首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Knowledge about soil organic carbon (SOC) stock and its allocation into different pools is important for global food and environmental security. Accordingly, an attempt is made in the present study to investigate into the dynamics of SOC pools i.e. total soil organic carbon (TOC), oxidisable organic carbon (OC) and its different fractions viz. very labile (CVL), labile (CL), less labile (CLL) and non-labile (CNL) in soils under a 26 years old long-term experiment with rice (Oryza sativa L) – wheat (Triticum aestivum L) cropping system on Inceptisols under humid agro-climatic region of India with different soil management practices (control, 100% recommended dose of NPK, and 50% recommended dose of NPK + 50% N through farmyard manure (FYM). Of the several pools analyzed, a higher proportion of C was found in labile pool followed by very labile, non-labile, and less labile ones constituting about 46, 26.5, 20 and 7.3% of the total organic C at surface soil. The NPK+FYM treatment was found to have higher SOC pools, lability index (LI), recalcitrance indices and stratification ratio as compared to others. Results indicated that balanced fertilization with inorganic and organics is important for maintaining overall sustainability of the rice-wheat system.  相似文献   

2.
Agricultural management practices are known to influence soil organic C. While changes in total organic C (TOC) are relatively less discernible over short to medium-term, some extractable pools of TOC are considered early indicators of changes in TOC. Therefore, to devise nutrient management practices that can lead to C sequestration, it is important to study their effect on soil organic C pools that may respond rapidly to management. We studied the impact of balanced (NPK) and imbalanced (N, NP, NK and PK) application of fertilizer nutrients without and with farmyard manure (FYM) on total and labile pools of organic C viz. water soluble (WEOC), potassium permanganate oxidizable (KMnO4-C), microbial biomass (MBC) and fractions of decreasing oxidizability after 5-cycles of rice-wheat cropping. Integrated use of NPK and FYM significantly increased TOC and extractable C pools in both surface (0–7.5 cm) and sub-surface (7.5–15 cm) soil. Majority of TOC (72%) was stabilized in less labile and recalcitrant fractions; the magnitude being higher under balanced (NPK+FYM) than imbalanced nutrient management (N+FYM). The results showed that balanced fertilizer application conjointly with FYM besides enlarging TOC pool favorably impacts soil organic matter composition under rice-wheat system.  相似文献   

3.
Ecological stoichiometry provides the possibility for linking microbial dynamics with soil carbon (C), nitrogen (N), and phosphorus (P) metabolisms in response to agricultural nutrient management. To determine the roles of fertilization and residue return with respect to ecological stoichiometry, we collected soil samples from a 30-year field experiment on residue return (maize straw) at rates of 0, 2.5, and 5.0 Mg ha-1 in combination with 8 fertilization treatments:no fertilizer (F0), N fertilizer, P fertilizer, potassium (K) fertilizer, N and P (NP) fertilizers, N and K (NK) fertilizers, P and K (PK) fertilizers, and N, P, and K (NPK) fertilizers. We measured soil organic C (SOC), total N and P, microbial biomass C, N, and P, water-soluble organic C and N, KMnO4-oxidizable C (KMnO4-C), and carbon management index (CMI). Compared with the control (F0 treatment without residue return), fertilization and residue return significantly increased the KMnO4-C content and CMI. Furthermore, compared with the control, residue return significantly increased the SOC content. Moreover, the NPK treatment with residue return at 5.0 Mg ha-1 significantly enhanced the C:N, C:P, and N:P ratios in the soil, whereas it significantly decreased the C:N and C:P ratios in soil microbial biomass. Therefore, NPK fertilizer application combined with residue return at 5.0 Mg ha-1 could enhance the SOC content through the stoichiometric plasticity of microorganisms. Residue return and fertilization increased the soil C pools by directly modifying the microbial stoichiometry of the biomass that was C limited.  相似文献   

