首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ocean ‘landscape’   总被引:1,自引:1,他引:0  
The ocean has a complex physical structure at all scales in space and time, with peaks at certain wave numbers and frequencies. Pelagic ecosystems show regular progressions in size of organisms, life cycle, spatial ambit, and trophic status. Thus, physiological and ecological parameters are closely coupled to spatial and temporal physical scales.  相似文献   

2.
3.
The need to avert unacceptable and irreversible environmental change is the most urgent challenge facing society. Landscape ecology has the capacity to help address these challenges by providing spatially-explicit solutions to landscape sustainability problems. However, despite a large body of research, the real impact of landscape ecology on sustainable landscape management and planning is still limited. In this paper, we first outline a typology of landscape sustainability problems which serves to guide landscape ecologists in the problem-solving process. We then outline a formal problem-solving approach, whereby landscape ecologists can better bring about disciplinary integration, a consideration of multiple landscape functions over long time scales, and a focus on decision making. This framework explicitly considers multiple ecological objectives and socio-economic constraints, the spatial allocation of scarce resources to address these objectives, and the timing of the implementation of management actions. It aims to make explicit the problem-solving objectives, management options and the system understanding required to make sustainable landscape planning decisions. We propose that by adopting a more problem-solving approach, landscape ecologists can make a significant contribution towards realising sustainable future landscapes.  相似文献   

4.
How should we measure landscape connectivity?   总被引:9,自引:0,他引:9  
The methods for measuring landscape connectivity have never been compared or tested for their responses to habitat fragmentation. We simulated movement, mortality and boundary reactions across a wide range of landscape structures to analyze the response of landscape connectivity measures to habitat fragmentation. Landscape connectivity was measured as either dispersal success or search time, based on immigration into all habitat patches in the landscape. Both measures indicated higher connectivity in more fragmented landscapes, a potential for problematic conclusions for conservation plans. We introduce cell immigration as a new measure for landscape connectivity. Cell immigration is the rate of immigration into equal-sized habitat cells in the landscape. It includes both within- and between-patch movement, and shows a negative response to habitat fragmentation. This complies with intuition and existing theoretical work. This method for measuring connectivity is highly robust to reductions in sample size (i.e., number of habitat cells included in the estimate), and we hypothesize that it therefore should be amenable to use in empirical studies. The connectivity measures were weakly correlated to each other and are therefore generally not comparable. We also tested immigration into a single patch as an index of connectivity by comparing it to cell immigration over the landscape. This is essentially a comparison between patch-scale and landscape-scale measurement, and revealed some potential for patch immigration to predict connectivity at the landscape scale. However, this relationship depends on the size of the single patch, the dispersal characteristics of the species, and the amount of habitat in the landscape. We conclude that the response of connectivity measures to habitat fragmentation should be understood before deriving conclusions for conservation management.  相似文献   

5.
The spatial extent at which landscape structure best predicts population response, called the scale of effect, varies across species. An ability to predict the scale of effect of a landscape using species traits would make landscape study design more efficient and would enable landscape managers to plan at the appropriate scale. We used an individual based simulation model to predict how species traits influence the scale of effect. Specifically, we tested the effects of dispersal distance, reproductive rate, and informed movement behavior on the radius at which percent habitat cover best predicts population abundance in a focal area. Scale of effect for species with random movement behavior was compared to scale of effect for species with three (cumulative) levels of information use during dispersal: habitat based settlement, conspecific density based settlement, and gap-avoidance during movement. Consistent with a common belief among researchers, dispersal distance had a strong, positive influence on scale of effect. A general guideline for empiricists is to expect the radius of a landscape to be 4?C9 times the median dispersal distance or 0.3?C0.5 times the maximum dispersal distance of a species. Informed dispersal led to greater increases in population size than did increased reproductive rate. Similarly, informed dispersal led to more strongly decreased scales of effect than did reproductive rate. Most notably, gap-avoidance resulted in scales that were 0.2?C0.5 times those of non-avoidant species. This is the first study to generate testable hypotheses concerning the mechanisms underlying the scale at which populations respond to the landscape.  相似文献   

