首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The effects of input data uncertainty on the critical loads andexceedance estimates for Swedish forest soils was assessed usingMonte Carlo simulations of the PROFILE model. The study focuseson the effects of data uncertainty on the 5%-ile critical loadat 150 × 150 km resolution and the 95%-ile exceedance at150 × 150 km and 50 × 50 km resolution.The results indicate that datauncertainty limits the possibility to differentiate grid cellson 150 × 150 km resolution. The confidence interval for agiven percentile can generally be reduced if the uncertaintiesin calculated critical loads are addressed simultaneously forall sites in a grid cell. The resulting best estimates of the5%-ile critical load were found to be lowered, therebyadvocating larger deposition reductions to comply with a givengap closure of exceedance. The results further indicate that thenumber of sites within the grid cells is important for the rangeof the confidence interval for a given percentile.Re-aggregation of exceedance estimate in 50 × 50 km gridcells showed that differentiation may be improved as compared to150 × 150 km resolution. For 70% of the grid cells on 50× 50 km resolution, the confidence interval forcalculated exceedance covers both negative and positive values.  相似文献   

2.
This paper reports an uncertainty analysis of critical loads for acid deposition for a site in southern England, using the Steady State Mass Balance Model. The uncertainty bounds, distribution type and correlation structure for each of the 18 input parameters was considered explicitly, and overall uncertainty estimated by Monte Carlo methods. Estimates of deposition uncertainty were made from measured data and an atmospheric dispersion model, and hence the uncertainty in exceedance could also be calculated. The uncertainties of the calculated critical loads were generally much lower than those of the input parameters due to a “compensation of errors” mechanism – coefficients of variation ranged from 13% for CLmaxN to 37% for CL(A). With 1990 deposition, the probability that the critical load was exceeded was > 0.99; to reduce this probability to 0.50, a 63% reduction in deposition is required; to 0.05, an 82% reduction. With 1997 deposition, which was lower than that in 1990, exceedance probabilities declined and uncertainties in exceedance narrowed as deposition uncertainty had less effect. The parameters contributing most to the uncertainty in critical loads were weathering rates, base cation uptake rates, and choice of critical chemical value, indicating possible research priorities. However, the different critical load parameters were to some extent sensitive to different input parameters. The application of such probabilistic results to environmental regulation is discussed.  相似文献   

3.
The steady-state model PROFILE was used to perform Monte Carlo simulations of critical loads of acidity and exceedances of forest soils for 128 sites in the province of Scania, southern Sweden. Statistical tests showed that 100 sites had normal distributed critical loads and exceedances and that the variance of these parameters was statistically equal for all sites. Pooled estimates of the standard deviation was 0.19 and 0.31 kmolc ha?1 yr?1 for the critical loads and exceedances, respectively. Introduction of uncertainties, expressed as confidence intervals, in the cumulative distribution function for critical loads showed that overlaps between percentiles were substantial. The 5%-ile was systematically equal to the 57%-ile using a 67% confidence interval and equal to the 87%-ile when a 95% confidence level was chosen. The overlaps of percentiles cause a reduction of acidic deposition according to the mean value of the 5%-ile to protect only 68% of the ecosystem area with an 84% probability and not a guaranteed protection of 95% as if uncertainties did not exist. Thus, uncertainties make it possible to advocate reductions to levels of deposition below the 5%-tile of critical loads.  相似文献   

4.
Critical loads of acidity were estimated for upland forests in Eastern Canada using the steady-state Simple Mass Balance (SMB) Model. A consistent methodology was applied to the entire region, although critical loads were estimated separately for the Atlantic provinces (New Brunswick, Nova Scotia, Prince Edward Island and Newfoundland), Quebec and Ontario using different data sources. In this project, critical load estimates and steady-state exceedance values did not include the effect of forest fire and forest harvesting, which could have a considerable impact on critical loads in Eastern Canada. The observed soil pH – base saturation relationship for forest soils indicated that the constants used into the calculation of alkalinity leaching should be set to 10 (M/M) for the molar Bc/Al ratio in soil leachate and 109 (mol L?1)2 for the gibbsite dissolution constant. The area-weighted median critical load for each province varied between 519 (Quebec) and 2063 eq ha?1 y?1 (Prince Edward Island), with a median critical load value for Eastern Canada of 559 eq ha?1 y?1. It is estimated that approximately 52% of the mapped area is exceeded in terms of acidity according to the 1994–1998 average total (wet + dry) atmospheric deposition. Greatest exceedances occurred in Ontario and Quebec and in the south of Nova Scotia, due to low critical loads and high loads of acid deposition.  相似文献   