4.
Enrichment of soil organic carbon (SOC) stocks through sequestration of atmospheric CO2 in agricultural soils is important because of its impacts on adaptation to and mitigation of climate change while also improving crop productivity and sustainability. In a long‐term fertility experiment carried out over 27 y under semiarid climatic condition, we evaluated the impact of crop‐residue C inputs through rainfed fingermillet (Eleusine coracana [L.] Gaertn.) cropping, fertilization, and manuring on crop yield sustainability and SOC sequestration in a Alfisol soil profile up to a depth of 1 m and also derived the critical value of C inputs for maintenance of SOC. Five treatments, viz., control, farmyard manure (FYM) 10 Mg ha–1, recommended dose of NPK (50 : 50 : 25 kg N, P2O5, K2O ha–1), FYM 10 Mg ha–1 + 50% recommended dose of NPK, and FYM 10 Mg ha–1 + 100% recommended dose of NPK imposed in a randomized block design replicated four times. Application of FYM alone or together with mineral fertilizer resulted in a higher C input and consequently built up a higher C stock. After 27 y, higher profile SOC stock (85.7 Mg ha–1), C build up (35.0%), and C sequestration (15.4 Mg C ha–1) was observed with the application of 10 Mg FYM ha–1 along with recommended dose of mineral fertilizer and these were positively correlated with cumulative C input and well reflected in sustainable yield index (SYI). For sustenance of SOC level (zero change due to cropping) a minimum quantity of 1.13 Mg C is required to be added per hectare per annum as inputs. While the control lost C, the application of mineral fertilizer served to maintain the priori C stock. Thus, the application of FYM increased the C stock, an effect which was even enhanced by additional amendment of mineral fertilizer. We conclude that organic amendments contribute to C sequestration counteracting climate change and at the same time improve soil fertility in the semiarid regions of India resulting in higher and more stable yields.  相似文献   

5.
A long‐term fertilizer experiment, over 27 years, studied the effect of mineral fertilizers and organic manures on potassium (K) balances and K release properties in maize‐wheat‐cowpea (fodder) cropping system on a Typic Ustochrept. The treatments consisted of control, 100% nitrogen (100% N), 100% nitrogen and phosphorus (100% NP), 50% nitrogen, phosphorus, and potassium (50% NPK), 100% nitrogen, phosphorus, and potassium (100% NPK), 150% nitrogen, phosphorus, and potassium (150% NPK), and 100% NPK+farmyard manure (100% NPK+FYM). Nutrients N, P, and K in 100% NPK treatment were applied at N: 120 kg ha—1, P: 26 kg ha—1, and K: 33 kg ha—1 each to maize and wheat crops and N: 20 kg ha—1, P: 17 kg ha—1, and K: 17 kg ha—1 to cowpea (fodder). In all the fertilizer and manure treatments removal of K in the crop exceeded K additions and the total soil K balance was negative. The neutral 1 N ammonium acetate‐extractable K in the surface soil (0—15 cm) ranged from 0.19 to 0.39 cmol kg—1 in various treatments after 27 crop cycles. The highest and lowest values were obtained in 100% NPK+FYM and 100% NP treatments, respectively. Non‐exchangeable K was also depleted more in the treatments without K fertilization (control, 100% N, and 100% NP). Parabolic diffusion equation could describe the reaction rates in CaCl2 solutions. Release rate constants (b) of non‐exchangeable K for different depth of soil profile showed the variations among the treatments indicating that long‐term cropping with different rates of fertilizers and manures influenced the rate of K release from non‐exchangeable fraction of soil. The b values were lowest in 100% NP and highest in 100% NPK+FYM treatment in the surface soil. In the sub‐surface soil layers (15—30 and 30—45 cm) also the higher release rates were obtained in the treatments supplied with K than without K fertilization indicating that the sub‐soils were also stressed for K in these treatments.  相似文献   

