首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 934 毫秒
1.
退化生态系统植被恢复过程中土壤微生物群落活性响应   总被引:9,自引:2,他引:9  
通过分析退化生态系统中主要植被恢复类型对土壤微生物群落活性的影响,探讨敏感和可靠的微生物群落活性响应指标,揭示适合当地生态条件的植被恢复类型。结果表明,沙米荒地、白沙蒿、柠条、沙冬青和人工乔木林地土壤微生物量C,N,P和微生物商、蔗糖酶、脲酶、过氧化氢酶、碱性磷酸酶均表现出显著差异(P<0.05)。在土壤各层内,除上层人工乔木林地土壤微生物量N相对较高外,柠条恢复草地土壤微生物量C,N,P都相对较高,沙米荒地均较低;土壤微生物商没有明显的趋势;人工乔木林地蔗糖酶和柠条恢复草地脲酶活性相对较高,过氧化氢酶和碱性磷酸酶活性没有明显的变化趋势,沙米荒地的蔗糖酶、脲酶和过氧化氢酶活性以及白沙蒿草地碱性磷酸酶活性较低。方差分析(ANOVA)显示,蔗糖酶、脲酶、过氧化氢酶和碱性磷酸酶与土壤有机质、全氮以及微生物量C,N,P之间呈显著相关关系;主成分分析(PCA)表明,土壤微生物量N,C,P和蔗糖酶、土壤微生物商基本反映了研究区植被恢复中土壤微生物群落活性的响应信息。不同植被恢复类型草地中土壤微生物群落活性的变化表明,柠条和人工乔木林是研究区域内适合当地生态条件的植被恢复类型。  相似文献   

2.
黄土丘陵区植被恢复过程中土壤酶活性的响应与演变   总被引:10,自引:0,他引:10  
对宁夏南部丘陵区不同植被自然恢复阶段土壤脲酶、碱性磷酸酶、蔗糖酶、脱氢酶和过氧化氢酶活性的变化特征进行了研究。结果表明:土壤脲酶、碱性磷酸酶、蔗糖酶和脱氢酶基本上随着植被封育年限的增加而增大,过氧化氢酶活性对于植被恢复年限的响应不明显。植被封育的前23年中,土壤脲酶、碱性磷酸酶、蔗糖酶和脱氢酶的活性增加明显,23年后基本趋于稳定,增加不明显。封育78年的大针茅群落下的土壤脲酶和蔗糖酶(转化酶)活性最强,其土壤中碳素和氮素营养循环强度最大。脲酶与蔗糖酶、碱性磷酸酶和脱氢酶的活性极显著相关,表明土壤酶在促进土壤有机物转化中存在共性关系。这几种酶能够在一定程度上反映植被群落的演替和植被的恢复程度,自然封育对提高土壤生物学质量有重要的作用。  相似文献   

3.
为探究入侵植物南美蟛蜞菊土壤磷转化过程与驱动机制,采用野外控制试验,比较研究了南美蟛蜞菊、蟛蜞菊和杂交蟛蜞菊土壤磷组分、微生物生物量磷以及酸性磷酸酶和碱性磷酸酶活性.结果表明:3种蟛蜞菊土壤易分解态磷仅占全磷的2.2%~6.3%,且全碳与有机磷的比例大于200,表明本研究区受到磷限制.有机磷是土壤磷库的主要组分,在南美...  相似文献   

4.
松嫩平原盐碱草地主要植物群落土壤酶活性研究   总被引:3,自引:0,他引:3  
刘淑慧  康跃虎  万书勤  张体彬 《土壤》2012,44(4):601-605
采用现场采样及室内测试方法,研究了松嫩平原盐碱草地主要植物群落羊草(Leymus chinensis)、芦苇(Phragmites australis)、虎尾草(Chloris virgata)、碱茅(Puccinellia tenuiflora)、碱蓬(Suaeda glauca)以及盐碱荒地上土壤磷酸酶、脲酶和蔗糖酶的酶活性值以及垂直分布规律,并对3种酶活性与各理化因子之间进行了相关分析。结果表明:羊草群落的磷酸酶、脲酶、蔗糖酶活性值均为最高,芦苇、虎尾草群落土壤的酶活性值也较高,碱茅群落的土壤酶活性较低,而碱蓬群落土壤酶活性值最低,接近于盐碱荒地上土壤酶活性值。各植物群落的土壤酶活性垂直分布多表现为随着土壤深度的加深而呈现依次递减的规律,且表层(0~10 cm)土壤酶活性在所有根层总酶活性中所占的比例最大,占根层(0~40 cm)土壤酶活性的50%以上。土壤酶与土壤理化因子相关分析表明,土壤的土壤酶活性大多与EC、pH值显著负相关,对土壤酶活性影响较大;土壤酶活性与土壤养分正相关,脲酶与其相关性较大,蔗糖酶与养分的相关关系不是很明显。  相似文献   