5.
Critical loads are the basis for policies controlling emissions of acidic substances in Europe. The implementation of these policies involves large expenditures, and it is reasonable for policymakers to ask what degree of certainty can be attached to the underlying critical load and exceedance estimates. This paper is a literature review of studies which attempt to estimate the uncertainty attached to critical loads. Critical load models and uncertainty analysis are briefly outlined. Most studies have used Monte Carlo analysis of some form to investigate the propagation of uncertainties in the definition of the input parameters through to uncertainties in critical loads. Though the input parameters are often poorly known, the critical load uncertainties are typically surprisingly small because of a “compensation of errors” mechanism. These results depend on the quality of the uncertainty estimates of the input parameters, and a “pedigree” classification for these is proposed. Sensitivity analysis shows that some input parameters are more important in influencing critical load uncertainty than others, but there have not been enough studies to form a general picture. Methods used for dealing with spatial variation are briefly discussed. Application of alternative models to the same site or modifications of existing models can lead to widely differing critical loads, indicating that research into the underlying science needs to continue.  相似文献   

6.
The critical loads approach to quantifying areas at risk of damage requires deposition and critical loads data at the same spatial scale to calculate exceedance. While maps of critical loads for soil acidification are available at a 1 km scale no monitoring networks in Europe measure wet and dry inputs at this scale and, further, the models currently used to estimate deposition incorporate a number of assumptions which are not valid at the 1 km scale. Simulations of 1 km deposition from 20 km data show that the uncertainty introduced by using 20 km scale estimates of deposition is small, except in mountain areas where it can give misleading results, but a major problem is the uncertainty in estimates of deposition at the 20 km scale produced by the current models.  相似文献   

7.
Presently considerable effort is devoted to the development of methods for estimating critical loads of acidic deposition. In this paper a steady-state mass balance model for lakes is presented, allowing the simultaneous calculation of critical loads of acidifying S and N deposition and their exceedance. Special emphasis is given to the derivation of model inputs and parameters and the quantification of their uncertainties. The inclusion of rate-limited processes in the model leads to the dependence of the critical loads not only on catchment properties but also on the loading to the ecosystem. As a consequence, critical load values have to be re-calculated whenever deposition patterns change. The methods presented in this study are used in an accompanying paper to derive regional distributions of critical loads of S and N for lakes in Finland and to quantify their uncertainties.  相似文献   

8.
Critical loads are estimated in the UK by the Department of Environment's Critical Loads Advisory Group and sub-groups. The Mapping and Data Centre at ITE Monks Wood acts as the National Focal Centre for the UNECE programme for mapping critical loads. The centre is responsible for the generation of UK data sets and their application for national and European purposes. To make effective use of these data, it is necessary to draw upon other environmental data and examine the issues of scale, uncertainty and the way that data are presented. This paper outlines the methodologies which have been employed to derive national maps. Early critical load maps were not vegetation specific, but now critical loads for acidity and for nutrient nitrogen for soils, critical levels maps for ozone and sulphur dioxide, and sulphur deposition maps, have been generated on a vegetation or ecosystem specific basis. These have been used to derive a number of different types of critical load and exceedance maps. The results show the importance of the method selected and the data used for the interpretation. The visualisation of critical loads and the corresponding exceedance data is an important aspect in producing information for pollution abatement strategies.  相似文献   

