首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Due to higher proportions of labile carbon (C) compounds the suitability of biochar produced by hydrothermal carbonization (HTC) for C sequestration is questionable. We hypothesized that pre-treatment with water would reduce the biological decay of hydrochar from sewage sludge. Unwashed and washed feedstock and hydrochar were incubated in a short-term experiment. The kinetics of the biological decomposition of the materials was calculated on the basis of a double exponential model and the C sequestration potential using the CANDY Carbon Balance (CCB) model. Biological decomposition of the carbonized materials was governed by the percentage of labile C compounds. Mean residence time of a fast (MRTfast) and slow decay pool (MRTslow) of unwashed hydrochars varied clearly (MRTfast: 0.8 – 5.0 months and the MRTslow: 5.0–18.6 months). The pre-treatment with water removed labile hydrochar C and reduced the biological accessibility. MRTfast and MRTslow was increased by intensive washings (MRTfast: 5.0–7.4 months and the MRTslow: 14.9 months). High synthesis coefficients suggest that hydrochar C was humified and transferred into stabilized SOC. The results clearly show that once adsorbed components were eliminated, and as compared to pyrolysed biochar hydrochar from sewage sludge may also be useful for soil C sequestration.  相似文献   

2.
By hydrothermal liquefaction (HTL) of organic matter, hydrochars are produced which may be applied to soil for carbon sequestration. From substrates of wild seaweed and organic waste digestate, we measured the distribution of solids (hydrochars) and liquids after HTL at 150 and 200°C, 50?bar for 1?h. The output of liquids and solids was recorded. Elemental analysis was conducted for essential plant nutrients, potentially toxic elements (PTEs) and silicon in the hydrochars. Sequential extraction of phosphorous (P) was conducted to assess the P availability for plants. About 20% of the initial dry matter dissolved during HTL of digestate, and 55% for seaweed. More dry matter was dissolved by increased temperature. Except from arsenic in seaweed chars, the concentrations of PTEs were below quality compost thresholds. About 85% of P was recovered in chars for digestate. For seaweed, the recovery was 97% at 150°C, decreasing to 84% at 200°C. The solubility of P in chars decreased by HTL, and more with higher temperature. Reduced P availability, especially by higher temperature, is negative for the immediate fertilization effect. However, for soil sequestration of carbon, reduced P availability in hydrochars may expand the area where application may occur without negative environmental effects of eutrophication of water bodies.  相似文献   

3.

Purpose

This study was to investigate the changes of heavy metals in the soils amended with different municipal sewage sludge hydrochars.

Materials and methods

Sewage sludge hydrochars prepared at either 190 or 260 °C, for 1, 6, 12, 18, or 24 h, respectively, were added to soil samples and then incubated for 60 days. Water-extractable organic carbon (WEOC) and CO2 evolution were determined during the incubation. The total quantities of heavy metals and their different fractions were analyzed by inductively coupled plasma spectrometry (ICP).

Results and discussion

Hydrochar-amended soils had much higher water-extractable carbon and more CO2 evolution than control soil, indicating that the added hydrochars contained a significant amount of WEOC and could be decomposed during the incubation. Hydrochar addition immediately and significantly increased the total heavy metals of the soil. Moreover, both oxidizable and residual fractions of all heavy metals were significantly higher in all the hydrochar-added soils than those in control soil. Both oxidable and residual fractions of heavy metals decreased in the hydrochar-amended soils during 60-day incubation. In contrary, both acid soluble and reducible fractions of heavy metals increased in the hydrochar-amended soils during incubation. It is thus obvious that the heavy metals in both oxidable and residual fractions may be released during hydrochar decomposition and then be adsorbed by soil matrix such as carbonates, iron oxides, and clays.

Conclusions

Municipal sewage sludge can be readily carbonized into hydrochar. However, it is watchful of applying the hydrochar into soil since hydrochar addition increases in both total and bioavailable heavy metals in soil. More work is particularly required to investigate the long-term impacts on soil and environment.
  相似文献   

4.
The effects of biochar (maize biochar – MBC, wood biochar – WBC) and unfermented or fermented hydrochar (HTC) on the euedaphic Collembola Protaphorura fimata and on spring wheat were investigated in greenhouse experiments. The impact of char type, amount of fermented HTC, and MBC-Collembola interactions were assessed. Generally, shoot and root biomass as well as abundance of P. fimata were not affected by the different chars. However, with increasing amounts of fermented HTC the abundance of P. fimata declined, whereas shoot biomass of wheat increased. Moreover, MBC altered root morphology and resulted in thicker roots with higher volume. The latter was not apparent when Collembola were present.  相似文献   

