首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
针对内旋流加速旋风集尘器的结构特点和工作原理,研究了粉尘颗粒在外旋流区的运动的规律,建立了粉尘颗粒在流场中运动的动力平衡微分方程和轨迹方程,导出了浓度场分布的理论公式,提出了分离效率计算的数值方法。  相似文献   

2.
内旋流加速旋风集尘器的研究   总被引:1,自引:0,他引:1  
提出了内旋流加速旋风的粉尘分离方法和集尘器结构设计,在提高微粉尘收集率、降低集尘器系统阻力和粉尘粘壁性等方面进行了试验和探讨  相似文献   

3.
采用欧拉-拉格朗日方法,对自行设计的旋流阀进行三维数值模拟,重点分析小颗粒粒径(10 μm)和大颗粒粒径(200 μm)2种颗粒共存时,不同颗粒密度(1 900,2 300,2 650 kg/m3)下,旋流阀内部的流动特性、管道出口流量和压力损失系数. 结果表明:旋流阀内部流场会产生偏离基圆中心的偏心旋流速度场和压力场,在偏心压力场中心会形成局部低压.由于压力能的减小,使得流体速度增加,产生了旋流加速.旋流阀的存在,使得管路中产生了大小不同的涡旋,在旋流阀出口,涡旋的延伸区域中,颗粒的含量减少. 小粒径颗粒从流体获得的速度较大;颗粒密度越大,阻力系数越大,能量损失越大. 较高的旋流速度,降低了颗粒在管路中的含量,有助于管道颗粒物迁移. 通过试验测试可以发现,由于旋流阀的存在,在其内部形成了旋流气柱;在旋流阀及其系统中,含有的杂质会在旋流的作用下旋转起来; 这在一定程度上验证了数值模拟中旋流阀的低压分布和旋流加速特性.  相似文献   

4.
文章采用数值模拟方法对旋风分离器的内部流场和颗粒运动规律进行了研究,其中气相流场采用雷诺应力模型(RSM),气固两相流场采用离散相模型(DPM)。通过模拟结果,分析了二次流的成因以及入口位置、粒径、二次流对颗粒运动规律的影响。结果表明:旋风分离器内存在四种形式的二次流。入口位置和粒径不同时,颗粒会受到不同的二次流作用,从而呈现出不同的运动情况。入口位置过低,颗粒容易受短路流、纵向涡流和偏心环流的影响。入口位置升高后,颗粒受到纵向涡流的影响较大。入口位置过高,颗粒则受短路流和贴壁环流的影响。细微颗粒受四种二次流的影响均较大,小颗粒主要受纵向涡流和偏心环流的影响,大颗粒受偏心环流和短路流的影响较大。  相似文献   

5.
针对花生捡拾收获机进行收获作业时产生大量扬尘的问题,设计了一种降尘系统。根据粉尘物理特性和花生捡拾收获机工作及结构特性,确定了降尘系统关键结构设计及参数。系统由旋风除尘器和喷淋装置组成,利用旋风除尘器将粒径在5μm以上的粉尘进行分离沉降,利用喷淋装置将粒径在5μm以下的粉尘进行分离。为确定降尘系统关键结构参数,利用CFD软件对旋风除尘器进行气流场分析,探究不同排气管深度对旋风除尘器压强场的影响。试验表明:当排气管深度为0.5m时,压强分布最为理想,旋风除尘器的降尘效果最佳。为探究花生捡拾收获机工作参数对降尘系统的影响,通过Box-Behnken建立收获机速度、风机转速、土壤湿度与降尘效率的响应面回归模型,确定最佳参数组合为:收获机速度3.95km/h,风机转速2990r/min,土壤湿度11.5%,研究结果可为降尘系统设计提供参考依据。  相似文献   

6.
为了研究涡流装置内固相冲洗特性,应用计算流体动力学(CFD)方法模拟其内部流动特征.采用RNG k-ε湍流模型、VOF气液两相流动和DPM离散相颗粒轨迹追踪模型对涡流装置在Rosin-Rammler颗粒分布时的三维流场进行了数值模拟,分析了颗粒的运动规律、粒径分布、流体流场对颗粒运动的影响以及涡流装置的截流比例.结果表明:涡流装置的存在,使其内部及其延伸的管道内产生了高速旋流,且旋流在下游管道延伸距离很长,降低了颗粒含量,这有利于颗粒的快速流动;颗粒的运动,对流体流场依赖性很强;涡流装置具有较好的截流特性,稳定后的截流量在35%以上,但是其结构设计需保证出口截面面积大于等于进口截面面积,这主要是为了防止堵塞,其可以在合流制管路系统中用于截流去污.  相似文献   