9.
Critical loads for sulphur and nitrogen are defined to produce effective control strategies over Europe, such as those of the new sulphur protocol. To determine the critical load exceedances on the European scale it is necessary to simplify and generalize. The spatial variation on a scale smaller than the 150 × 150 km EMEP grid squares is considered for critical loads, via a cumulative frequency distribution and the 95 percentile for the grid square is determined. The deposition is assumed to be uniform over the area and the exceedance over the 95 percentile critical load is determined. In reality, the spatial variation is considerable for critical loads as well as for deposition. Calculations based on the frequency of local critical load exceedances have been made for two grid squares in southern Sweden. Local critical loads for acidity are compared to local deposition. Deposition variations due to pollution gradients within the square and to ecosystem structure have been considered. The results are similar for the two squares. The calculations based on local exceedances on 50×50 km grid squares and consideration to landuse variability, indicate that in order to protect 95% of the ecosystems in the square, emission reductions 25% greater than the large-scale European approach are needed. The effect of enhanced deposition at forest edges is of relatively small importance for the total exceedance.  相似文献   

10.
A critical load data base was developed for Europe and Northern Asia using the latest data bases on soils, vegetation, climate and forest growth. Critical loads for acidity and nutrient nitrogen for terrestrial ecosystems were computed with the Simple Mass Balance model. The resulting critical loads are in accordance with critical loads from previous global empirical studies, but have a much higher spatial resolution. Critical loads of acidity are sensitive to both the chemical criterion and the critical limit chosen. Therefore a sensitivity analysis of critical loads was performed by employing different chemical criteria. A critical limit based on an acid neutralizing capacity (ANC) of zero resulted in critical loads that protect ecosystems against toxic concentrations of aluminium and unfavourable Al/Bc ratios, suggesting that ANC could be an alternative to the commonly used Al/Bc ratio. Critical loads of nutrient nitrogen are sensitive to the specified critical nitrate concentration, especially in areas with a high precipitation surplus. If limits of 3–6 mg N l?1 are used for Western Europe instead of the widely used 0.2 mg N l?1, critical loads double on average. In low precipitation areas, the increase is less than 50%. The strong dependence on precipitation surplus is a consequence of the simple modelling approach. Future models should explore other nitrogen parameters (such as nitrogen availability) instead of leaching as the factor influencing vegetation changes in terrestrial ecosystems.  相似文献   

11.
The goal of this study is to give a comprehensive and quantitative estimation of the uncertainty of computed in different scale nitrogen (N) and sulphur (S) critical loads (CL) values for terrestrial ecosystems of the Northern Asia, European part and the North-Western regions of Russia. The CL values are used to set goals for future deposition rates of acidifying compounds so that the environment is protected. In this research CL values for terrestrial ecosystems are determined using the expert-modelling geoinformation system (EM GIS) approach. UNCSAM software package is used as the tool for uncertainty analysis. The analysis presented here focuses on the estimation and effect of the input source uncertainties and sensitivities on the CL values in various regions under study. In spite of the region, nitrogen uptake by vegetation, nitrogen leaching from terrestrial ecosystems and the difference between deposition and uptake by plants of base cations (BC) are the most influential factors for all terrestrial ecosystems of Russia.  相似文献   

12.
Planning advice for forest planting in acid sensitive areas suggests that, where calculated critical loads for acidity are exceeded at a catchment level, new conifer planting may not be appropriate. In south west Scotland, acid waters are currently found in areas where critical loads are not exceeded. The rivers Cree and Bladnoch show a decline in pH of about one unit since 1970, when major afforestation of the headwaters began. No equivalent decline in pH was observed in the adjacent Water of Luce, although it receives similar inputs and has similar geology and soils. Little of the Luce catchment is afforested. Recent surveys of water quality, invertebrate fauna and salmonid fish reveal a picture of widespread acid conditions, impoverished benthos and absence of young salmon. 25 streams (total catchment >150km2) recorded pH <4.5 in high flow conditions. Critical loads for acidity were >1.5keqha?1yr?1 for 12 and >2keqha?1yr?1 for 6 of the 25 streams. Published deposition data suggested that one stream with pH <4.5 and 7 streams with pH < 5 were in areas where critical load was not exceeded. In 22 catchments, forestry was a major land use. To be effective as planning and management tools, systems must be robust and easy to operate. Critical load exceedance calculations remain research tools at the catchment level where deposition data is generally inadequate. The uncertainties inherent in critical load exceedances render them sources of argument and not beacons of enlightenment.  相似文献   