5.
Positive effects of pyrochar on soil nutrient availability and plant growth are widely reported in literature. However, few studies have reported effects of hydrochars on plant nutrition. A pot trial was conducted over a period of 2 years to investigate the effect of a pyrochar (AGT) and a hydrochar (HTC) on poplar (Populus × generosa , clone AF8) growth, biomass allocation and nitrogen (N) uptake with special emphasis on the quantification (using an isotopic mass balance approach) of char‐derived nitrogen (CDN) absorbed by plants. We found that both pyrochar and hydrochar positively affected above‐ground biomass productivity in the first year, and biomass and nitrogen (N) allocation over the 2 years by reducing the allocation of resources to fine roots. By the end of the experiment, even though the total N uptake was not affected by char, the CDN was more than 24% of the total N absorbed by HTC‐treated plants compared to a negligible amount absorbed by AGT‐treated ones. Finally, char did not affect nitrogen use efficiency (NUE) in the first year of growth, but by the end of the experiment, NUE was higher in the above‐ground biomass of HTC‐treated than in AGT‐ and control poplars.  相似文献   

6.
G. LANZA  S. WIRTH  A. GESSLER  J. KERN 《土壤圈》2015,25(5):761-769
The biodegradability of chars derived from pyrolysis and hydrothermal carbonisation (HTC) was studied in short-term dynamic incubation experiments under controlled conditions. Carbon dioxide C (CO$_{2}$) emissions from soil-char mixtures in combination with solid digestate or mineral nitrogen (N) fertiliser were measured in dynamic chambers for 10 d.~Compared to the original material (maize straw), pyrolysis and HTC chars showed significantly lower CO$_{2}$ emissions and slower decay dynamics; and compared to the soil control, HTC char increased soil respiration to a significant extent, while pyrolysis char did not. The addition of mineral N resulted in a delayed respiration dynamics for HTC char, while the addition of digestate resulted in an increase in the respired CO$_{2}$ for pyrolysis char and a decrease for HTC char. For the first time, a peculiar two-stage decay kinetics was observed for HTC char, indicating a highly inhomogeneous substrate consisting at least of two C pools.  相似文献   

7.
ABSTRACT

Soil fertility and water use are two important aspects that influence rice productivity. This study was conducted to evaluate the performance of in-situ (sesbania and rice bean) and ex-situ (subabul) green manuring along with zinc fertilization on water productivity and soil fertility in rice under rice–wheat cropping system at Indian Agricultural Research Institute, New Delhi, India. Sesbania incorporation recorded higher total water productivity (2.20 and 3.24 kg ha?1 mm?1), available soil nutrients, organic carbon, alkaline phosphatase activity, microbial biomass carbon and increased soil dehydrogenase activity by 39.6 and 26.8% over subabul and rice bean respectively. Among interaction of green manures and zinc fertilization, subabul × foliar application of chelated zinc-ethylenediaminetetraacetic acid at 20, 40, 60 and 80 days after transplanting recorded highest total water productivity (2.56 and 3.79 kg ha?1 mm?1). Foliar application of chelated Zn-EDTA at 20, 40, 60 and 80 days after transplanting recorded significantly higher water productivity than other Zn treatments, however it was statistically similar with foliar application of zinc at active tillering + flowering + grain filling. Sesbania × 5 kg Zn ha?1 through chelated Zn-EDTA, recorded highest available nitrogen, phosphorus, potassium, zinc, manganese, copper and iron than other green manure and Zn fertilization interactions, although it was statistically similar with rice bean × 5 kg Zn ha?1 through chelated Zn-EDTA as soil application. Sesbania × foliar application of 5 kg Zn ha?1 through chelated Zn-EDTA as soil application recorded highest soil enzymatic activities and microbial biomass carbon.  相似文献   