7.
为了解决由于颗粒粒径大、流体相互作用复杂导致的混输泵内两相流动研究困难的问题,针对10 mm颗粒粒径的混输泵流动,使用标准k-ω模型,构建相同体积浓度、不同颗粒粒径的流动模型来研究粒径对于泵外特性的影响,并探究不同粒径颗粒在泵内的分布情况.同时,还结合熵产理论,研究不同流量下混输泵内的能量损失及泵内过流部件的局部熵产情况.结果表明,混输泵叶轮流道内,颗粒在叶轮入口处发生低速堆积现象,颗粒速度随径向距离增大而增大.另一方面,在两极之间,第2级叶轮入口颗粒堆积现象减弱.随着粒径减小,颗粒在叶轮流道内加速度增大,出口处小粒径颗粒速度较大,且小粒径颗粒贴叶片运动现象比较明显.对比熵产,两极之间第2级熵产损失明显较大,造成2级外特性差异.同时,对比熵产分布发现,第2级叶轮和导叶内的局部熵产生率较大.研究结果对深海采矿水力提升装置中粗颗粒混输泵内流动的研究具有一定的参考价值.  相似文献   

8.
基于DEM-CFD的旋流泵大颗粒内流特性模拟与试验   总被引:2,自引:0,他引:2  
鉴于抗堵塞性能较优的旋流泵在输送污水时,其过流部件仍存在磨损、半堵塞等问题,将DEM-CFD方法引入旋流泵数值模拟中,研究旋流泵在输送不同粒径、体积分数颗粒时的颗粒运动物理特性,以及颗粒与液相、固壁多向耦合的运动特征,并进行了试验验证。结果表明,由旋流泵输送油菜籽试验可知,外特性计算结果与试验结果基本一致;在该旋流泵模型特征下,进口管与无叶腔区域由循环流引起的颗粒旋转流动现象较为严重,从无叶腔沿着进口壁面螺旋式逆向回流,与进口顺向来流相混达到平衡,试验拍摄结果与数值模拟结果较为相符,说明DEM-CFD耦合方法具有一定可靠性;旋流泵内部存在3种不同的颗粒运输方式,第1种为颗粒随贯通流经由叶轮进入蜗壳,第2种为受循环流影响经由无叶腔直接甩入蜗壳,第3种为颗粒从叶轮前端面区域进入叶轮,再经叶轮进入蜗壳;对蜗壳内流特性进行分析,发现颗粒主要分布在蜗壳后侧,在扩散段到蜗壳出口区域,颗粒随液体以螺旋的方式流出,蜗壳断面叶轮侧形成大小不等的螺旋涡。  相似文献   

9.
基于CFD-DEM耦合的水力旋流器水沙运动三维数值模拟   总被引:14,自引:0,他引:14  
针对水力旋流器内流场运动复杂、沙粒运动规律难以掌握的问题,运用基于颗粒动力学理论的欧拉-拉格朗日液固多相湍流模型,对水力旋流器内的水沙两相三维流动进行了CFD-DEM耦合数值模拟研究,分析了水力旋流器内单个沙粒的轨迹线、速度和沙粒群的运动规律、分布特性等。模拟结果表明,沙粒粒径越小,沙粒向下运行的距离越短,越容易从下降流中进入到上升流中,越难以分离。粒径为40μm的沙粒,在圆柱体与圆锥体交界面处出现沙粒峰值,分离效果易受影响,而50μm和60μm沙粒在圆锥体部分出现峰值,具有较好的分离效果。通过跟踪单个沙粒和沙粒群的运动可知,沙粒在圆柱体内主要作圆周运动,进入到圆锥体部分,沙粒既有圆周运动,又有明显的进入沉沙口的直线运动。分析大量沙粒个体和群体运动以及群体分布情况能从微观角度了解水力旋流器的分离效率,是水力旋流器性能研究的有效手段。  相似文献   