6.
In Indian agriculture, nitrogen (N) and phosphorus (P) fertilizers are predominantly used by the farmers, often ignoring secondary and micronutrients. Significance of boron (B) in nutrient management studies has been increasingly underlined under intensive cropping systems particularly in acid soils. In order to understand the distribution of soil native B in different fractions and their contribution to plant B uptake as influenced by nutrient management, soil samples collected after wheat (2009–2010) from a long-term experiment (LTE) continuing since 1972–1973 on Typic Paleustalf of Ranchi were subjected to sequential fractionation of soil B. Treatments included N alone, NP, NPK, 150% of recommended NPK, NPK + farmyard manure (FYM), NPK + lime, and an unfertilized-control. Five soil B fractions were determined along with hot CaCl2-extractable (available) B. Averaged across the treatments, the soil had low organic carbon (C), pH and cation exchange capacity (CEC), and high free sesquioxides. Total B content was 21.7 mg kg?1. Among different B fractions, residual B was the major contributor to total B and other fractions collectively shared 7% of total B only. Application of N alone depleted readily soluble, specifically adsorbed and organically bound B bringing the contents even below unfertilized-control. Conjoint use of lime or FYM with NPK increased significantly these fractions, whereas a decrease in oxide bound B was noticed under these treatments. Available B was positively correlated with these fractions indicating their significance in controlling B availability in the soil. The study revealed that use of lime or FYM helped modifying the distribution of soil B in different fractions by way of changing soil pH and organic C content, resulting in enrichment of plant available pool. A drastically low available B content in different treatments receiving fertilizers alone, however, suggested the necessity of B fertilization at prescribed rates for maintaining soil B fertility as also high crop yields.  相似文献   

7.
In a 20‐yr‐old long‐term experiment, the impact of continuous application of organic manures and inorganic fertilizers on soil quality and the sustainability of finger millet production was conducted on two cropping systems: finger millet and finger millet–groundnut on an Alfisol of semi‐arid southern India. The study was conducted from 1992 to 2011 at the All India Coordinated Research Project for Dryland Agriculture, UAS, Bangalore, using a randomized block design. The treatments comprised of T1: control [no fertilizer and no farmyard manure (FYM) applied], T2: FYM 10 t/ha, T3: FYM 10 t/ha + 50% of recommended NPK (50:50:25 kg/ha), T4: FYM 10 t/ha + 100% of recommended NPK and T5: 100% recommended NPK. Comparison of long‐term yield data between treatments was used to calculate a ‘sustainability yield index’ (SYI), which was greatest for T4 (FYM 10 t/ha + 100% of recommended NPK), in both rotational (0.68) and monocropping (0.63) situations. Soil quality indices were determined using principal component analysis linear scoring functions. The key indicators which contributed to the soil quality index (SQI) under rotation were organic C; potentially available N; extractable P, K and S; exchangeable Ca and Mg; dehydrogenase activity and microbial biomass C and N. The largest SQI (7.29) was observed in T4 (FYM 10 t/ha + 100% NPK), and the smallest (3.70) SQI was for the control. Application of 10 t/ha FYM together with NPK (50:50:25 kg/ha) sustained a mean yield of 3884 kg/ha.  相似文献   

8.
A comprehensive long-term study (2006–2010) was undertaken to develop a balanced and integrated nutrient supply system for sunflower-based cropping sequence considering the efficient utilization of residual and cumulative soil nutrient balance along with added fertilizers by the crops grown in rotation. The fertilizer application was done in potato and sunflower while greengram was raised as such on their residual effect. Significant response in yield was observed with 150% of the recommended nitrogen, phosphorus and potassium (NPK) or inclusion of farmyard manure (FYM) with the recommended NPK in the cropping sequence indicating 6.2–7.0% gain in system productivity over the existing recommendations. Each additional unit of P and K nutrition prompted system productivity by 18.9 and 11.0 kg kg?1 of applied nutrient, respectively. Apparent yield decline was observed in K and PK omission plots to the extent of 15.8 and 27.4% in potato, 10.5 and 23.9% in sunflower and 4.2 and 8.3% in greengram, respectively, compared to the recommended fertilization. The superiority of the FYM along with the recommended NPK (potato/sunflower) was evident on the overall profitability and sustainability of the system, highlighted by the significantly higher productivity (7.16 t SFEY ha?1), sustainability yield index (SYI; 0.76), production efficiency (PE; 27.85 kg SFEY ha?1 day?1) and net returns (2520 USD ha?1) with a B:C ratio of 2.91. Apparent change in potassium permanganate (KMnO4)-N was negative in all the treatments while N and P balance was positive with 150% NPK fertilization. Nutrient uptake exceeded the replenishment with 100% NPK application and maintained net negative soil nutrient stock for all the primary nutrients, indicating the need for revalidation of the existing recommendations in the system perspective. Conspicuous improvement in residual soil fertility in terms of maximum buildup of soil organic carbon (14%) and enhancement in soil KMnO4-N (4.2%), Olsen-P (19.4%), ammonium acetate (NH4OAc)-K (5.8%) and dehydrogenase enzyme activity (44.4%) was observed in FYM-treated plots over the initial values. The study suggested that the inclusion of legumes and FYM application with the recommended NPK in potato-sunflower cropping sequence will sustain the system’s productivity through the efficient use of nutrients, enhanced microbial activity and improved soil health while combating escalating prices of fertilizers as well as environmental issues in the Indo-Gangetic plains of India and similar environments.  相似文献   