5.
湖北省水稻主产区稻田杂草种类及群落特点   总被引:9,自引:2,他引:9  
采用七级目测法调查了湖北省3个水稻主产区25个样点稻田杂草的种类及危害程度,分析了各水稻主产区稻田杂草群落的特点.结果表明,湖北省水稻主产区稻田杂草有23科43种,据综合草害指数优势种杂草依次为稗、双穗雀稗、水花生、鸭舌草、千金子、丁香蓼、鳢肠、浮萍.其中襄樊-随州地区以稗、水花生为优势种类,江汉平原以稗、双穗雀稗为优势种类,黄冈地区以稗、鸭舌草为优势种类.江汉平原与黄冈地区稻田杂草群落相似性较大,Sфrenson相似性指数为0.774 1,二者均与襄樊-随州地区的相似性较小.总体上看,湖北省水稻主产区稻田杂草的丰富度较低,可能与长期施用除草剂有关.  相似文献   

6.
为探明我国西北半干旱区"粮经饲"不同轮作模式的土壤肥力效应,于2017年在宁夏自治区固原市原州区设置玉米-豌豆(C-Pe)、玉米-玉米(C-C)、2龄苜蓿(2A)、高粱-马铃薯(B-Po)、燕麦-玉米(O-C)、马铃薯-燕麦(Po-O)、豌豆-高粱(Pe-B)7种轮作处理模式,研究了不同粮草轮作模式土壤养分、酶活性及可培养微生物群落特征,并进行土壤肥力综合评价。结果表明:(1)不同轮作处理模式对土壤养分影响显著,与其他轮作模式相比,2A模式更有利于土壤养分的累积,而C-C模式增加了对养分的消耗,C-Pe和Po-O模式的有机质、全氮、速效氮、速效磷和速效钾含量高于B-Po和O-C模式,轮作处理对全钾含量影响较小。(2)不同轮作处理模式对土壤酶活性影响显著,2A模式较其他轮作模式显著增加了土壤脲酶和蔗糖酶活性(P<0.05),C-C模式土壤酶活性最低。O-C和Pe-B模式的蔗糖酶、脲酶和碱性磷酸酶活性高于B-Po模式。(3)不同轮作处理模式对土壤可培养微生物数量影响显著,且各轮作模式下土壤微生物数量以细菌占绝对优势,放线菌次之,真菌数量最少,并有明显的土层垂直分布规律,与其他轮作模式相比,2A、C-C和B-Po模式的细菌数量和微生物总数量显著下降(P<0.05),真菌数量显著增加(P<0.05),O-C模式的细菌数量和微生物总数量明显增加,真菌数量降低。(4)运用主成分分析-数值聚类方法对不同轮作模式下土壤养分、土壤酶活性、土壤微生物数量的15个指标进行土壤肥力综合评价,主成分分析提取的2个主成分累计贡献率达89.38%,第1主成分以土壤有机质、全氮、速效氮、全磷、速效磷、速效钾、蔗糖酶、脲酶和碱性磷酸酶贡献最大,达63.56%,第2主成分以细菌数量、真菌数量和微生物总数贡献最大,达25.82%,且各轮作模式在2个主成分上的综合得分排名为2A>Pe-B>C-Pe>O-C>Po-O>B-Po>C-C。再以2个主成分得分进行聚类,将7个模式共分为3类,第1类(2A)土壤综合肥力最好;第2类(Pe-B、O-C、C-Pe、Po-O、B-Po)土壤综合肥力较好;第3类(C-C)土壤综合肥力较差。研究结果为当地耕作方式改良提供理论依据和实践指导。  相似文献   

