首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic analyses were carried out with B. napus lines that differed in total content of individual glucosinolates (GSLs), as well as in their profile. Inheritance of total GSL content was studied with a complete F1 diallel mating of eight doubled haploid (DH) lines (5–120/μmol GSL/g dry seed) as well as with the segregating populations of two crosses between DH lines. Most of the genetic variability was caused by gca effects; heterosis was not important; heritability of GSL content was high (h2b, = 0.95, h2n= 0.87). For GSL contents below 20/μmol/g seed, heritability values reached h2b, = 0.69 and h2n, = 0.66. Low total GSL content was found to be controlled by 4–5 recessive genes with additive gene action. Alkenyl GSL profiles studied in F2 from resynthesized rapeseed lines were determined by four loci, two that are responsible for the elongation of the butenyl to pentenyl GSLs and two that are responsible for hydroxylation of alkenyl GSLs. Initial genetic studies of indolyl GSL contents from 0.1–4.5/μmol/g show that two or three genes may be involved. The frequency distribution of F2 phenotypes was virtually continuous due to both segregational and environmental variation. Genotypes with low alkenyl and low indolyl GSL contents were selected after crossing parents with low alkenyl/high indolyl and high alkenyl/low indolyl GSL content. The alkenyl GSL profiles are discussed with regard to the parental diploid species B. oleracea and B. campestris.  相似文献   

2.
B. Y. Chen  W. K. Heneen 《Euphytica》1992,59(2-3):157-163
Summary Seed colour inheritance was studied in five yellow-seeded and one black-seeded B. campestris accessions. Diallel crosses between the yellow-seeded types indicated that the four var. yellow sarson accessions of Indian origin had the same genotype for seed colour but were different from the Swedish yellow-seeded breeding line. Black seed colour was dominant over yellow. The segregation patterns for seed colour in F2 (Including reciprocals) and BC1 (backcross of F1 to the yellow-seeded parent) indicated that the black seed colour was conditioned by a single dominant gene. Seed colour was mainly controlled by the maternal genotype but influenced by the interplay between the maternal and endosperm and/or embryonic genotypes. For developing yellow-seeded B. napus genotypes, resynthesized B. napus lines containing genes for yellow seed (Chen et al., 1988) were crossed with B. napus of yellow/brown seeds, or with yellow-seeded B. carinata. Yellow-seeded F2 plants were found in the crosses that involved the B. napus breeding line. However, this yellow-seeded character did not breed true up to F4. Crosses between a yellow-seeded F3 plant and a monogenomically controlled black-seeded B. napus line of resynthesized origin revealed that the black-seeded trait in the B. alboglabra genome was possibly governed by two independently dominant genes with duplicated effect. Crossability between the resynthesized B. napus lines as female and B. carinata as male was fairly high. The sterility of the F1 plants prevented further breeding progress for developing yellow-seeded B. napus by this strategy.  相似文献   

3.
K. Reinink 《Euphytica》1992,60(1):61-74
Summary Adverse effects on human health makes the high nitrate content frequently found in lettuce (Lactuca sativa L.) grown under low light conditions an undesirable trait. Efforts have been made to breed cultivars with a reduced capacity for nitrate accumulation. In this study components of variance for nitrate content were estimated in F2 and F3 generations of ten lettuce crosses. Additive genotypic variances (A) were estimated from F3 variance components and from the covariance between F2 plants and corresponding F3 lines. Estimates of wide sense heritability of the F2 from crosses between a high nitrate genotype and four low nitrate genotypes ranged from 0.44 to 0.74 and the estimates for A ranged from 0.25 to 0.40 g·l-1. Estimated wide sense heritabilities of F2's from six crosses involving two low nitrate parents ranged from 0.15 to 0.52. The parents of four of the low nitrate crosses showed relatively large effects of genotype x environment (GE) interaction in successive experiments: the nitrate content of the parents reacted differently to environmental changes between experiments. Estimates of A for crosses between low nitrate genotypes without large effects of GE interaction ranged from 0 to 0.19 g·l-1. The estimated probability of selecting transgressive low nitrate lines in the progeny of a cross between a high and a low nitrate genotype was low (P=0.002–0.039), indicating that large populations should be evaluated to combine the positive traits of modern high nitrate cultivars with low nitrate content from genotypes not adapted to modern cropping practices. In the progenies from crosses between two low nitrate genotypes without important GE effects, only low estimates of the probability of obtaining transgressive low nitrate lines were obtained (P=0.04–0.06). With the growth conditions used in this study, the probability of selecting lines with a nitrate content compatible under all winter conditions with the proposed future maximum permissible level of 2.5 g nitrate per kg fresh matter is low. Therefore the solution of this problem should be found in a combination of low nitrate cultivars and cultural measures that reduce the nitrate content of the crop.  相似文献   