9.
The aim of this study was to understand impacts of long-term (43 years) fertilization on soil aggregation, N accumulation rates and δ15N in surface and deep layers in an Alfisol. Soil samples from seven treatments were analysed for N stocks, aggregate-associated N in 0–30 cm and the changes in δ15N in 0–90 cm depths. The treatments were: unfertilized control (control); recommended N dose (N); recommended N and phosphorus doses (NP); recommended N, P and potassium doses (NPK); 150% of recommended N, P and K doses (150% NPK); NPK + 10 Mg FYM ha?1 (NPK + FYM) and NPK + 0.4 Mg lime ha?1 (NPK + L). Results revealed that plots under NPK + FYM had ~39% higher total N concentrations than NPK + L in 0–30 cm soil layers. In NPK + L, macro-aggregates had 35 and 11% and microaggregates had 20 and 9% lower δ15N values than NPK + FYM in 0–15 and 15–30 cm soil layers, respectively. However, plots receiving NPK + FYM had ~39% greater deep soil (30–90 cm) N accumulation than NPK + L. These results would help understanding N supplying capacity by long-term fertilization and assist devising N management strategies in sub-tropical acidic Alfisols.  相似文献   

10.
Abstract

The influence of farmyard manure (FYM) and equivalent mineral NPK application on organic matter content, hot water extractable carbon (HWC), microbial biomass C (Cmic), and grain yields in a long-term field experiment was assessed after 40 years in Hungary. The unfertilized plot, FYM fertilized plots and plots fertilized with equivalent NPK fertilizer contained 0.99%, 1.13% and 1.05% total organic carbon (TOC) respectively. Compared to the unfertilized plot, FYM application resulted in 8.2% higher TOC than equivalent NPK fertilization. The highest TOC was only 1.21%, much lower than expected for a soil containing 21.3% of clay. The quantity of HWC varied depending on the type of fertilization: Compared to control, FYM treatments lead to 29% more HWC than mineral fertilization (FYM: 328 mg kg?1; NPK: 264 mg kg?1). The impact of FYM and equivalent NPK fertilizer on Cmic was contrary. FYM and NPK resulted in 304 and 423 mg kg?1 Cmic, respectively. The difference was 119 mg kg?1; 42% as compared to the unfertilized plot. Despite the higher HWC content, FYM treatments lead to significantly less (35%) grain yields than equivalent NPK doses; Cmic content showed closer correlation to grain yields.  相似文献   