13.
The maximum critical load of sulfur and its exceedance by the sulfur deposition of 1994–1997 were mapped for South Korea with a spatial resolution of 11 × 14 km using the steady-state mass balance method. The Korean soil and geological maps were used as basis for the estimations of the critical alkalinity leaching and the weathering rate of base cations. The normalized difference vegetation index data obtained from the Advanced Very High Resolution Radiometer (AVHRR) together with the observed primary productivity of plants were used for the estimation of the critical uptake of base cations. Wet deposition of the non-sea-salt base cations was derived from measured base cation concentrations in precipitation, precipitation rate and air concentration of total suspended particulate while dry deposition of base cations was estimated using the inferential technique using scavenging ratios. The predominant ranges of base cation weathering, uptake and deposition were estimated to be of 200 – 600 eq ha?1 yr?1, 200 – 400 eq ha?1 yr?1 and 400 – 600 eq ha?1 yr?1, respectively. Critical alkalinity leaching was mainly in the range of 1000 – 2000 eq ha?1 yr?1 due to relatively high value of precipitation runoff. Exceedance of sulfur critical load was found at 40 % of the ecosystems considered mainly in the southeastern part of Korea, and about 60 % of Korea ecosystems were sustainable against sulfur acidity loadings.  相似文献   

14.
Assessing the timescales of recovery, by the use of dynamic models, will be used as input to the policy process to abate acidification. In this study the multilayer dynamic soil chemistry model SAFE was applied to 16 forest sites in Sweden, covering a sulfur deposition gradient of 1.2–11 kg S/ha/yr. Soil samples were collected at all sites and the pH and sulfate concentration dependent isotherm, used for modeling sulfate adsorption in SAFE, was parameterized for every site. A new way of implementing the nutrient uptake distribution in SAFE was developed, which allows the uptake distribution between layers in the rooting zone to vary with time, depending on the availability of base cations in the individual layers. Model output was compared to measurements of base cation concentration, total inorganic Al, pH and Bc/Al both site-by-site and cumulatively for all sites, and the usefulness of these comparisons is discussed from a policy viewpoint. Future projections of recovery show that the overall recovery, expressed as minimum Bc/Al ratio > 1 in the rooting zone, is slow. Assuming full implementation of the UNECE LRTAP Gothenburg Protocol and no further emission reductions thereafter, 44% of the modeled sites still have a Bc/Al ratio below 1 in 2100 in some soil layer within the rooting zone.  相似文献   

15.
Critical loads of acid deposition for ecosystems in South China are derived by synthesizing the critical loads of acid deposition for soils, the critical loads of SO2 dry deposition for ecosystems, as well their exceedance. The results show in the southeast of Sichuan province around Chongqing municipality, the central and north of Guizhou province around Guiyang municipality, and the most areas of Jiangsu province, both the critical loads for soils and critical loads of SO2 dry deposition are exceeded. In Guangxi Zhuang Autonomous Region and some areas among Jiangxi, Zhejiang and Anhui provinces, the critical loads of SO2 dry deposition is the only restricting factor. There is no area where the critical load for soil is the only restricting factor in South China, so only the critical load for soil is not enough to be the basis to make sulfur abatement scheme.  相似文献   

16.
The concept of critical loads has been developed to assist in the design of environmentally sound abatement strategies for the emissions of acidifying compounds. In this paper the critical loads of S and N for lakes in Finland are computed and mapped, based on methods presented in an accompanying paper. The employed steady-state mass balance model allows the simultaneous evaluation of the reductions required of S and N deposition exceeding these critical loads. Special emphasis has been put on the presentation of the spatial variability and the uncertainty of the critical loads and their exceedances. The derived critical loads of S and N for lakes in Finland show a substantial spatial variability. The highest exceedance of critical loads is presently estimated in the south-east of the country, where up to 80% of the lakes show an exceedance of the critical loads of S. The evaluation of two emission scenarios shows that only “maximum feasible reductions” would be sufficient for protecting most Finnish lakes from the impacts of acidic deposition. The results of this study form a basis for setting national targets for emission reductions in Finland.  相似文献   