4.
Ethiopian mustard (Brassica carinata Braun) is a potential oil crop in which genes for low erucic acid content of the seed oil have not yet been found. In order to solve this problem the potential of rapeseed (B. napus L.) varieties as a source of these genes has been tested. Reciprocal F1 hybrids between B. carinata and a low erucic acid variety of B. napus, F2, and backcrosses with B. carinata were obtained. The fatty acid composition was determined in half seeds of F1 and segregating generations from reciprocal interspecific crosses. The genetic analysis indicated that the erucic acid content of the seed oil of B. carinata is controlled by two genes with no dominance and additive in action.  相似文献   

5.
In a self-fertilised crop like lentil, the identification of transgressive segregants for economically important trait such as seed yield is an important aspect of any practical breeding programme. The prediction of expected transgressive segregants in F1 generation obtained as a ratio of additive genic effect [d] and additive variance (D) i.e. [d]/√D was studied in 28 crosses of lentil generated in a diallel fashion involving four parents each of macrosperma (exotic) and microsperma (Indian) types, respectively, resulting in three hybridization groups. The seed material advanced to F2, F3 and F4 generations through single seed descent method was evaluated to determine the observed transgressive segregants for seed yield/plant. The observed frequency of crosses showing more than 20% transgressive segregants in F2 to F4 generations were exhibited in 9(32%) crosses, of which 7(77%) crosses were of macrosperma × microsperma type. Genotypes Precoz and HPL-5 of the exotic group (macrosperma) produced maximum number of transgressive segregants with the genotypes L-259, L-4145 and PL-406 of the Indian origin (microsperma). Goodness of fit (non-significant χ2 value) in F2 generation was observed for 19(68%) crosses of the total genepool, out of which 9(56%) crosses each in F3 and F4 generation belonged to the macrosperma × microsperma group, depicting it as the gene pool of paramount importance to obtain maximum transgressive segregants, therefore establishing the efficacy of the method used.  相似文献   

6.
The presence of high levels of sinigrin in the seeds represents a serious constraint for the commercial utilisation of Ethiopian mustard (Brassica carinata A. Braun) meal. The objective of this research was the introgression of genes for low glucosinolate content from B. juncea into B. carinata. BC1F1 seed from crosses between double zero B. juncea line Heera and B. carinata line N2-142 was produced. Simultaneous selection for B. carinata phenotype and low glucosinolate content was conducted from BC1F2 to BC1F4 plant generations. Forty-three BC1F4 derived lines were selected and subject to a detailed phenotypic and molecular evaluation to identify lines with low glucosinolate content and genetic proximity to B. carinata. Sixteen phenotypic traits and 80 SSR markers were used. Eight BC1F4 derived lines were very close to N2-142 both at the phenotypic and molecular level. Three of them, with average glucosinolate contents from 52 to 61 micromoles g−1, compared to 35 micromoles g−1 for Heera and 86 micromoles g−1 for N2-142, were selected and evaluated in two additional environments, resulting in average glucosinolate contents from 43 to 56 micromoles g−1, compared to 29 micromoles g−1 for Heera and 84 micromoles g−1 for N2-142. The best line (BCH-1773), with a glucosinolate profile made up of sinigrin (>95%) and a chromosome number of 2n = 34, was further evaluated in two environments (field and pots in open-air conditions). Average glucosinolate contents over the four environments included in this research were 42, 31 and 74 micromoles g−1 for BCH-1773, Heera and N2-142, respectively. These are the lowest stable levels of glucosinolates reported so far in B. carinata.  相似文献   