6.
7.
Socioeconomic changes in many areas in the tropics have led to increasing urbanization, abandonment of agriculture, and forest re-growth. Although these patterns are well documented, few studies have examined the drivers leading to landscape-level forest recovery and the resulting spatial structure of secondary forests. Land cover transitions from agricultural lands to secondary forest in the island of Puerto Rico have been ongoing since the 1940s. This study is a glimpse into this landscape level trend from 1991 to 2000. First, we relied on Landsat images to characterize changes in the landscape structure for forest, urban, and agricultural land classes. We found that although forest cover has increased in this period, forest has become increasingly fragmented while the area of urban cover has spread faster and become more clustered. Second, we used logistic regression to assess the relationship between the transition to forest and 21 biophysical, socioeconomic, and landscape variables. We found that the percentage of forest cover within a 100 m radius of a point, distance to primary roads and nature reserves, slope, and aspect are the most important predictors of forest recovery. The resulting model predicts the spatial pattern of forest recovery with accuracy (AUC-ROC = 0.798). Together, our results suggest that forest recovery in Puerto Rico has slowed down and that increasing pressure from urbanization may be critical in determining future landscape level forest recovery. These results are relevant to other areas in the tropics that are undergoing rapid economic development.  相似文献   

8.
Process-based forest landscape models are valuable tools for testing basic ecological theory and for projecting how forest landscapes may respond to climate change and other environmental shifts. However, the ability of these models to accurately predict environmentally-induced shifts in species distributions as well as changes in forest composition and structure is often contingent on the phenomenological representation of individual-level processes accurately scaling-up to landscape-level community dynamics. We use a spatially explicit landscape forest model (LandClim) to examine how three alternative formulations of individual tree growth (logistic, Gompertz, and von Bertalanffy) influence model results. Interactions between growth models and landscape characteristics (landscape heterogeneity and disturbance intensity) were tested to determine in what type of landscape simulation results were most sensitive to growth model structure. We found that simulation results were robust to growth function formulation when the results were assessed at a large spatial extent (landscape) and when coarse response variables, such as total forest biomass, were examined. However, results diverged when more detailed response variables, such as species composition within elevation bands, were considered. These differences were particularly prevalent in regions that included environmental transition zones where forest composition is strongly driven by growth-dependent competition. We found that neither landscape heterogeneity nor the intensity of landscape disturbances accentuated simulation sensitivity to growth model formulation. Our results indicate that at the landscape extent, simulation results are robust, but the reliability of model results at a finer resolution depends critically on accurate tree growth functions.  相似文献   

9.

Context

The conversion of agricultural landscapes to tree plantations is a major form of landscape transformation worldwide, but its effects on biodiversity, particularly key population processes like reproductive success, are poorly understood.

Objectives

We compared bird breeding success between woodland remnants surrounded by maturing stands of plantation Radiata Pine and a matched set of woodland remnants in semi-cleared grazing land.

Methods

Our study was conducted in the Nanangroe region in south-eastern New South Wales, Australia. Using repeated field measurements, we quantified bird breeding success in 23 woodland remnants; 13 surrounded by Radiata Pine plantations and 10 on farms where remnants were surrounded by semi-cleared grazing land. We matched the attributes of native remnant patches between two types of matrix.

Results

We found that: (1) rates of nesting success of smaller-bodied birds in woodland remnants surrounded by grazing land were significantly higher than in woodland remnants surrounded by pine plantations; and (2) taxa with domed nests were more successful at nesting than species that constructed open cup/bowl nests in woodland remnants within farmlands.

Conclusions

Our findings suggest that bird breeding success in remnant woodland patches is significantly diminished as a result of the conversion of semi-cleared grazing land to pine plantations.
  相似文献   

10.

Context

Landscape ecologists are often interested in measuring the effects of an environmental variable on a biological response; however, the strength and direction of effect depend on the size of the area within which the environmental variable is measured. Thus a central objective is to identify the optimal spatial extent within which to measure the environmental variable, i.e. the “scale of effect”.

Objectives

Our objectives are (1) to provide a comprehensive summary of the hypotheses concerning what determines the scale of effect, (2) to provide predictions that can be tested in empirical studies, and (3) to show, with a review of the literature, that most of these predictions have so far been inadequately tested.