10.
为研究多级泵内固液两相流规律,搭建了泵内固液两相流可视化测试系统,对清水工况下及输送不同物性参数颗粒时泵能量性能及颗粒运动规律进行了测试.测试结果表明:泵输送固液两相流时的扬程和效率相较于清水工况均有所降低,并且随着颗粒粒径和密度的增加,降幅逐渐增加;与输送清水相比,泵送球形颗粒时的扬程和效率最大分别低了0.32 m和2.92%.导叶流道内不同物性的球形颗粒均有向导叶工作面运动的趋势,且颗粒轨迹长度和颗粒进入导叶时的位置有关,颗粒进入导叶的位置越靠近导叶背面其运动轨迹越长;颗粒密度和粒径越小,颗粒在流体中的跟随性越好,其运动轨迹越光滑;在导叶进口区域,颗粒主要从导叶背面位置进入导叶流道,并且从该位置进入导叶内的颗粒比例随着颗粒粒径的增加逐渐降低,随着颗粒密度的增加先增加后降低.颗粒与导叶头部碰撞的概率随着粒径的增加逐渐增加,随着密度的增加逐渐降低.  相似文献   

11.
切向旋风分离器内部流场的数值模拟及试验研究   总被引:18,自引:1,他引:18  
分析了湍流中的计算流体动力学(CFD)模型,然后用介于ASM和RSM之间的一个混和模型,对切向分离器中的流场进行了理论计算,得出了切向分离器中的流场分布结果。然后用激光多普勒装置试验测试了分离器中的速度分布,根据试验结果,评判了分离模型,并分析了旋风分离器进口区域附近流场的轴对称性。  相似文献   

12.
为了研究风力机流场中涡的产生及演化过程,采用动网格技术中的重叠网格方法对水平轴风力机流场进行计算,利用Q准则对叶片表面、叶尖涡及中心涡涡旋结构进行可视化分析,并将计算结果与相同工况下滑移网格计算结果进行对比分析.结果表明:对比2种方法在不同截面的叶片表面涡量分布,动网格方法计算得出在吸力面流动分离区域更大,能够捕捉到更多叶片表面边界层分离的细节;叶尖涡在向下游运动过程中将出现“叶尖涡跳跃”现象;中心涡在尾迹流场中涡量分布呈双峰状,在风轮后0.5D~2.0D内,叶尖涡与中心涡发生混合扩散;动网格与滑移网格计算得出尾迹流场中,中心涡分布趋势基本一致,采用动网格方法得出涡量峰值更大,采用滑移网格方法得出中心涡更早发生扩散.相较于滑移网格方法采用动网格方法研究风力机流场中的涡会更具优势.  相似文献   

13.
为了了解离心风机转子区域的失稳流动特性,基于SST k-ω湍流模型,探究了风机进流面非均匀流动特性与转子区域失稳流动的匹配关系,并基于涡动力学探究了转子失稳流道的涡旋尺度与结构.研究结果表明,在设计风量下,离心风机转子区域呈现明显的非均匀流动特性,可由气流速度、流动品质划分为稳流区和失稳区.同时,风机进流面流动特性与转子区域内流特性保持较好一致性,压力、速度、进流冲角皆呈现非均匀分布.进流面高速气流仅仅冲刷转子稳流区流道,而进流面低速流体在流经转子轴端后经由离心力的作用流至各个流道.通过使用进流冲角、环量、切向速度等方法,确定了额定工况下转子区域涡旋尺度、堵塞程度最为剧烈的流道,并通过湍动能及涡核分布成功捕捉堵塞流道的涡旋结构.  相似文献   

14.
对80X-13.5型旋流泵进行了数值模拟计算,泵内部流动区域选用Pro/E造型,用Gambit软件采用分块非结构六面体网格划分方法对模型进行网格划分及部分边界条件的设定,运用雷诺平均N-S方程和标准k-ε双方程湍流模型结合SIMPLEC算法,来数值模拟旋流泵内部三维不可压湍流场.数值模拟计算选取工作介质为清水,并认为是牛顿流体且局部各向同性;认为旋流泵的内部流场是以定常角速度绕固定轴的旋转流场,属于复杂的三维不可压湍流流动.数值模拟得出了旋流泵内的速度和全压分布图,并试分析出了旋流泵的内部流动区域分布.分析认为,周向流动是旋流泵内部的主体流动趋势,旋流泵内部流动状态可归结为贯通流和循环流.数值模拟的结果验证了已有流动模型的正确性,并且在数值模拟基础上重新划分的流动区域可以反映清水条件下80X-13.5型旋流泵的内部流动情况,可为此种泵型旋流泵的设计提供参考.  相似文献   