7.
Brassica carinata A. Braun is a highly productive oilseed crop in the Ethiopian highlands, but the seed has a high 2-propenyl glucosinolate content, which is undesirable. The objective of this study was to introgress, through interspecific crosses, genes for low 2-propenyl glucosinolate content from the B genome of B. juncea and C genome of B. napus into the B. carinata B and C genomes and thus develop low glucosinolate B. carinata. The cross [(B. carinata×B. juncea) ×B. carinata] yielded plants that contained only ~ 20 μmoles of 2-propenyl glucosinolate, which was an 85% reduction compared with levels in B. carinata seed. Plants of the [(B. carinata×B. napus) ×B. carinata] cross had normal high concentrations of 2-propenyl glucosinolate. Backcross plants of both interspecific crosses also contained 3-butenyl and 2-hydroxy-3-butenyl glucosinolates. The results of these crosses suggested that genes for glucosinolate synthesis were located on B genome chromosomes of B. carinata because B. napus C genome introgressions did not result in reductions of total glucosinolate contents. The total alkenyl glucosinolate content of one F3 family of the B. juncea backcross was similar to that of the B. juncea parent. It was concluded that through further selection in this family, B. carinata plants could be identified that would be basically free of 2-propenyl glucosinolate, and have a low total alkenyl glucosinolate content.  相似文献   

8.
Nigel A. R. Urwin 《Euphytica》2014,196(3):331-339
Double podding in cultivated chickpeas (Cicer arietinum L.) can increase yield and yield stability. In the present study, we performed reciprocal crosses of ‘kabuli’ (double podded) and ‘desi’ (single podded) chickpeas to determine (i) the expressivity and penetrance of double podding, (ii) the correlations of yield and yield components, and (iii) the heritability of double podding, flower color, and stem pigmentation in F2 plants. Reciprocal crosses were performed with two genotypes, AC 2969 (kabuli) and ICC 4969 (desi), to generate F1 and F2 plants. The results indicated hybrid vigor (heterosis) for yield in F1 plants and better performance of F2 plants. Yield and yield components of some lines in F2 were superior to the best parent, indicative of transgressive segregation. In particular, the presence of double podding (‘s’ allele) significantly increased yield in some of the transgressive segregants. Expressivity and penetrance of the ‘s’ allele depends on the background of the female parent. Some of the double podding progeny had greater seed yields than those of the single podding progeny and greater seed yields than the best parents. Double podding, stem pigmentation, and pink flowers each appears to be governed by a single recessive gene. Stem pigmentation and pink flowers appear to be linked traits that depend on the genetic background of the crossed chickpeas. Taken together, our studies of reciprocal crosses of kabuli and desi chickpeas clearly showed that yield could be improved by selection for transgressive phenotypes that have double podding.  相似文献   

9.
Effects of Brassica napus (N) and B. juncea (J) cytoplasm on seed characteristics of B. carinata (C) were examined. Alloplasmic lines of B. carinata were produced from N × C and J × C hybrids by recurrent backcrossing to the BC8 generation. Fourteen sets of reciprocal crosses were used. Compared with their euplasmic sibs, alloplasmic B. carinata line seeds with B. napus cytoplasm showed reduced dormancy, higher seed weight, lower germination rate at high temperatures, higher germination rate at low temperatures, and had lower erucic acid and higher linoleic acid contents. Alloplasmic B. carinata line seeds with B. juncea cytoplasm had higher seed weight but lower germination rate than their corresponding euplasmic sibs. These results showed a cytoplasmic effect on seed development, and an influence on seed weight, dormancy, and fatty acid composition. B. carinata was more deleteriously affected by cytoplasm from B. napus than by cytoplasm of B. juncea.  相似文献   

10.
J. H. Oard  J. Hu  J. N. Rutger 《Euphytica》1991,55(2):179-186
Summary Twenty-six male sterile plants grown in the field were recovered in the M7 generation from ethyl methane sulfonate-treated material of the rice cultivar M-201. Fertility increased five-fold when ratooned plants from the field were grown in a growth chamber with a 12 hour daylength. Crosses between mutant and normal fertile cultivars produced fertile F1 plants. Female fertility was normal as judged by percent seed set from unbagged panicles of parental and recombinant lines. Transgressive segregation for fertility was observed for all crosses in the F2 and F3 generations. Five of 37 F3 male sterile plants showed moderate levels of seed fertility under winter greenhouse conditions and reduced seed set when transplanted to summer field plots. Fertility data from reciprocal crosses suggested cytoplasmic factors had little or no effect on levels of male sterility in the mutant lines. Chi-squared analyses of F2 and F3 generation results indicated male sterility of the mutants is conditioned by two nuclear genes with epistatic effects.  相似文献   