11.
A field experiment was conducted to investigate the influence of long-term application of organic manures on aggregate stability, associated carbon concentrations and carbon pools as an important soil-quality parameter under a scented rice-potato-onion cropping system in silt-loam textured soil in Eastern Bihar, India (subtropical climatic condition). Five treatments were used: 1) nitrogen, phosphorus and potassium (NPK) – 100% recommended dose of NPK; 2) NPK+FYM (farmyard manure) – 50%NPK+50% N as FYM; 3) FYM+VC (vermicompost)+ NC (neem cake) – different organic sources each equivalent to 1/3 of the recommended N (FYM +VC +NC); 4) FYM+VC+NC+PSB (phosphate-solubilizing bacteria – different organic sources each equivalent to 1/3 of the recommended N (FYM +VC+NC)+biofertilizers containing N and P carriers (PSB) and 5) FYM+BFN+BM+PSB – 50% N as FYM + biofertilizer for N +Bone meal to substitute P requirement of crops + PSB. The aggregate size distribution (>250 μm) at different soil depths is higher in treatment FYM+VC+NC+PSB and is at par with FYM+VC+NC, followed by FYM+BFN+BM+PSB and NPK+FYM, and the lowest in treatment receiving 100% NPK. The mean carbon concentration in each soil fraction was higher in soil depth 0–10 cm, followed by 10–20 cm and 20–30 cm. The trend of mean weight diameter (MWD) in different treatments was FYM+VC+NC+PSB ≥ FYM+VC+NC > NPK+FYM > FYM+BFN+BM+PSB > NPK. The trend of carbon concentrations in different treatments was FYM+VC+NC+PSB ≥ FYM+VC+NC > FYM+BFN+BM+PSB ≥ NPK+FYM > NPK. Non-labile pool of carbon forms the major portion (60.14%) of the total soil organic carbon (SOC) irrespective of all depths. Bulk density (BD) has a significant role in stabilizing soil aggregates as well as increasing the SOC content in soil. SOC was negatively correlated with BD (r = ?0.870, p = 0.05), MWD (r = ?0.911, p = 0.01) and geometric mean diameter (GMD) (r = ?0.958, p = 0.05) irrespective of depth. This study took further steps toward understanding the enhancing of aggregate stability on organic manures addition for soil quality improvement.  相似文献   

12.
Soil total organic carbon (TOC) is a composite indicator of soil quality with implications for crop production and the regulation of soil ecosystem services. Research reports on the dynamics of TOC as a consequence of soil management practices in subtropical climatic conditions, where microbial carbon(C) loss is high, are very limited. The objective of our study was to evaluate the impact of seven years of continuous tillage and residue management on soil TOC dynamics (quantitative and qualitati...  相似文献   

13.
This present investigation took place on a continuing long-term fertilizer experiment, initiated in 1972 at the experimental farm of the College of Agriculture CSK HPKV, Palampur, aimed at studying nutrient dynamics of micronutrients, especially Zn, after continuous use of chemical fertilizers and amendments over the previous 36 years in an acid Alfisol under a maize–wheat system. Treatments investigated were as follows: T1: Control; 100% N; 100% NP; 100% NPK (optimal application - 120:26:33(maize)/25(wheat)); 100% NPK + FYM (10 t ha−1 to the maize crop); T6: 100% NPK + lime (900 kg ha−1); T7: 100% NPK + Zn (25 kg ha−1 as ZnSO4); T8: 100% NPK + Hand weeding; T9: 100% NPK (-S); T10: 150% NPK (super-optimal application); and T11: 50% NPK (sub-optimal application). Different forms of zinc in soil were determined through a sequential extraction method. Results revealed that previous applications of high-analysis fertilizers and amendments caused a marked depletion in the pools of Zn as compared to buffer plots. All pools of Zn as well as crop productivity and Zn uptake were noticeably greater in farmyard manure (FYM)-amended plots compared with plots not receiving fertilizer. The residual fraction was the dominant form but organically bound and exchangeable forms were found to play major role in nutrient supply, crop productivity and nutrient uptake. Correlation and regression analysis studies showed that organic forms constituted the most important pool contributing towards variation in yield and uptake by maize and wheat crops. Exchangeable and organically bound forms contributed significantly towards the availability of DTPA-extractable Zn in soil.  相似文献   

