体力学连续方程,构造沿畦长及任意垂向断面的非均布流速场和溶质浓度场,建立起撒施肥料下的一维畦灌地表水流与溶质运移模型,并利用典型畦灌施肥试验结果,检验该模型的模拟效果。结果表明,建立的模型不仅具有在撒施肥料状况下较好模拟地表水流运动和溶质浓度时间变化过程的能力,还具备较佳的水量和溶质质量守恒性,从而为评价撒施肥料下的畦灌施肥系统性能及与其它施肥方式下的畦灌施肥系统性能对比,提供了实用的数值模拟工具。  相似文献   

17.
雨强和坡度对红壤坡耕地地表径流及壤中流的影响   总被引:6,自引:3,他引:6  
地表径流和壤中流是坡面重要水文过程,雨强和坡度是影响坡面地表径流和壤中流产流主要因素。为研究降雨强度和地表坡度对坡耕地地表径流和壤中流的影响,该文采用人工模拟降雨试验法,在长3.0 m、宽1.5 m、深0.5 m土槽,设计4个不同坡度(5°、10°、15°、20°)和3个不同雨强(30、60、90 mm/h)对红壤坡耕地地表径流及壤中流产流过程进行模拟试验。结果表明:1)壤中流开始产流时间滞后于地表径流,降雨强度从30到90 mm/h,地表径流、壤中流产流开始时间均随雨强增大而减小,壤中流比地表产流开始滞后时间随着雨强增大先增大后趋于稳定;2)地表径流强度随雨强增大而增大,壤中流初始径流强度随雨强增大而增大,不同雨强下壤中流径流峰值相近;3)地表径流和壤中流产流过程曲线有明显差异,地表径流产流过程线先增大后趋于稳定,壤中流产流过程线呈抛物线型即先增大后减小;4)从5°到20°,地表产流开始时间随坡度增大而减小,壤中流产流开始时间随坡度增大先减小后增大;5)从5°到20°,地表径流强度先增大后减小,10°为转折坡度,壤中流产流峰值随坡度增大而减小,并且随着坡度增大达到壤中流峰值时间不断减小。  相似文献   

18.
Fine‐scale information on soil surface roughness (SSR) is needed for calculating heat budgets, monitoring soil degradation and parameterizing surface runoff and sediment transfer models. Previous work has demonstrated the potential of using hyperspectral, hemispherical conical reflectance factors (HCRFs) to retrieve the SSR of different soil crusting states. However, this was achieved by using dry soil surfaces, generated in controlled laboratory conditions. The primary aim of this study was therefore to test the impact that in situ variations in surface soil moisture (SSM) content had on the ability of directional reflectance factors to characterize SSR conditions. Five soil plots (20 cm × 20 cm in area) representing different agricultural conditions were subjected to different durations of natural rainfall to produce a range of different levels of SSR. The values of SSM varied from 8.7 to 20.1% across all soil plots. Point laser data (4‐mm sample spacing) were geostatistically analysed to give a spatially‐distributed measure of SSR, giving sill variance values from 3.2 to 23.0. The HCRFs from each soil state were measured using a ground‐based hyperspectral spectroradiometer for a range of viewing zenith angles from extreme forward‐scatter (θr = ?60°) to extreme back‐scatter (θr = +60°) at a 10° sampling resolution in the solar principal plane. The results showed that despite a large range of SSM values, forward‐scattered reflectance factors exhibited a very strong relationship with SSR (R2 = 0.84 at θr = ?60°). Our findings demonstrate the operational potential of HCRFs for providing spatially‐distributed SSR measurements, across spatial extents containing spatio‐temporal variations in SSM content.  相似文献   

19.
Biology and Fertility of Soils - During primary succession, vegetation and soil form important feedbacks that enhance plant species turnover. However, the mechanisms underlying such plant-soil...  相似文献   

20.
应用DRAINMOD农田排水模型对地下水位和排水量的模拟   总被引:10,自引:6,他引:4  
农田排水工程在防御涝渍灾害、促进农作物正常生长和改善田间耕作管理等方面起着积极的作用,合理的排水系统设计是保证排水系统正常运行、作物正常生长的关键。以水平衡理论为基础建立的DRAINMOD模型,可用于研究排水系统对作物生长和各水文要素的影响,适用于浅地下水位和较湿润地区。该文对模型的基本原理和参数输入要求进行了详细描述,采用加拿大安大略省南部Eugene F. Whelan试验站自由排水和控制排水-地下灌溉两种水位管理条件下,1992~1994年6~8月地下水埋深观测值、3年地表径流和地下排水水量观测值对模型进行了模拟验证。图形显示和统计参数指标分析表明,模拟值与观测值拟合较好,表明模型具有良好的水文模拟性能,可用于预测地下水埋深、地表和地下排水量,是农田排水工程设计和水管理的有效工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号