11.
K. Reinink  R. Groenwold 《Euphytica》1987,36(3):733-744
Summary The inheritance of nitrate content in lettuce was analysed using 16 F2 populations and three F3 populations. Frequency distributions of nitrate content in F2 and F3 populations were unimodal and symmetrical, indicating a quantitative inheritance. Both significant positive and negative deviations of the F2 mean from the mid-parent value were found, indicating dominance or epistasis. Deviations towards low nitrate content were more frequent than deviations in the other direction. Estimates of heritabilities for nitrate content in the F2 populations ranged from 18% to 69% and were in most cases above 50%. Crosses between low nitrate cultivars did not have lower estimates of heritability in the F2 than crosses between cultivars with larger differences in nitrate content. In one case a genotype x experiment interaction for nitrate content of parental cultivars was found.Three F3 populations of crosses between cultivars with low nitrate content were analysed. Estimates of heritabilities for F3 line means ranged from 78% to 91% and estimates of the genetic standard deviation of nitrate content in unselected advanced generations ranged from 0.24–0.33 g kg–1. The estimates of heritabilities and of genetic variation in advanced generations offer good prospects of selection of low nitrate genotypes in lettuce. A comparison of efficiency of selection in the F2 generation and F3 line selection is made.  相似文献   

12.
Summary A strong epidemiological association is known to exist between the consumption of grass pea and lathyrism. A neurotoxin, -N-Oxalyl-L-, -diaminopropanoic acid (ODAP) has been identified as the causative principle. This study was undertaken to investigate the mode of inheritance of the neurotoxin ODAP, flower and seed coat colour in grass pea. Five grass pea lines with low to high ODAP concentration were inter-crossed in all possible combinations to study the inheritance of the neurotoxin. Parents, F1 and F2 progenies were evaluated under field condition and ODAP analyzed by an ortho-phthalaldehyde spectrophotometric method. Many of the progenies of low x low ODAP crosses were found to be low in ODAP concentration indicating the low ODAP lines shared some genes in common for seed ODAP content. The F1 progenies of the low ODAP x high ODAP crosses were intermediate in ODAP concentration and the F2 progenies segregated covering the entire parental range. This continuous variation, together with very close to normal distribution of the F2 population both of low x low and low x high ODAP crosses indicated that ODAP content was quantitatively inherited. Reciprocal crosses, in some cases, produced different results indicating a maternal effect on ODAP concentration. Blue and white flower coloured lines of grass pea were inter-crossed to study the inheritance of flower colour. Blue flower colour was dominant over the white. The F2 progenies segregated in a 13:3 ratio indicating involvement of two genes with inhibiting gene interactions. The gene symbol LB for blue flower colour and LW for white flower colour is proposed.  相似文献   

13.
Development of Yellow Seeded Brassica napus Through Interspecific Crosses   总被引:12,自引:0,他引:12  
A. Rashid    G. Rakow  R. K. Downey 《Plant Breeding》1994,112(2):127-134
Yellow seeded Brassica napus was developed through interspecific crosses with the two mustard species, B. juncea and B. carinata. The objective of these two interspecific crosses was the introgression of genes for yellow seed colour from the A genome of B. juncea and C genome of B. carinata into the A and C genomes of B. napus, respectively. The interspecific F1 generations were backcrossed to B. napus in an attempt to eliminate B genome chromosomes and to improve fertility. Backcross F2 plants of the (B. napus×B. juncea) ×B. napus cross were then crossed with backcross F2 plants of the (B. napus×B. carinata) ×B. napus cross. The objective of this intercrossing was to combine the A and C genome yellow seeded characteristics of the two backcross populations into one genotype. The F2 generation of the backcross F2 intercrosses was grown in the field, plants were individually harvested and visually rated for seed colour. Ninety-one yellow seeded plants were identified among the 4858 plants inspected. This result indicated that the interspecific crossing scheme was successful in developing yellow seeded B. napus.  相似文献   