14.
Soil organic carbon (SOC), microbial biomass carbon (MBC), their ratio (MBC/SOC) which is also known as microbial quotient, soil respiration, dehydrogenase and phosphatase activities were evaluated in a long-term (31 years) field experiment involving fertility treatments (manure and inorganic fertilizers) and a maize (Zea mays L.)-wheat (Triticum aestivum L.)-cowpea (Vigna unguiculata L.) rotation at the Indian Agricultural Research Institute near New Delhi, India. Applying farmyard manure (FYM) plus NPK fertilizer significantly increased SOC (4.5-7.5 g kg−1), microbial biomass (124-291 mg kg−1) and microbial quotient from 2.88 to 3.87. Soil respiration, dehydrogenase and phosphatase activities were also increased by FYM applications. The MBC response to FYM+100% NPK compared to 100% NPK (193 vs. 291 mg kg−1) was much greater than that for soil respiration (6.24 vs. 6.93 μl O2 g−1 h−1) indicating a considerable portion of MBC in FYM plots was inactive. Dehydrogenase activity increased slightly as NPK rates were increased from 50% to 100%, but excessive fertilization (150% NPK) decreased it. Acid phosphatase activity (31.1 vs. 51.8 μg PNP g−1 h−1) was much lower than alkali phosphatase activity (289 vs. 366 μg PNP g−1 h−1) in all treatments. Phosphatase activity was influenced more by season or crop (e.g. tilling wheat residue) than fertilizer treatment, although both MBC and phosphatase activity were increased with optimum or balanced fertilization. SOC, MBC, soil respiration and acid phosphatase activity in control (no NPK, no manure) treatment was lower than uncultivated reference soil, and soil respiration was limiting at N alone or NP alone treatments.  相似文献   

15.
A long-term (30 years) soybean–wheat experiment was conducted at Hawalbagh, Almora, India to study the effects of organic and inorganic sources of nutrients on grain yield trends of rainfed soybean (Glycine max)–wheat (Triticum aestivum) system and nutrient status (soil C, N, P and K) in a sandy loam soil (Typic Haplaquept). The unfertilized plot supported 0.56 Mg ha−1 of soybean yield and 0.71 Mg ha−1 of wheat yield (average yield of 30 years). Soybean responded to inorganic NPK application and the yield increased significantly to 0.87 Mg ha−1 with NPK. Maximum yields of soybean (2.84 Mg ha−1) and residual wheat (1.88 Mg ha−1) were obtained in the plots under NPK + farmyard manure (FYM) treatment, which were significantly higher than yields observed under other treatments. Soybean yields in the plots under the unfertilized and the inorganic fertilizer treatments decreased with time, whereas yields increased significantly in the plots under N + FYM and NPK + FYM treatments. At the end of 30 years, total soil organic C (SOC) and total N concentrations increased in all the treatments. Soils under NPK + FYM-treated plots contained higher SOC and total N by 89 and 58% in the 0–45 cm soil layer, respectively, over that of the initial status. Hence, the decline in yields might be due to decline in available P and K status of soil. Combined use of NPK and FYM increased SOC, oxidizable SOC, total N, total P, Olsen P, and ammonium acetate exchangeable K by 37.8, 42.0, 20.8, 30.2, 25.0, and 52.7%, respectively, at 0–45 cm soil layer compared to application of NPK through inorganic fertilizers. However, the soil profiles under all the treatments had a net loss of nonexchangeable K, ranging from 172 kg ha−1 under treatment NK to a maximum of 960 kg ha−1 under NPK + FYM after 30 years of cropping. Depletion of available P and K might have contributed to the soybean yield decline in treatments where manure was not applied. The study also showed that although the combined NPK and FYM application sustained long-term productivity of the soybean–wheat system, increased K input is required to maintain soil nonexchangeable K level.  相似文献   

16.
Impacts of organic manure and inorganic fertilizer on total organic carbon (CT), water‐soluble organic C (CWS), microbial biomass C (CMB), particulate organic C (CP), labile organic C (CL), C storage and sequestration, and C management index (CMI) in surface soil (0–20 cm) were investigated in a 20‐yr field experiment under a greenhouse vegetable system in northeast China. The treatments included unfertilized control (CK), N fertilizer (N), balanced NPK fertilizer (NPK), organic manure alone (M) and the NPK fertilizer combined with the manure (MNPK). Under the treatments of N and NPK, CT content and C storage were not significantly changed over the experimental period, while CWS, CMB, CP, CL concentrations and CMI were significantly increased compared with the unfertilized control. In comparison with the control, the manure treatments, M and MNPK, significantly increased CT content and C storage, sequestrating organic C of 8.9 and 9.2 Mg/ha, respectively. The M and MNPK treatments showed higher CWS, CMB, CP and CL concentrations and CMI than the other three treatments. Pearson’s correlation coefficients were used to show that CWS, CMB, CP, CL and CMI could be useful indicators for assessing soil quality and total C changes. The M treatment is effective in sequestrating soil C, but resulted in lower crop yield compared with the NPK treatment. The MNPK treatment showed the greatest increases in crop yield and C sequestration in the greenhouse vegetable system.  相似文献   