8.
Poly(acrylamide-acrylic acid-dimethylaminoethyl methacrylate) P(AAm-AA-DMAEMA) resin was prepared by the template copolymerization. PAAm was used as a template for the copolymerization of DMAEMA and AA in aqueous solution using gamma rays. The adsorption of indigo carmine and eriochrome black-T anionic dyes from aqueous media on P(AAm-AA-DMAEMA) has been investigated. The adsorption behavior of this resin has been studied under different adsorption conditions: dye concentrations (50?C500 mg l?1), contact times, temperature (30?C55°C), and pH values (2?C7). The amount of dye adsorbed increased with increasing resin content, but it had a little change with temperature and decreased slightly with increasing pH. Adsorption data of the samples were modeled by the pseudo-first-order and pseudo-second-order kinetic equations in order to investigate dye adsorption mechanism. It was found that the adsorption kinetics of the resin followed a pseudo-second-order model with rate constant (k 2) of 2.5?×?10?3 and 1.8?×?10?2 g (mg?1 min?1) for indigo carmine and eriochrome black-T, respectively. Equilibrium isotherms were analyzed using the Langmuir and Freundlich isotherms. It was seen that the Freundlich model fits the adsorption data better than the Langmuir model.  相似文献   

9.
Drip irrigation offers potential for rice (Oryza sativa L.) production in regions where water resources are limited. However, farmers in China’s Xinjiang Province report that drip-irrigated rice seedlings sometimes suffer salt damage. The objective of this study was to learn more about the effects of soil salinity and soil temperature on the growth of drip-irrigated rice seedlings. The study consisted of a two-factor design with two soil salinity treatments (0 and 1.8 g kg?1 NaCl) and three soil temperature treatments (18°C, 28°C and 36°C). The results showed that shoot biomass, root biomass and root vigor were greatest when seedlings were grown with no salt stress (0 g kg?1 NaCl) at 28°C. Moderate salt stress (1.8 g kg?1 NaCl) combined with high temperature (36°C) significantly reduced root and shoot biomass by 39–53%. Moderate salt stress and high temperature also increased root proline concentration by 77%, root malonyldialdehyde concentration by 60% and seedling mortality by 60%. Shoot and root Na+ concentrations, shoot and root Na+ uptake and the Na+ distribution ratio in shoots were all the greatest when moderate salt stress was combined with high temperature. In conclusion, high soil temperature aggravates salt damage to drip-irrigated rice seedlings. Therefore, soil salinity should be considered before adopting drip-irrigation for rice production.  相似文献   

10.
To investigate the effect of prethinning of starch by acid before pyrolysis on the formation of indigestible fraction (IF) in pyrodextrins, native and prethinned (50°C for 1, 4, and 24 hr) waxy sorghum starches were heated at 120–160°C with 20–60 μL of 9% HCl/g of starch. Pyrodextrin containing 14.6% IF, measured as total dietary fiber by enzymatic‐gravimetric method, was produced at 120°C with 20 μL of HCl from native waxy sorghum starch. Prethinning before pyrolysis increased IF content by 0–68%, depending on the conditions for pyrolysis, compared with that of the native starch. Reduction in the molecular size of starch by prethinning might cause greater mobility during pyroconversion reaction and thus generate higher IF contents. Increasing temperature and acid concentration during pyroconversion also increased IF content of pyrodextrins. Pyrodextrin of 44.9% IF was produced at 160°C with 60 μL of HCl from prethinned starch (50°C for 24 hr). Solubility of pyrodextrins was inversely proportional to IF content (r = ‐0.87) and had a range of 62.7–98.3%. Color of pyrodextrins became brownish with more severe pyroconversion conditions.  相似文献   

11.
The objective of this study was to understand the degradation of the organic matter of olive mill wastewater (OMW) and its phytotoxic and water repellent effects in dependence on four different climatic conditions. We hypothesized that warm conditions with sufficient soil moisture ensure optimal biological activity and thus minimize negative effects of the OMW treatment. Therefore, OMW-treated soil was incubated for 60 days under four climatic conditions. During incubation, we monitored pH, contents of nitrate, manganese and phenolic compounds, soil respiration, soil water repellency, and δ13C. Additionally, calorific value and thermal stability of the soil organic matter at the beginning and end of incubation were determined. Soil samples of the wet-cold and moist-warm incubation were tested for phytotoxicity using a seed germination bioassay with Lepidium sativum. As a function of climatic conditions, positive and negative effects, e.g., addition of nutrients, phytotoxicity, and soil water repellency, were observed. Under dry-hot conditions, the soil was still water repellent after 60 days of incubation whereas the wet-hot, moist-warm, and wet-cold incubation show that soil would stay wettable if soil moisture before OMW treatment would be sufficient. Thus, the impact of OMW treatment on soil quality strongly depends on the environmental conditions which should favor an enhancement of microbial activity to minimize negative effects.  相似文献   