17.
This study shows that it is questionable if critical load modelling can contribute in the search for harmful effects of acid deposition on forest health at present. Critical loads forS and N deposition were calculated using the MAGIC and PROFILE models for more than 100 monitoring plots in Norway spruce forestin south-east Norway. The two models gave different results, likely due to differences in the models, including differences in the time spans applied. The PROFILE model gave considerably more plots with exceedance than the MAGIC model.At plots where the CL was exceeded, calcium/aluminium (Ca/Al) ratios in the soil solutions were low. However, very few of theseplots had possible harmful values of the Ca/Al-ratio. More than 50 yr seems in most cases to be needed to bring Ca/Al ratios below 1.0. Present deposition was better correlated with measured forest condition variables such as crown condition and needle chemistry,than with modelled exceedance according to any of the two methods. The deposition of S and N was weakly, negatively correlated to foliar concentrations of P and Ca, and positivelyto foliar N concentrations and crown density.  相似文献   

18.
This paper presents an explorative, quantitative analysis of acidification and eutrophication of natural terrestrial ecosystems caused by excess sulfur (S) and nitrogen (N) deposition. The analysis is based on a steady-state approach, involving the comparison of deposition fluxes with critical loads to identify areas where critical loads are exceeded. Deposition fields for sulfur and nitrogen were obtained from the STOCHEM global chemistry-transport model, and they were combined with estimated base cation deposition to derive net acid deposition fluxes. The results indicate that the critical loads for acidification are exceeded in 7–17% of the global area of natural ecosystems. In addition, comparison of nitrogen deposition with critical loads for eutrophication yielded an exceedance in 7–18% of the global natural ecosystems. Apart from serious problems in the heavily industrialized regions of eastern USA, Europe, the former Soviet Union, and large parts of Asia, risks are also found in parts of South America, and West, East and Southern Africa. Both acidification and eutrophication risks could significantly increase in Asia, Africa and South America in the near future, and decrease in North America and Western Europe. Accounting for the effects of N in the analysis of acidification significantly enlarges the potentially affected areas and moves them away from highly industrialized areas compared to studies considering S deposition alone. Major uncertainties in the approach followed are associated with upscaling, the estimates of S, N and base cation emission and deposition fluxes, the critical loads to describe ecosystem vulnerability and the treatment of soil N immobilization and denitrification.  相似文献   

19.
The PROFILE model is a steady state soil chemistry model which is used to calculate soil weathering rate. The model has also been used to calculate critical loads of acidity and N to forest soils, using the ratio of Ca+Mg+K to total inorganic aluminium in the soil solution as criterion, and to surface waters, using the ANC leached from the soil column as criterion. An uncertainty analysis of the PROFILE model was performed by Monte Carlo analysis, varying input parameter errors individually and simultaneously in ranges of ±10–100%, depending on parameter. The uncretainty in calculation of weathering rate, ANC leaching and ratio of Ca+Mg+K to inorganic Al in the soil solution was studied for three Nordic sites. Furthermore, the effect of uncertainty in estimates of critical load for forest soils was assessed. The analysis shows that the weathering rate can be calculated with high precision, provided that the errors of input parameter are within the range that has been reported in the literature. The model tend to be less sensitive to errors in input parameters for the range of conditions where forest damage is most likely to occur. Critical loads of acid deposition for one site calculated on the basis of the model varies within a largest range of ±40%. A study of one geographical grid included in the Swedish critical loads assessment shows that with the number of calculation points in the grid, the distribution of critical loads will stay stable independently of stochastic errors.  相似文献   

20.
Critical loads of acidity for mineral soils can be set according to the capacity of the underlying bedrock to replenish the base cations leached by acid deposition. Unfortunately, this relatively simple approach cannot be applied to peat, one of the most widely occurring soil types in the wetter, western areas of Europe. These organic soils depend on atmospheric deposition for their supply of base cations rather than mineral weathering. We aim to develop a critical load methodology for ombrotrophic peat, using a combination of field observations and laboratory experiments. Simulated rain has been applied to intact cores of peat to determine the key chemical processes governing the response of these soils to both increases and decreases in acid deposition. It is evident that peat does not behave as a simple ion exchanger; the complex reactions of decomposition, sulphate reduction, nitrate uptake and organic acid production also control the response to acid inputs. This paper looks at some of the results from these experiments and considers the implications for setting critical loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号