14.
Ethiopian mustard (Brassica carinata Braun) is a potential oil crop for the Mediterranean area. The objective of this study was to develop an efficient system of mutagenesis using ultraviolet (UV) light irradiation of isolated microspores from Brassica carinata. From the survival curve based on embryo yield after irradiation of the microspores with UV light, the LD50 was estimated to be an exposure of 8 min. Total content of glucosinolates and fatty acid composition were analysed in the seeds of the doubled haploid homozygous plants with the purpose of selecting lines with modified glucosinolate and erucic acid contents. Three groups of doubled haploid lines exhibiting low and high glucosinolate contents, and high erucic acid content have been identified from a population of 270 doubled haploid lines. In eight lines, the content of glucosinolates was reduced from an average of 80.6 mol g-1 seed to 37.5 mol g-1 seed, whereas in four lines, the content of glucosinolates was increased up to 99.2 mol g-1 seed. In six additional lines, the content of erucic acid was increased from 42.8% in the nontreated lines to 49.5% of the totalfatty acid composition in some of the mutant lines. All lines showed stablelevels of erucic acid in two generations, the M2 and M3.  相似文献   

15.
Resistance to early flowering is an important attribute of lettuce cultivars adapted to tropical conditions. Lettuce cultivars may vary widely in the number of days necessary from sowing to inflorescence formation and flowering. In this paper, we report on the polygenic inheritance of the number of days to flowering in two crosses among contrasting lettuce cultivars – Vitória × Brasil-303 and Babá × Elisa. F1 and F2 seed were obtained for each cross, and used to estimate broad sense heritabilities. F3 families were obtained from randonly sampled F2 plants, and used to estimate narrow sense heritabilities based on parent-offspring regression. Trials were carried out in plastic greenhouses in Campos dos Goytacazes, in the Northern part of the State of Rio de Janeiro, Brazil. Broad and narrow sense heritabilities for days to first anthesis were 0.737 and 0.489 for the cross Vitória × Brasil-303, and 0.818 and 0.481 respectively, for the cross Babá × Elisa. In both crosses, both early and late-flowering transgressive segregants were obtained. Genetic gains based on selection of late flowering transgressive segregants in the F2's were estimated to be 10.2 days in Vitória × Brasil-303 cross, and 8.7 days in the Babá × Elisa cross. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Safflower (Carthamus tinctorius L.) oil with high oleic acid content (>75%) has a great value for both food and non-food uses. The trait has been reported to be environmentally stable and controlled by recessive alleles at one single gene Ol, even though the influence of modifying genes has been suggested. Additionally, germplasm with higher oleic acid content (>85%) has been reported. The objective of the present research was to study the inheritance of high oleic acid content in genetic sources with both levels of high oleic acid content (>75 and >85%, respectively). A genetic study was conducted by crossing the nuclear male-sterile line CL1 (18% oleic acid) and the high oleic acid lines CR-6 (80%) and CR-9 (87%). The evaluation of the F1 and F2 seed generations of the crosses CL1 × CR-6 and CL1 × CR-9 indicated that in both cases the high oleic acid trait was controlled by partially recessive alleles at a single locus. The observation of F2, F3, and F4 segregants with high oleic acid phenotype but lower oleic acid levels than the parents revealed the presence of modifying genes affecting the trait. Crosses between the two high oleic acid lines produced no transgressive segregation other than that caused by the mentioned modifying genes, suggesting that the high oleic acid lines CR-6 and CR-9 share the same alleles at the Ol locus. Differences for oleic acid content between both lines were hypothesized to be produced by the accumulation of genes with a minor effect on the trait.  相似文献   

17.
Interspecific hybridization between Brassica carinata and Brassica rapa   总被引:5,自引:0,他引:5  
The crossability between Brassica carinata (BBCC, 2n=34) and Brassica rapa (AA, 2n=20), and the cytomorphology of their F1 hybrids were studied. Hybrids between these two species were only obtained when B. carinata was used as the female parent. The hybrid plants exhibited intermediate leaf and flower morphology, and were found to be free from white rust and Alternaria blight diseases. One of the four F1 plants was completely male sterile, while the remaining plants had 4.8, 8.6, and 10.9% stainable pollen, respectively. No seed was produced on hybrid plants under self pollination or in backcrosses; but seed was obtained from open pollination. The occurrence of the maximum of 11 bivalents as well as up to 44.8%) of cells with multivalent associations in the form of trivalents (0‐2) and a quadrivalent (0‐1) in the trigenomic triploid hybrid (ABC, 2n = 27) revealed intergenomic homoeology among the A, B and C genomes. Meiotic analysis of F1 hybrids indicated that traits of economic importance, such as disease resistance, could be transferred from B. carinata to B. rapa through interspecific crosses.  相似文献   