17.
Productivity of rainfed finger millet in semiarid tropical Alfisols is predominantly constrained by erratic rainfall, limited soil moisture, low soil fertility, and less fertilizer use by the poor farmers. In order to identify the efficient nutrient use treatment for ensuring higher yield, higher sustainability, and improved soil fertility, long term field experiments were conducted during 1984 to 2008 in a permanent site under rainfed semi-arid tropical Alfisol at Bangalore in Southern India. The experiment had two blocks—Farm Yard Manure (FYM) and Maize Residue (MR) with 5 fertilizer treatments, namely: control, FYM at 10 t ha?1, FYM at 10 t ha?1 + 50% NPK [nitrogen (N), phosphorus (P), potassium (K)], FYM at 10 t ha?1 + 100% NPK (50 kg N + 50 kg P + 25 kg K ha?1) and 100% NPK in FYM block; and control, MR at 5 t ha?1, MR at 5 t ha?1 + 50% NPK, MR at 5 t ha?1 + 100% NPK and 100% NPK in MR block. The treatments differed significantly from each other at p < 0.01 level of probability in influencing finger millet grain yield, soil N, P, and K in different years. Application of FYM at 10 t ha?1 + 100% NPK gave a significantly higher yield ranging from 1821 to 4552 kg ha?1 with a mean of 3167 kg ha?1 and variation of 22.7%, while application of maize residue at 5 t ha?1 + 100% NPK gave a yield of 593 to 4591 kg ha?1 with a mean of 2518 kg ha?1 and variation of 39.3% over years. In FYM block, FYM at 10 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.45%), available N (204 kg ha?1), available P (68.6 kg ha?1), and available K (107 kg ha?1) over years. In maize residue block, application of MR at 5 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.39%), available soil N (190 kg ha?1), available soil P (47.5 kg ha?1), and available soil K (86 kg ha?1). The regression model (1) of yield as a function of seasonal rainfall, organic carbon, and soil P and K nutrients gave a predictability in the range of 0.19 under FYM at 10 t ha?1 to 0.51 under 100% NPK in FYM block compared to 0.30 under 100% NPK to 0.67 under MR at 5 t ha?1 application in MR block. The regression model (2) of yield as a function of seasonal rainfall, soil N, P, and K nutrients gave a predictability in the range of 0.11 under FYM at 10 t ha?1 to 0.52 under 100% NPK in FYM block compared to 0.18 under MR at 5 t ha?1 + 50% NPK to 0.60 under MR at 5 t ha?1 application in MR block. An assessment of yield sustainability under different crop seasonal rainfall situations indicated that FYM at 10 t ha?1 + 100% NPK was efficient in FYM block with a maximum Sustainability Yield Index (SYI) of 41.4% in <500 mm, 64.7% in 500–750 mm, 60.2% in 750–1000 mm and 60.4% in 1000–1250 mm rainfall, while MR at 5 t ha?1 + 100% NPK was efficient with SYI of 29.6% in <500 mm, 50.2% in 500–750 mm, 40.6% in 750–1000 mm, and 39.7% in 1000–1250 mm rainfall in semi-arid Alfisols. Thus, the results obtained from these long term studies incurring huge expenditure provide very good conjunctive nutrient use options with good conformity for different rainfall situations of rainfed semiarid tropical Alfisol soils for ensuring higher finger millet yield, maintaining higher SYI, and maintaining improved soil fertility.  相似文献   