7.
Soil organic matter level, soil microbial biomass C, ninhydrin-N, C mineralization, and dehydrogenase and alkaline phosphatase activity were studied in soils under different crop rotations for 6 years. Inclusion of a green manure crop of Sesbania aculeata in the rotation improved soil organic matter status and led to an increase in soil microbial biomass, soil enzyme activity and soil respiratory activity. Microbial biomass C increased from 192 mg kg–1 soil in a pearl millet-wheat-fallow rotation to 256 mg kg–1 soil in a pearl millet-wheat-green manure rotation. Inclusion of an oilseed crop such as sunflower or mustard led to a decrease in soil microbial biomass, C mineralization and soil enzyme activity. There was a good correlation between microbial biomass C, ninhydrin-N and dehydrogenase activity. The alkaline phosphatase activity of the soil under different crop rotations was little affected. The results indicate the green manuring improved the organic matter status of the soil and soil microbial activity vital for the nutrient turnover and long-term productivity of the soil. Received: 7 January 1996  相似文献   

8.
岩溶地貌部位对土壤微生物丰度与酶活性的影响   总被引:1,自引:0,他引:1  
以中国地质科学院岩溶地质研究所桂林丫吉岩溶试验场为研究区,单氨加氧酶的编码基因amoA的部分序列作为氨氧化细菌(AOB)指示基因,利用荧光定量PCR技术,结合平板菌落计数法和土壤酶活性测定,探讨了岩溶地貌部位及土壤成因对微生物群落丰度和酶活性的影响。结果发现,受岩溶地貌部位和土壤成因的影响,土壤酶活性、土壤微生物总数在垭口、坡地、洼地呈增加的趋势,而氨氧化细菌丰度则呈现降低的趋势。结果表明,土壤氨氧化细菌丰度与真菌数呈极其显著的正相关,而与蔗糖酶活性呈极其显著负相关。  相似文献   

9.
为探讨复合微生物肥对碱土的改良效果,对内蒙古农业大学海流图科技园区碱土试验地开展了施用复合微生物肥的田间试验,探讨了其对土壤生物学性状和土壤肥力的影响.结果表明:施用复合微生物肥处理较不施肥处理显著降低了耕层土壤pH和EC值,分别降低0.32~0.88个单位和0.17~0.39 mS/cm;显著提高了土壤酶活性、微生物...  相似文献   

10.
We investigated different types of phosphatase activity (phosphomono-, phosphodi-, phosphotriesterase, inorganic pyrophosphatase) in five forest soils in Vorarlberg, Austria. Phosphatase activity was determined both in soils and in soil extracts prepared with different solutions (distilled water, 0.1M sodium pyrophosphate at pH 7, 0.1M sodium phosphate buffer/1M KCl at pH 6.5, and a modified universal buffer at pH 4, 6.5, 9, and 11). High phosphomonoesterase activity in these soils indicated a severe deficiency in available P. Acidic phosphomonoesterase prevailed over alkaline phosphomonoesterase activity. Phosphodiesterase was highest in the least acidic soil but no general trend towards an optimum pH was recognized. Phosphotriesterase activity was observed in only two of the five soils and favoured an alkaline optimum pH; this activity was not detected in strongly acid soils. Inorganic pyrophosphatase activity was high in soils with no phosphotriesterase. Phosphomonoesterase, phosphodiesterase and inorganic pyrophosphatase activities were much lower in soil extracts than in soils.  相似文献   

11.
Summary In Ap horizons of typical arable soils under cereals in Northwest Germany, biological activity was estimated by measuring microbial activity. Twelve soils on local farms and six soils on a research farm were analysed. Microbial biomass, dehydrogenase activity, and alkaline phosphatase activity were compared with the biological availability of P, an index describing the relationship among several P fractions that has been used in ecological agriculture. The correlation between the microbial biomass and dehydrogenase and alkaline phosphatase activity was strong but the correlation between the biological availability of P and the enzyme activities was weak. In contrast, in the farm fields, there was a significant correlation between the microbial biomass and the biological availability of P. The correlation between the biological availability of P and pH was highly significant (r=0.65–0.93***). Explanations for these correlations are discussed and proposals for further investigations are made. (1) Is the pH effect a direct chemical one or an indirect biological one? (2) Which soil organisms affect the biological availability of P in contrast to the microbial biomass, dehydrogenase activity, and alkaline phosphatase activity? (3) Is the method suitable for the investigation of all arable soils?  相似文献   