18.
Summary Wheat pentaploids were produced by hybridizing a high kernel weight (1000 grain wt=56 g), high protein (25.4%) line of wild tetraploid wheat (Triticum turgidum dicoccoides) as male parent, with the three hexaploids (T. aestivum) — normal Chinese Spring and its two homoeologous pairing mutants, ph 1b and ph 2. The pentaploids were crossed as female parents to the two commercial hexaploid cultivars Warigal and Barkaee and 42-chromosome stable plants selected from the F1 of the pentaploid x hexaploid crosses.Mean protein content of certain F3 lines from all six pentaploid x hexaploid crosses was significantly higher than Chinese Spring and the respective commercial hexaploid parent (p<0.005) indicating high protein had been transferred from the tetraploid to the hexaploid level.Kernel weight amongst certain F3 lines of the three pentaploids x Barkaee was significantly (p<0.0005) higher than either Chinese Spring or Barkaee, indicating the transfer also of high kernel weight from the tetraploid to the hexaploid level. However kernel weight was not significantly increased over Warigal in any F3 lines of its crosses with the three pentaploids.High levels of homoeologous chromosome pairing in the ph-mutant pentaploids, plus evidence for significant modification of the composition of high-molecular weight (HMW) glutenin subunits of grain protein in certain F3 derivatives of the ph-mutant pentaploid x hexaploid, crosses indicates that the ph-mutant-derived lines may possess novel (intergenome) genetic recombination, at least for high protein, and possibly kernel weight.  相似文献   

19.
Development of yellow-seeded Brassica napus of double low quality   总被引:3,自引:0,他引:3  
M. H. Rahman    M. Joersbo  M. H. Poulsen   《Plant Breeding》2001,120(6):473-478
Two yellow‐seeded white‐petalled Brassica napus F7 inbred lines, developed from interspecific crosses, containing 26–28% emcic acid and more than 40 μmol glucosinolates (GLS)/g seed were crossed with two black/dark brown seeded B. napus varieties of double low quality and 287 doubled haploid (DH) lines were produced. The segregation in the DH lines indicated that three to four gene loci are involved in the determination of seed colour, and yellow seeds are formed when all alleles in all loci are in the homozygous recessive state. A dominant gene governed white petal colour and is linked with an erucic acid allele that, in the homozygous condition, produces 26–28% erucic acid. Four gene loci are involved in the control of total GLS content where low GLS was due to the presence of recessive alleles in the homozygous condition in all loci. From the DH breeding population a yellow‐seeded, yellow‐petalled, zero erucic acid line was obtained. This line was further crossed with conventional B. napus varieties of double low quality and, following pedigree selection, a yellow seeded B. napus of double low quality was obtained. The yellow seeds had higher oil plus protein content and lower fibre content than black seeds. A reduction of the concentration of chromogenic substances was found in the transparent seed coat of the yellow‐seeded B. napus.  相似文献   

20.
Summary Ten peanut (Arachis hypogaea L.) lines, two from each of five centers of diversity in South America, and the F2 generation of all possible crosses among them were used to characterize the variation for yield, fruit and seed traits and protein and oil content and to determine the breeding potential of the parents. Two of the parental lines belong to subspecies hypogaea and the other eight to subspecies fastigiata.Several crosses gave heterotic responses for yield. The parents of the crosses with significant heterosis generally came from different centers of diversity.Variation among both general and specific combining abilities was significant for all traits with the exception of the SCA estimate for protein percent. The component of variation for GCA was larger than the SCA component for all traits.A Spanish line and a Valencia-like intermediate line from the Guarani region had the highest GCA effects for fruit yield, seed yield and meat content and transmitted consistently their characteristics to their F2 progeny. Some lines showed significant but small maternal effects for oil, protein and oil + protein percent. Differences between reciprocal crosses were significant for fruit length, fruit weight and oil + protein percent.A significant portion of the variation among crosses was explained by differences among parental lines within centers of diversity. This supports the fact that centers are founded because of the diversity of the peanuts grown there.The performance of parental lines per se was useful in predicting the performance of the lines in hybrid combination for all traits except fruit yield.Paper number 6141 of the Journal Series of the North Carolina Agricultural Research Service (USA). This work was partially supported by CSRS Research Agreement 701-15-51.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号