首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of nitrous acid with freeze-dried instant coffee and its methanol-insoluble melanoidin fractions were studied at pH 2 in the presence and absence of thiocyanate (SCN (-)), simulating the mixture of coffee, saliva, and gastric juice. Coffee contained stable radicals, and the radical concentration increased by ferricyanide and decreased by ascorbic acid. This result indicates that the radical concentration was affected by the redox state of coffee and that the nature of the radical was due to quinhydrone structure that might be included in coffee melanoidins. Nitrite also increased the electron spin resonance (ESR) signal intensity at pH 2, suggesting that nitrite oxidized melanoidins producing nitric oxide (NO). The formation of NO could be detected by oxygen uptake due to the autoxidation of NO and using an NO-trapping agent. SCN (-) largely enhanced NO formation in coffee and methanol-insoluble melanoidin fractions but only slightly in a methanol-soluble fraction, and the enhancement accompanied the consumption of SCN (-) but did not accompany the formation of a stable ESR signal. The enhancement was explained by the reduction of NOSCN by melanoidins in methanol-insoluble fractions and that the consumption was due to binding of SCN (-) to melanoidins during their oxidation by nitrous acid. The result obtained in this study suggests that when coffee is ingested, in addition to chlorogenic acid and its isomers, melanoidins can also react with salivary nitrite and SCN (-) in the gastric lumen, producing NO.  相似文献   

2.
A salivary component, nitrate, is reduced to nitrite in the oral cavity. Polyphenols in foods are mixed with nitrite in the saliva to be swallowed into the stomach. An objective of the present study is to elucidate reactions between a polyphenol quercetin and a nitrite under acidic conditions. Nitric oxide, which is formed by the reactions between nitrous acid and quercetin or ascorbic acid (AA), can be measured using an oxygen electrode in the saliva as well as a buffer solution. The initial oxidation of quercetin was inhibited by AA, and quercetin enhanced the oxidation of AA, suggesting AA-dependent reduction of quercetin radicals, which might be formed during the oxidation of quercetin by nitrous acid. On the basis of the above results, the usefulness of an oxygen electrode for the measurement of nitrite-dependent nitric oxide formation under acidic conditions is proposed and the possible mechanism of reduction of nitrous acid by quercetin and the interaction between quercetin and AA, which is a normal component in the gastric juice, for the reduction of nitrous acid is discussed.  相似文献   

3.
Of all plant constituents, coffee has one of the highest concentrations of chlorogenic acids. When roasting coffee, some of these are transformed into chlorogenic acid lactones (CGL). We have studied the formation of CGL during the roasting of coffee beans in Coffea arabica cv. Bourbon; C. arabicacv. Longberry; and C. canephora cv. Robusta. Individual CGL levels were determined by comparison of HPLC peaks with those of synthetic CGL standards. Seven CGL were identified: 3-caffeoylquinic-1,5-lactone (3-CQL), 4- caffeoylquinic-1,5-lactone (4-CQL), 3-coumaroylquinic-1,5-lactone (3-pCoQL), 4-coumaroylquinic-1,5-lactone (4-pCoQL), 3-feruloylquinic-1,5-lactone (3-FQL), 4-feruloylquinic-1,5-lactone (4-FQL), and 3,4-dicaffeoylquinic-1,5-lactone (3,4-diCQL). 3-CQL was the most abundant lactone in C. arabica and C. canephora, reaching peak values of 230 +/- 9 and 254 +/- 4 mg/100 g (dry weight), respectively, at light medium roast ( approximately 14% weight loss). 4-CQL was the second most abundant lactone (116 +/- 3 and 139 +/- 2 mg/100 g, respectively. The maximum amount of CGL represents approximately 30% of the available precursors. The relative levels of 3-CQL and 4-CQL in roasted coffee were reverse to those of their precursors in green coffee. This suggests that roasting causes isomerization of chlorogenic acids prior to the formation of lactones and that the levels of lactones in roasted coffee do not reflect the levels of precursors in green coffee.  相似文献   

4.
Commercial whole coffee fruit extracts and powder samples were analyzed for chlorogenic acids (CGA), caffeine and antioxidant activities. CGA and caffeine were characterized by LC-MS(n) and HPLC accordingly, and quantified by UV absorbance. ORAC, HORAC, NORAC, SORAC and SOAC (antioxidant capacities) were assessed. Three caffeoylquinic acids, three feruloylquinic acids, three dicaffeoylquinic acids, one p-coumaroylquinic acid, two caffeoylferuloylquinic acids and three putative chlorogenic lactones were quantified, along with a methyl ester of 5-caffeoylquinic acid (detected in one sample, the first such report in any coffee material). Multistep whole coffee fruit extracts displayed higher CGA content than single-step extracts, freeze-dried, or air-dried whole raw fruits. Caffeine in multistep extracts was lower than in the single-step extracts and powders. Antioxidant activity in whole coffee fruit extracts was up to 25-fold higher than in powders dependent upon the radical. Total antioxidant activity of samples displayed strong correlation to CGA content.  相似文献   

5.
Under acidic conditions, nitrite is protonated to nitrous acid (pK(a) = 3.2-3.4) that can be transformed into nitric oxide by self-decomposition and reduction. When sodium nitrite was mixed with quercetin at pH 1-2, quercetin was oxidized producing nitric oxide. In addition to quercetin, kaempferol and quercetin 4'-glucoside were also oxidized by nitrous acid, but oxidation of apigenin, luteolin, and rutin was slow compared to oxidation of the above flavonols. These results suggested that flavonols, which have a free hydroxyl group at carbon position 3, can readily reduce nitrous acid to nitric oxide. When the pH of saliva was decreased to 1-2, formation of nitric oxide was observed. The nitric oxide formation was enhanced by quercetin, and during this process quercetin was oxidized. These results indicate that there is a possibility of reactions between phenolics and nitrous acid derived from salivary nitrite in the stomach.  相似文献   