12.
Exotic plant invasions may alter ecosystem carbon processes, especially when native plants are displaced by plants of a different functional group. Forb invasions into grasslands are common, yet little is known about how they impact carbon cycling. We conducted a field study over 2 years from April 2010 to March 2012 in China to examine changes in soil respiration (Rsoil) following invasion of exotic perennial forb species (Alternanthera philoxeroides or Solidago canadensis) into an annual grassland dominated by a native annual graminoid (Eragrostis pilosa). Measurements of Rsoil were taken once a week in stands of the native annual graminoidor one of the forb species using static chamber-gas chromatograph method. Aboveground litterfall of each of the three focal species was collected biweekly and litter decomposition rates were measured in a 6-month litterbag experiment. The monthly average and annual cumulative Rsoil increased following invasion by either forb species. The increasesin cumulative Rsoil were smaller with invasion of Solidago (36%) than Alternanthera(65%). Both invasive forbs were associated with higher litter quantity and quality (e.g., C:N ratio) than the native annual graminoid. Compared to the native annual graminoid, the invasive forbs Alternanthera (155%) and Solidago (361%) produced larger amountsof more rapidly decomposing litter, with the litter decay constant k being 3.8, 2.0 and 1.0 for Alternanthera, Solidago and Eragrostis, respectively. Functional groups of the invasive plants and the native plants they replacedappear to be useful predictors of directions of changes in Rsoil, but the magnitude of changes in Rsoilseems to be sensitive to variations in invader functional traits.  相似文献   

13.
为比较入侵植物与本地植物对土壤微生态影响的差异, 探索外来植物入侵的土壤微生物学机制, 本研究通过同质园试验, 比较分析了2种入侵菊科植物(紫茎泽兰、黄顶菊)和2种本地植物(马唐、猪毛菜)对土壤肥力和微生物群落的影响, 并通过盆栽反馈试验验证入侵植物改变后的土壤微生物对本地植物旱稻生长的反馈作用。同质园试验结果表明: 2种入侵植物和2种本地植物分别对土壤微生态产生了不同的影响, 尤其是紫茎泽兰显著提高了土壤有效氮、有效磷和有效钾含量,紫茎泽兰根际土壤中有效氮含量为39.80 mg·kg-1,有效磷含量为48.52 mg·kg-1。磷脂脂肪酸指纹图谱结果表明, 2种入侵植物与2种本地植物相比, 较显著增加了土壤中放线菌数量, 而紫茎泽兰比其他3种植物显著增加了细菌和真菌数量。盆栽结果表明: 黄顶菊生长过的土壤灭菌后比灭菌前旱稻株高增加113%, 紫茎泽兰也使旱稻的株高增加17%。由以上结果可知, 紫茎泽兰和黄顶菊可能通过改变入侵地土壤的微环境, 形成利于其自身生长扩散的微生态环境从而实现其成功入侵。  相似文献   

14.
通过水库水位涨落室内模拟试验,探究丹江口库区消落带优势物种狗牙根和空心莲2种草本植物对土壤氮磷释放过程影响。结果表明:(1)水淹结束后(32天),空心莲子草土壤TN、TP分别降低11.75%,25.28%,狗牙根分别降低3.62%,25.77%。(2)干湿交替环境主要影响土壤中NH_4~+-N、NO_3~--N和AP的含量的变化,对土壤中的TN、TP含量的影响较小。(3)狗牙根的死亡增加土壤TN、NH_4~+-N、TP量,即不耐淹植被过滤带虽然能净化径流中N、P等污染物,但截留的污染物和植物吸收的养分随着植物体的分解再次进入水体或土壤,无法达到有效防控农业面源污染的目的。该研究为丹江口水库利用植被缓冲带防控水体富营养化提供一定理论依据。  相似文献   