15.
为了掌握射流泵中工作流体与被吸流体的混合过程,通过基于雷诺平均N-S方程(RANS)的不同双方程湍流模型以及大涡模拟(LES)对射流泵内部三维单相流场进行数值模拟,并将这些模型的计算结果和试验值进行对比,研究了适合射流泵模型的数值方法,并在此基础上,对不同工况下射流泵的内部流动进行了分析.结果表明:采用LES方法对射流泵湍流场进行模拟计算的结果是可靠的,无论是压力比还是效率,LES模型的数值模拟结果均与试验值吻合较好;采用双方程模型预测的喉管段高速核心区在混合过程中能量耗散过快,且没有预测出剪切层的旋涡结构,只有LES方法才能得到合理的旋涡结构,从而能准确地反映出大流量工况时剪切层中工作流体和被吸流体间的动量和能量输运及混合过程,因此LES所预测的射流泵的能量特性比其他湍流模型更接近试验值;流量比越大,工作流体与被吸流体在喉管内的混合位置越靠后,势流核区沿轴向区域越长,均匀混合后的轴向速度越大.  相似文献   

16.
为了探究交错叶轮双吸离心泵的空化性能,结合Rayleigh-Plesset空化模型和RNGk-ε湍流模型,对一叶轮两侧叶片进行交错布置结构的双吸离心泵内部空化流动进行了数值模拟,分析了空化对泵内压强分布的影响,绘制了空化特性曲线,并分析了不同工况下叶轮所受径向力,同时研究了空化对叶轮叶片空泡体积分数及泵内湍动能分布的影响。结果表明,交错叶轮双吸离心泵空化特性同常规离心泵空化特性具有一致性,空化对叶轮所受径向力大小以及湍动能分布都有较大影响。  相似文献   

17.
为了研究螺旋离心泵叶轮各段做功能力和能量转换机理,从理论上分析了流体机械内部的流体流动情况,应用欧拉方程,将流体在叶轮中的能量分为动压头和静压头来处理,为采用数值模拟来研究螺旋离心泵内部流动和叶轮各段的做功能力提供了理论基础.在欧拉方程的基础上,采用Navier-Stokes方程和标准的k-ε湍流模型对螺旋离心泵内部流场进行数值模拟计算.通过模拟具体探讨了设计工况下,选取单介质为清水,在叶轮的作用下流场的速度、压力等变化规律,并将螺旋离心泵叶轮的轮缘线和轮毂线分段取监测点,从所取监测点之间各段的动压头和静压头变化来研究螺旋离心泵内的能量沿叶轮包角的转换能力.结果表明:螺旋离心泵流体的能量主要是由螺旋段提供的,叶轮前部螺旋段起到了多级加能的作用,叶轮使流体完成了从轴向至径向的过渡,液流的轴向速度由大变小,径向速度则相反.  相似文献   

18.
为了掌握导叶内部的真实流动形态,完善导叶水力设计方法,设计了一个独特的PIV试验台,对向心径向导叶内部流场进行了PIV试验测量.试验泵段取自多级深井离心泵的一级,通过2个高强度水润滑轴承支撑起整个泵轴,借助45°安放的镜面对流场图像进行折射.通过相平均方法获得了不同工况下导叶中截面的速度场分布.结果表明:在设计流量附近,导叶内部流动较为稳定规整;在大流量下,由于导叶进口过流面积有限,液体流动受阻,产生了较大的冲击损失;在小流量下,流道内产生了流动分离和旋涡,旋涡的强度随着流量的减小而逐渐加强,而且涡核的位置也由靠近导叶叶片吸力面逐渐向导叶流道中部移动;导叶进口处产生较大的水力损失,导叶进口安放角对泵性能影响较大;为改善小流量工况下的流场,导叶流道中部的过流面积需要进一步调整.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号