12.
The United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Plant Genetic Resources Conservation Unit in Griffin, GA maintains the United States germplasm collection for Ipomoea spp. (Convolvulaceae). During 2012–2014, 737 sweetpotato, Ipomoea batatas (L.) Lam., plant introductions (PI) were acquired as tissue-culture plantlets and then acclimated to greenhouse conditions at the USDA, ARS, U. S. Vegetable Laboratory (USVL), Charleston, SC. Single plants were transferred to plastic-covered plant beds to produce cuttings for replicated field trials. Storage roots were harvested from 690 PIs grown in the field and 695 PIs grown in pots. Color coordinates were obtained for each PI using a tristimulus colorimeter. Hue angle values (h*) ranged from 8.2° to 88.3° (\( \bar{x} \) = 54.9°) for the periderm (peel or skin) of field-grown storage roots (n = 690 PIs) and ? 9.4° (= 350.6°) to 96.2° (\( \bar{x} \) = 51.3°) for pot-grown roots (n = 695 PIs). The red–green coordinate (a*) ranged from 0.8 to 30.7 (\( \bar{x} \) = 12.8) for the periderm of field-grown roots and ? 2.0 to 44.9 (\( \bar{x} \) = 16.1) for pot-grown roots. The yellow–blue coordinate (b*) ranged from 2.8 to 33.1 (\( \bar{x} \) = 19.4) for the periderm of field-grown roots and ? 7.4 to 38.1 (\( \bar{x} \) = 19.3) for pot-grown roots. Color saturation (chroma, C*) ranged from 13.7 to 35.8 (\( \bar{x} \) = 24.9) for the periderm of field-grown roots and 14.9–45.5 (\( \bar{x} \) = 29.3) for pot-grown roots. Lightness (white–black, L*) ranged from 32.6 to 81.7 (\( \bar{x} \) = 54.6) for the periderm of field-grown roots and 32.1–88.2 (\( \bar{x} \) = 64.0) for pot-grown roots. Hue angles ranged from ? 13.1° (= 346.9°) to 100.9° (\( \bar{x} \) = 80.9°) for the stele (flesh) of field-grown storage roots (n = 672 PIs) and ? 29.9° to 103.5° (\( \bar{x} \) = 81.6°) for pot-grown roots (n = 676 PIs); a* ranged from ? 5.6 to 35.0 (\( \bar{x} \) = 8.0) for the stele of field-grown roots and ? 6.0 to 41.0 (\( \bar{x} \) = 7.6) for pot-grown roots; and b* ranged from ? 7.7 to 56.1 (\( \bar{x} \) = 34.6) for the stele of field-grown roots and ? 12.6 to 56.1 (\( \bar{x} \) = 31.8) for pot-grown roots. C* ranged from 12.7 to 65.8 (\( \bar{x} \) = 37.2) for the stele of field-grown roots and 8.9–65.7 (\( \bar{x} \) = 34.5) for pot-grown roots; and L* ranged from 27.8 to 91.1 (\( \bar{x} \) = 77.7) for the stele of field-grown roots and 28.2–91.9 (\( \bar{x} \) = 80.4) for pot-grown roots. There were significant relationships between stele color (h*) and percent dry matter, with orange stele having a significantly lower % dry matter (\( \bar{x} \) = 25.6%, n = 183) compared with roots with cream/white stele (\( \bar{x} \) = 30.8%, n = 373). There appears to be wide genetic diversity for root color characteristics for the United States sweetpotato germplasm collection.  相似文献   

13.
Persistent organic pollutants (POPs) immobilization in farm land is an important issue to solve the residue in crop, and char has been considered for the remediation. In here, three commercially available chars like powdered oak char (POC), granulated oak char (GOC), and rice husk char (RHC) including powdered activated carbon (PAC) were investigated for their potential to adsorb and immobilize endosulfan in the soil. The maximum adsorption capacities (mg g?1) of the applied chars as POC, GOC, and RHC were 714.8, 322.6, and 181.8, respectively, and the capacity of POC was similar with PAC (713.8). In addition, the pore volume (0.138 cm3 g?1) and the surface area (270.3 m2 g?1) of POC were over 3-fold higher than GOC and RHC. The bioconcentration factor (BCF) reducing effect of α-, β-endosulfan, and endosulfan sulfate in oriental radish (Raphanus sativus var. sativus) was investigated by amendment of three commercially available chars to the contaminated soils. The BCF of total endosulfan was 0.025 in the radish root. POC treatments effectively suppressed the endosulfan uptake (BCF 0.002). However, GOC and RHC showed little BCF reducing effect of endosulfan in radish.  相似文献   