15.
The aim of the present study was to assess the role of soil type on growth, P uptake and rhizosphere properties of wheat and canola genotypes in an alkaline soil with low P availability. Two wheat (Goldmark and Janz) and two canola genotypes (Drum and Outback) were grown in a calcareous soil (pH 8.5) at two P levels [no P addition (0P) or addition of 200 mg kg−1 P as Ca3(PO4)2 (200P)] and harvested at flowering or maturity. Shoot and root dry weight, root length and shoot P content were greater in the two canola genotypes than in wheat. There were no consistent differences in available P, microbial P and phosphatase activity in the rhizosphere of the different genotypes. Shoot P content was significantly positively correlated with root length, pH and phosphatase activity in the rhizosphere. The microbial community composition, assessed by fatty acid methylester analysis, of the canola genotypes differed strongly from that of the wheat genotypes. The weight percentage bacterial fatty acids, the bacteria/fungi (b/f) ratio and the diversity of fatty acids were greater in the rhizosphere of the canolas than in the rhizosphere of the wheat genotypes. In contrast to the earlier studies in an acidic soil, only small differences in growth and P uptake between the genotypes of one crop were detected in the alkaline soil used here. The results confirmed the importance of root length for P uptake in soils with low P availability and suggest that the rhizosphere microbial community composition may play a role in the better growth of the canola compared to the wheat genotypes.  相似文献   

16.
In a pot experiment, the P‐efficient wheat (Triticum aestivum L.) cultivar Goldmark was grown in ten soils from South Australia covering a wide range of pH (four acidic, two neutral, and four alkaline soils) with low to moderate P availability. Phosphorus (100 mg P kg–1) was supplied as FePO4 to acidic soils, CaHPO4 to alkaline, and 1:1 mixture of FePO4 and CaHPO4 to neutral soils. Phosphorus uptake was correlated with P availability measured by anion‐exchange resin and microbial biomass P in the rhizosphere. Growth and P uptake were best in the neutral soils, lower in the acidic, and poorest in the alkaline soils. The good growth in the neutral soils could be explained by a combination of extensive soil exploitation by the roots and high phosphatase activity in the rhizosphere, indicating microbial facilitation of organic‐P mineralization. The plant effect (soil exploitation by roots) appeared to dominate in the acidic soils. Alkaline phosphatase and diesterase activities in acidic soils were lower than in neutral soils, but strongly increased in the rhizosphere compared with the bulk soil, suggesting that microorganisms contribute to P uptake in these acidic soils. Shoot and root growth and P uptake per unit root length were lowest in the alkaline soils. Despite high alkaline phosphatase and diesterase activities in the alkaline soils, microbial biomass P was low, suggesting that the enzymes could not mineralize sufficient organic P to meet the demands of plants and microorganisms. Microbial‐community composition, assessed by fatty acid methylester (FAME) analysis, was strongly dependent on soil pH, whereas other soil properties (organic‐C or CaCO3 content) were less important or not important at all (soil texture).  相似文献   

17.
隋宗明  殷洁  李轩  袁玲 《土壤》2017,49(3):527-533
为紫茎泽兰是我国危害最严重的外来入侵植物,具有生物毒性,无害化处理与资源化利用可经济、有效地防除紫茎泽兰。试验检测了紫茎泽兰生物堆肥的质量,并将紫茎泽兰生物堆肥(M)、化肥(CF)和生物堆肥+化肥(CFM)分别施入土壤,利用培养试验比较了它们对土壤有机质、养分和微生物的影响,为客观评价紫茎泽兰生物堆肥质量、微生物毒性和肥效提供有益信息。结果表明,紫茎泽兰生物堆肥质量符合NY525-2011国家标准(水分除外),且优于自然堆肥。在120 d的培养期间,CF处理降低土壤真菌和放线菌数量,对细菌数量无显著影响;CFM和M处理可提高土壤有机质和微生物量碳、氮,增加土壤细菌、真菌和放线菌数量。在添加化肥的土壤中,培养前期的碱解氮、脲酶和蔗糖酶活性高于CK(不施肥),后期与CK无显著差异。在CFM和M处理的土壤中,碱解氮变化平缓,但持续高于CK,蔗糖酶、脲酶、酸性磷酸酶和过氧化氢酶活性显著高于CF和CK。因此,紫茎泽兰生物堆肥对土壤有机质、氮、微生物生物量及土壤酶活性的影响类似于普通有机肥。  相似文献   