Methods

We propose 14 predictions derived from five hypotheses explaining what determines the scale of effect, and review the literature (if any) supporting each prediction. These predictions involve five types of factors: (A) species traits, (B) landscape variables, (C) biological responses (e.g. abundance vs. occurrence), (D) indirect influences, and (E) regional context of the study. We identify methodological issues that hinder estimation of the scale of effect.

Results

Of the 14 predictions, only nine have been tested empirically and only five have received some empirical support. Most support is from simulation studies. Empirical evidence usually does not support predictions.

Conclusions

The study of the spatial scale at which landscape variables influence biological outcomes is in its infancy. We provide directions for future research by clarifying predictions concerning the determinants of the scale of effect.
  相似文献   

11.
12.
In this quantitative review, we investigate the degree to which landscape ecology studies that use spatial data address spatial uncertainty when conducting analyses. We identify three broad categories of spatial uncertainty that are important in determining the characterisation of landscape pattern and affect the outcome of analysis in landscape ecology: (i) classification scheme uncertainty, (ii) spatial scale and (iii) classification error. The second category, spatial scale, was further subdivided into five scale dependent factors (i) pixel size, (ii) minimum mappable unit, (iii) smoothing, (iv) thematic resolution and (v) extent. We reviewed all articles published in the journal Landscape ecology in 2007 and recorded how spatial data was used and whether spatial uncertainty was addressed or reported in ecological analyses. This review found that spatial uncertainty was rarely addressed and/or reported. Only 23?% of articles addressed one or more scale dependent factors and 47?% reported one or more as issues. Most articles used the default pixel size of the sensor, and only a single study of the 59 investigated the effect of classification accuracy on ecological analyses. We demonstrate that spatial uncertainty is not being addressed as standard practice in analyses in landscape ecology, and then describe methods to test for spatial uncertainty and potential solutions that can be developed in the future.  相似文献   

13.
14.
Fragmentation of China’s landscape by roads and urban areas   总被引:1,自引:0,他引:1  
China’s major paved road-ways (national roads, provincial roads, and county roads), railways and urban development are rapidly expanding. A likely consequence of this fast-paced growth is landscape fragmentation and disruption of ecological flows. In order to provide ecological information to infrastructure planners and environmental managers for use in landscape conservation, land-division from development must be measured. We used the effective-mesh-size (Meff) method to provide the first evaluation of the degree of landscape division in China, caused by paved roads, railways, and urban areas. Using Meff, we found that fragmentation by major transportation systems and urban areas in China varied widely, from the least-impacted west to the most impacted south and east of China. Almost all eastern provinces and counties, especially areas near big cities, have high levels of fragmentation. Several eastern-Chinese provinces and biogeographic regions have among the most severe landscape fragmentation in the world, while others are comparable to the least-developed areas of Europe and California. Threatened plant hotspots and areas with high mammal species diversity occurred in both highly fragmented and less fragmented areas, though future road development threatens already moderately divided landscapes. To conserve threatened biodiversity and landscapes, we recommend that national and regional planners in China consider existing land division before making decisions about further road development and improvement.  相似文献   

15.
The world is changing rapidly, challenging the sustainability of landscapes and the resources and ecosystem services they provide to people and to plants and animals. Changes in land use and climate will alter the structure and composition of landscapes, and landscape functions may also be disrupted if the changes drive systems past thresholds into novel, no-analog configurations. Although landscapes will persist in some form, it is unlikely that they will provide the same values to people or habitat for wildlife that are the focus of current sustainability efforts. Tradeoffs among services to people or resources for wildlife will be inevitable. For the concept of sustainability to be relevant under these conditions, we must ask, “Sustainability of what, for whom?” Landscapes cannot be all things to all people (or organisms). Decisions about how to balance competing needs and goals and set priorities requires an understanding of landscape structure, function, and change—the foundation elements of landscape ecology.  相似文献   

16.

Context

The role of agricultural landscapes in biodiversity conservation is an emerging topic in a world experiencing a worrying decrease of species richness. Farm systems may either decrease or increase biological diversity, depending on land-use intensities and management.