14.
A large proportion of phosphate fertilizer applied to calcareous soils reacts with calcium. Changes in soil phosphorus (P) availability after single application of biochar and phosphate-solubilizing bacteria have been reported. However, interaction of biochar (increasing soil pH) and phosphate-solubilizing bacteria (decreasing soil pH) on P availability in calcareous soil is not well known. An incubation experiment was conducted to study how the interactive effects of biochars (produced from wheat straw and cow manure at 300°C and 500°C with residence time of 1, 3 and 6 h) at different rates (0, 5 and 10 t ha?1) and phosphate-solubilizing Pseudomonas sp. IS8b2 affected on content of soil available P after 0, 60, 120 and 180 days of incubation (DOI) in a calcareous soil. After 60 DOI, the maximum value of available P (50.31 mg kg?1) was observed in the compound treatment of Pseudomonas sp. IS8b2 and wheat straw biochar (10 t ha?1) produced at 500°C with residence time of 3 h. We conclude that the combination use of wheat straw biochar and phosphate-solubilizing bacterium is promising to potentially improve soil P availability in calcareous soil, but further research at field scale is needed to confirm this.  相似文献   

15.
Crop geometry has great influence on economically important characteristics such as total yield, processing-grade yield, tuber size distribution and tuber quality in Grey Terrace Soil. An experiment was conducted to develop a suitable crop geometry for the production of higher processing-grade yield and quality of potato tubers. The treatment consisted of three levels of inter-row spacing (60, 67.5 and 75 cm) and four levels of intra-row spacing (20, 25, 30 and 35 cm). Crop geometry significantly influenced growth, yield contributing characters, tuber size distribution and yield of potato. The highest chips, French fry grade tubers and total potato tuber yield were found in 67.5 cm × 25 cm crop geometry without affecting processing quality but all were in the highly acceptable range. Intra-row spacing of 25 cm produced the maximum processing quality tubers, closely followed by 30 cm. The highest gross and net returns with a benefit–cost ratio of 1.75 were recorded in 67.5 cm × 25 cm crop geometry. Therefore, the 67.5 cm × 25 cm crop geometry can be recommended for higher potato tuber yield and processing-grade tubers as well as higher economic return.  相似文献   

16.

Purpose

Remediate metal contamination is a fundamental step prior to reclaim oil sands tailing ponds, and copper (Cu(II)) is the most abundant metal in the tailings water or oil sands process-affected water (OSPW). Biochars produced at four pyrolysis conditions were evaluated for sorption of Cu(II) in synthetic OSPW to explore different biochar potentials in removing Cu(II) from the contaminated water.

Materials and methods

Pine sawdust biochars pyrolyzed at 300 and 550 °C with and without steam activation were investigated by batch sorption experiments. Isotherm and kinetic studies were conducted to compare the sorption capacities of the four biochars and to examine potential mechanisms involved.

Results and discussion

For all the biochars, Langmuir and pseudo-second order models were the best-fit for isotherm and kinetic studies, respectively. According to the Langmuir parameters, the maximum adsorption capacities of the biochars produced at 550 °C were around 2.5 mg Cu(II)?g?1, which were 30-folds higher than those produced at 300 °C. However, steam activation did not cause any significant difference in the biochars’ sorption performance. The kinetic study suggested that chemisorption involving valence forces was the limiting factor of the sorption. In addition, ion exchange and precipitation were likely the primary mechanisms for Cu(II) sorption which outweigh complexation with functional groups on the biochars’ surface.

Conclusions

Pine sawdust biochar produced at 550 °C without steam activation could be utilized as a sustainable and cost-effective material to remove Cu(II) from the OSPW.
  相似文献   