18.
This study aims to examine the effects of long‐term fertilization and cropping on some chemical and microbiological properties of the soil in a 32 y old long‐term fertility experiment at Almora (Himalayan region, India) under rainfed soybean‐wheat rotation. Continuous annual application of recommended doses of chemical fertilizer and 10 Mg ha–1 FYM on fresh‐weight basis (NPK + FYM) to soybean (Glycine max L.) sustained not only higher productivity of soybean and residual wheat (Triticum aestivum L.) crop, but also resulted in build‐up of total soil organic C (SOC), total soil N, P, and K. Concentration of SOC increased by 40% and 70% in the NPK + FYM–treated plots as compared to NPK (43.1 Mg C ha–1) and unfertilized control plots (35.5 Mg C ha–1), respectively. Average annual contribution of C input from soybean was 29% and that from wheat was 24% of the harvestable aboveground biomass yield. Annual gross C input and annual rate of total SOC enrichment from initial soil in the 0–15 cm layer were 4362 and 333 kg C ha–1, respectively, for the plots under NPK + FYM. It was observed that the soils under the unfertilized control, NK and N + FYM treatments, suffered a net annual loss of 5.1, 5.2, and 15.8 kg P ha–1, respectively, whereas the soils under NP, NPK, and NPK + FYM had net annual gains of 25.3, 18.8, and 16.4 kg P ha–1, respectively. There was net negative K balance in all the treatments ranging from 6.9 kg ha–1 y–1 in NK to 82.4 kg ha–1 y–1 in N + FYM–treated plots. The application of NPK + FYM also recorded the highest levels of soil microbial‐biomass C, soil microbial‐biomass N, populations of viable and culturable soil microbes.  相似文献   

19.
Imbalanced fertilizer use with intensive cropping has threatened the sustainability of agroecosystems, especially on acid soils. An understanding of the long-term effects of fertilizers and amendments on soil health is essential for sustaining high crop yields. The effects of application of fertilizers, and amendments for 46 years on soil properties and maize yield in an acid Alfisol were investigated in this study. Ten fertilizer treatments comprising different amounts of NPK fertilizers, farmyard manure (FYM) and lime, and one control, were replicated three times in a randomized block design. At 0–15 cm soil depth, bulk density was least (1.20 t/m3), porosity (49.8%) and water holding capacity (61.7%) were greatest in 100% NPK + FYM, corresponding to the largest organic carbon content (13.93 g/kg). Microbial biomass C and dehydrogenase activity in 100% NPK + FYM were 42% and 13.7% greater than 100% NPK, respectively. Available nutrients were significantly more with 100% NPK + FYM and 100% NPK + lime than control and other fertilizer treatments. At 15–30 cm depth, the effect of various treatments was comparable to the surface layer. Grain yield declined by 55% and 53% in 100% NPK(-S) and 100% NP, respectively, compared with 100% NPK, whereas 100% N as urea alone eventually led to crop failure. Soil porosity recorded the greatest positive correlation (r = .933**), whereas bulk density recorded a negative significant correlation (r = −.942**) with grain yield. The results suggest that integrated use of FYM/lime with chemical fertilizers is a sustainable practice in terms of crop yield and soil health, whereas continuous application of urea alone is detrimental to the soil health.  相似文献   

20.
The effects of integrated nutrient management, cultivation method, and variety on root and shoot growth, grain yield and its components of lowland rice under alternate wetting and drying (AWD) irrigation were evaluated. Treatments included were three varieties (Pathumthani 1, RD57, and RD41), three cultivation methods [dry direct seeding, wet direct seeding, and transplanting], and three nutrient combinations [100% NPK (160?kg ha?1), 50% NPK (80?kg ha?1) + 50% FYM (5 t ha?1), and 100% FYM (10 t ha?1)] under AWD. Root dry matter of RD41 and RD57 was reduced by 12–25% at the 100% NPK and 100% FYM compared with the 50% NPK + 50% FYM. Panicle number, panicle length, and 1000-grain weight were higher at the 50% NPK + 50% FYM. Application of the 50% NPK + 50% FYM could be a feasible option under AWD irrigation; however, benefits may vary with varieties and cultivation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号