Objectives

We present an intermediate disturbance-complexity model (IDC) of cultural landscapes aimed at assessing how different levels of anthropogenic disturbance on ecosystems affect the capacity to host biodiversity depending on the land matrix heterogeneity. It is applied to the Mallorca Island, amidst the Mediterranean biodiversity hotspot.

Methods

The model uses the disturbance exerted when farmers alter the Net Primary Production through land-use change as well as when they remove a share of it (HANPP), together with Shannon–Wiener index (H′) of land-cover diversity. The model is tested with a twofold-scalar experimental design (1:50,000 and 1:5000) of a set of landscape units along three time points (1956, 1989, 2011). Species richness of breeding and wintering birds, taken as a biodiversity proxy, is used in an exploratory factor analysis.

Results

The results clearly show that when intermediate levels of HANPP are performed within intermediate levels of complexity (H′) in landscape patterns, like agro-forest mosaics, great bird species richness and high socio-ecological resilience can be maintained. Yet, these complex-heterogeneous landscapes are currently vanishing due to industrial farm intensification, rural abandonment and urban sprawl.

Conclusions

The results make apparent the usefulness of transferring the concept of intermediate disturbance-complexity interplay to cultural landscapes. Our spatial-explicit IDC model can be used as a tool for strategic environmental assessment of land-use planning.
  相似文献   

17.
Landscape Ecology - Biodiversity patterns depend on landscape structure, but the spatial scale at which such dependence is strongest (scale of effect, SoE) remains poorly understood, especially for...  相似文献   

18.
The conflict between conservation and timber production is shifting in regions such as Biscay (Basque Country, northern Spain) where planted forests are no longer profitable without public subsidies and environmentalist claim that public subsidies should be reoriented to the regeneration of natural forest. This paper develops an approach that integrates scientific knowledge and stakeholders’ demands to provide decision-making guidelines for the development of new landscape planning strategies while considering ecosystem services. First, a participatory process was conducted to develop a community vision for the region’s sustainable future considering the opportunities and constrains provided by the landscape and its ecosystems. In the participatory process forest management was considered an important driver for the region`s landscape development and forest multi-functionality was envisioned as a feasible attractive alternative. The participatory process identified a knowledge gap on the synergies and trade-offs between biodiversity and carbon storage and how these depend on different forest types. Second, to study the existing synergies and trade-offs between biodiversity and carbon storage and disentangle the identified knowledge gap, a GIS-based research was conducted based on spatially explicit indicators. Our spatial analysis results showed that natural forests’ contribution to biodiversity and carbon storage is higher than that of the plantations with exotic species in the region. The results from the spatial analysis converged with those from the participatory process in the suitability of promoting, where possible and appropriate, natural forest ecosystems restoration. This iterative learning and decision making process is already showing its effectiveness for decision making, with concrete examples of how the results obtained with the applied approach are being included in planning and decision-making processes.  相似文献   

19.
In 1983, a group of incipient landscape ecologists met to discuss the nature and future directions for landscape ecology. The themes emerging from this conference—movement of materials, organisms, and energy through a landscape; the genesis of landscape patterns; the effects of landscape structure on the spread of disturbances; and the potential contributions of landscape ecology to resource management—established a foundation for the development of landscape ecology in North America over the following decades. I discuss these contributions in the light of where landscape ecology is today.
John A. WiensEmail:
  相似文献   

20.
Landscape genetics is an emerging interdisciplinary field that combines methods and concepts from population genetics, landscape ecology, and spatial statistics. The interest in landscape genetics is steadily increasing, and the field is evolving rapidly. We here outline four major challenges for future landscape genetic research that were identified during an international landscape genetics workshop. These challenges include (1) the identification of appropriate spatial and temporal scales; (2) current analytical limitations; (3) the expansion of the current focus in landscape genetics; and (4) interdisciplinary communication and education. Addressing these research challenges will greatly improve landscape genetic applications, and positively contribute to the future growth of this promising field. Participants of the Landscape Genetics Research Agenda Workshop, held at the 2007 World Congress of the International Association of Landscape Ecologists (IALE), in Wageningen, The Netherlands: Paul Arens, Pascal Campagne, Virginia H. Dale, Alfredo G. Nicieza, Marinus J. M. Smulders, Edoardo Tedesco, Hongfang Wang, Tzeidle Wasserman.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号