18.
Sulfonamide antibiotics reach soil via manure and adversely affect microbial diversity. Clear effects of these bacteriostatic, growth‐inhibiting antibiotics occur in the presence of a parallel input of microbial activity stimulating manure. Natural hot spots with already increased soil microbial activity are located in the rhizosphere, comprising microorganism such as Pseudomonas with plant growth promoting and pathogenic strains. The hypothesis was therefore that the antibiotic activity of sulfonamides is promoted in the rhizosphere even in the absence of manure, followed by shifts of the natural plant‐specific microbial community structure. This was evaluated by a laboratory experiment with Salix fragilis L. and Zea mays L. After 40 d of incubation, sub‐areas such as non‐rhizosphere soil, rhizosphere soil and plant roots were sampled. Effects on microbial community structure were analyzed using 16S rRNA gene fragment patterns of total bacteria community and Pseudomonas. Selected exoenzymes of N‐, P‐, and C‐cycling were used to test effects on microbial functions. Compared to the factors soil sub‐area and sulfadiazine (SDZ) content, plant species had the largest influence on the bacterial community structure and soil exoenzyme activity pattern. This was also reflected by an up to 1.5‐fold higher acid phosphatase activity in samples from maize‐ compared to willow‐planted soil. We conclude that antibiotic effects on the bacterial community structures are influenced by the antibiotic concentration and root influence.  相似文献   

19.
Bacillus coagulans, a phosphatase- and phytase-producing bacterium was isolated and tested under greenhouse conditions and in the field in a loamy sand soil. Bacterial population build-up and efficiency was compared under sterilized and non-sterilized soil conditions. Exploitation of plant unavailable (poorly soluble) P was higher in sterilized soil, mainly due to an increased bacteria population. A gradual increase in microbial build-up of up to 21 times the inoculated population was observed over a 4-week period under the sterilized soil condition. Clusterbean influenced acid phosphatase and phytase activity. The depletion of organic P was much higher than the depletion of mineral and phytin P. The microbial contribution to the hydrolysis of the different P fractions was significantly higher than the plant contribution. The maximum effect of inoculation on different enzyme activities (acid phosphatase, alkaline phosphatase, phytase and dehydrogenase) was observed in pants between 5 and 8 weeks of age. A significant improvement in plant biomass (25%), root length (28%), plant P concentration (22%), seed (19%) and straw yield (28%) resulted from inoculation. The results suggested that B. coagulans produces phosphatases and phytase, which mobilized P from unavailable native P sources and enhanced the production of clusterbean.  相似文献   

20.
Liu  Yu  Xiang  Wu  Zhu  Jie  Zhang  Xiu-Zhi  Xing  Xu-Dong  Yang  Wei-Lin 《Journal of Soils and Sediments》2020,20(1):181-189
Purpose

China is the world’s largest coal producer and consumer. Despite extensive studies on coal-burning pollution, the effect of raw coal pollutants caused by transportation and turnover on soil along the road received little attention. The main purpose of the study was to clarify the biogeochemical response of soil ecosystems to raw coal pollution.

Materials and methods

The raw coal and unpolluted soil from the coal distribution area in Xuanhua, China were collected for the incubation experiments. Combined with the determination of soil physicochemical properties, including pH, electric conductivity, soluble ions, dissolved organic carbon, and available heavy metals, the biogeochemical responses of soil to raw coal pollution, such as soil enzyme activities (β-glucosidase, alkaline phosphatase, and Urease), microbial community composition, and soil respiration, were systematically studied. In addition, a q-PCR analysis of the urease was performed to clarify the inhibitory mechanism of urease by coal pollution. Furthermore, a simple field investigation was carried out to confirm the incubation results.

Results and discussion

Raw coal pollution not only changed the soil physicochemical properties but also made the available Zn, Ni, and Co accumulate significantly. A positive priming effect in soil with the low-dose raw coal addition was trigged, but soil respiration rate and soil enzyme activity, such as β-glucosidase and alkaline phosphatase, were inhibited to different degrees with the increased pollution. Urease activity also decreased under the higher coal contamination, which was due to inhibition of ureC gene expression. In addition to the slight soil acidification caused by coal pollution, microbial communities and diversity was also found to be affected. The relative abundances of the microorganisms related to urease, alkaline phosphatase, and β-glucosidase changed accordingly. The incubation results are in good agreement with the field survey results.

Conclusions

Low-dose raw coal pollution can trigger the soil positive priming effect. However, as the coal pollution increased, the β-glucosidase, alkaline phosphatase, and urease in the soil were inhibited to varying degrees. The compounding effects of soil acidification, increased electric conductivity, and the accumulation of available heavy metals such as Zn, Ni, and Co are the key causes for the biogeochemical response of soil to coal pollution.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号