17.
Grains of two regular and two waxy barley cultivars were milled into break and reduction stream flours using a wheat milling mill, granulated to facilitate feeding and flow through the barrel, and extruded to form expanded products using a modified laboratory single‐screw extruder. As moisture content of barley granules decreased from 21 to 17%, the expansion index of extrudates increased from 1.81 to 2.68, while apparent modulus of compression work (AMCW) decreased from 17.1 × 104 to 7.8 × 104 N/m2. Break stream flours of both regular and waxy barley produced extrudates with higher expansion index (2.72–3.02), higher water absorption index (WAI), and lower AMCW than extrudates from reduction stream flours. Extrudates produced from regular barley had generally higher expansion and lower density than those produced from waxy barley. The specific mechanical energy (SME) was greater during extrusion of regular than of waxy barley. Barrel temperatures of 130, 150, and 170°C for the feeding, compression, and metering sections, respectively, resulted in higher SME, higher expansion index, lower water absorption index and lower AMCW of extrudates compared with a constant extruder barrel temperature of 160°C. Increased screw speed generally resulted in larger expansion index and increased WAI of extrudates. With increased feed rate from 89 to 96 g/min, the expansion index of extrudates decreased from 3.20 to 2.78 in regular barley and 3.23 to 2.72 in waxy barley, and harder extrudates were produced.  相似文献   

18.
Biomass-derived biochar is considered as a promising heavy metal adsorbent, due to its favorable physicochemical properties, from aqueous solution as compared with other adsorbents. However, there is a limited number of studies on the effects of biochar produced from different feedstocks and pyrolytic temperatures on metal removal from metal-contaminated water. So in this study, the removal of the most prevalent heavy metals [(lead (Pb(II)), cadmium (Cd), and chromium (Cr)] by green waste biochar (GWB) and popular twigs biochar (PTB), produced at different pyrolytic temperatures, i.e., low 350 and high 650 °C, has been investigated, following the determination of physical and chemical properties of biochar. The efficiency of heavy metals removal of biochar was studied at different concentrations of heavy metals (10 and 100 μg mL?1), biochar types and treatment duration (3, 6, 9, and 12 h) at isothermic condition of aqueous solution. Results revealed that both feedstock type and pyrolytic temperature to produce biochar significantly affected its metal sorption capacity. The maximum sorption capacities of all three metals, i.e., Pb (II), Cd, and Cr were determined in the GWB produced at low pyrolytic temperature 350 °C after 9 h of treatment duration at both high and low metal concentrations. This highest sorption capacity of all metals by low pyrolytic temperature produced GWB was due to its better physicochemical properties especially high surface area, cation exchange capacity, and oxygen-containing functional groups as compared with woody feedstock based high pyrolytic temperature produced PTB. Conclusively, low pyrolytic temperature produced GWB was evaluated as a potential adsorbent to efficiently reduced heavy metal concentration in metal-contaminated water.  相似文献   

19.
The effects of temperature and water potential on nitrification were investigated in two Iowa soils treated with Stay‐N 2000. The soils were incubated at 10, 20, and 30 °C after soil water potentials of ?1, ?10, or ?60 kPa were applied to each soil. A first‐order equation was used to calculate the maximum nitrification rate (K max), duration of lag period (t′), period of maximum nitrification (Δt), and termination period of nitrification (t s). The highest K max were 18 and 24 mg kg?1 d?1 nitrate (NO3 ?)–nitrogen (N), respectively, at 30 °C and ?10 kPa in both the Nicollet (fine‐loamy, mixed, superactive, mesic Aquic Hapludoll) and Canisteo (fine‐loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll) soils and reduced to 4 and 16 mg kg?1 d?1 NO3 ?‐N when Stay‐N 2000 was added. The extension of t′ due to the addition of Stay‐N 2000 was as high as 7 d in the Nicollet soil at 10 °C and ?1 kPa and as little as 2 d in the Canisteo soil at 20 °C and ?10 kPa.  相似文献   

20.
Pentachlorophenol (PCP) adsorption and desorption equilibrium was studied with two Menfro silt loam soils — upper horizon and lower horizon. For the adsorption studies the variables were: temperature (10 and 30 °C) and the amount of organic matter. The variables for the desorption studies were: temperature (10 and 30 °C), pH and the presence of an anionic and a cationic surfactant. The results from these studies confirmed the importance of soil organic matter for adsorption of PCP on the soils. The adsorption data at different temperatures indicated the physical nature of the adsorption process. The desorption data produced non-singularity and some PCP was irreversibly adsorbed onto the soil despite repeated washings. Increased pH increased the desorption of PCP from the soil. The anionic surfactant, sodium dodecylbenzene sulfonate (SDS) was able to desorb significant amounts of PCP from the soil at doses equal to critical micelle concentration (CMC). But, the nonionic surfactant, surfactant, Triton X-405 required a much higher dose (twice the CMC) to cause a significant desorption of PCP from the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号