6.
Vegetarian diets are correlated with a reduced risk of developing cardiovascular disease and comprise a great variety of bioactive compounds, including hydroxycinnamic acid derivatives. Therefore, this study aimed to identify dietary hydroxycinnamic acid derivatives that may alter two important factors related to the development of cardiovascular disease, namely, tocopherol (T) and cholesterol (C) concentrations in the body. The effects of caffeic acid (CA), chlorogenic acid (CGA), and ferulic acid (FA) on alpha-T, gamma-T, and C levels in blood plasma, liver, and lungs were investigated after these compounds had been fed to rats for 4 weeks at concentrations of 2 g/kg in semisynthetic diets. None of the regimens affected weight gain, feed intake, or absolute weights of livers and lungs, although CA increased the liver weight relative to the body weight (P < 0.05). CA- and CGA-fed animals showed a tendency toward sparing vitamin E in all tissues, but statistical significance was obtained only for gamma-T in the liver of CA-fed animals (P < 0.005) and for alpha-T in the lungs of CGA-treated rats (P < 0.05). CGA supplementation reduced concentrations of lipids in the lung tissue (P < 0.05). CA and CGA elevated the concentrations of C in liver tissue and lipids to a similar extent, but only CA decreased the ratio of high-density lipoprotein C to total C in blood plasma (P < 0.05 for all effects). Animals eating FA showed T and C values comparable to those in the control group. In conclusion, this study demonstrates that dietary caffeic and chlorogenic acid may elevate tocopherols and cholesterol in vivo.  相似文献   

7.
In continuation of our previous studies on N-nitroso-N-methylurea (NMU) formation in cured meats following incubation with nitrite at gastric pH, we extended the investigation to other foods mentioned in the title of this paper. The main objective was to determine whether these foods have the potential to form NMU at pH's that can be found in the human stomach. This was done by nitrosating an aliquot (5 g for fish sauce, 10 g for the others) of each with 7.25 microM to 1.59 mM levels of sodium nitrite for 2 h at room temperature at pH 0.8--1.5 and measuring the amounts of NMU formed. Of the samples tested, fish sauce formed 2--712 ng of NMU, followed in decreasing order by herring (<0.3--688 ng); dried anchovy, shrimp, and other fishes (<0.3--134 ng); crab and lobster paté (<0.3--342 ng); sardines (6--59 ng); oysters and mussels (11--31 ng); dried squid (3--47 ng); kimchi (7--107 ng); and Japanese pickled radish (<0.3--72 ng). Incorporation of 200-2000 ppm of ascorbic acid in the fish sauce and other foods, prior to nitrosation, appreciably inhibited such NMU formation. Although previous researchers in China reported NMU formation in nitrosated samples of fish sauce, this is the first reported formation of NMU upon nitrosation of the other foods mentioned above, and the first reported inhibition of such formation by added ascorbic acid.  相似文献   

8.
This study aimed to evaluate the potential of soybean-promoted acidic nitrite reduction and to correlate this activity with the content of phenolics and with the bactericidal activity against Escherichia coli O157:H7. Extracts of embrionary axes and cotyledons enriched in phenolics increased ?NO formation at acidic pH at values that were 7.1 and 4.5 times higher, respectively, when compared to the reduction of the nonenriched extracts. Among the various phenolics accumulated in the soybean extracts, five stimulated nitrite reduction in the following decreasing order of potency: epicatechin gallate, chlorogenic acid, caffeic acid, galic acid and p-coumaric acid. Extracts of embrionary axes presented higher contents of epicatechin gallate and caffeic acid, compared to that of cotyledons, indicating a positive correlation between activity of the extracts and content of phenolics with regard to nitrite reducing activity. Soybean extracts enriched in phenolics interacted synergistically with acidified nitrite to prevent E. coli O157:H7 growth. The results suggest that soybean phenolics may interfere with the metabolism of ?NO in an acidic environment by accelerating the reduction of nitrite, with a potential antimicrobial effect in the stomach.  相似文献   

9.
Isolates of a soil Pseudoimonas, as well as other soil bacteria, showed a different sensitivity towards NO?2 when grown under aerobic or anaerobic conditions. The tolerance to NO?2 was increased in the presence of O2: for instance, a concentration of 200parts106 of NO?2-N proved to be toxic to a Pseudomonas sp. under anaerobic conditions, whereas over 400 parts106 were needed aerobically to suppress its growth completely. The addition of NO?3 as an electron acceptor for anaerobic respiration did not overcome the inhibitive effect of NO?3. The pH range, at which NO?2 was utilized anaerobically, was narrowed with increasing NO?2 concentration (pH 6.8–8.8 at 70 parts106 of NO?2-N and 7.4–8.5 and 140 parts106 of NO?2-N).Tolerance to nitrite varied considerably among the bacteria tested. Each species was able to overcome the inhibitory effect of NO?2 up to a certain concentration, while the length of the lag phase was related to NO?2 concentration.  相似文献   

10.
Different studies have shown that milk may interact with polyphenols and affect their bioavailability in humans. The present study investigated the effect of the simultaneous consumption of coffee and milk on the urinary excretion of chlorogenic acids (CGA) and metabolites. Subjects were submitted to consumption of water, instant coffee (609 mmol of CGA) dissolved in water, and instant coffee dissolved in whole milk. Urine was collected for 24 h after consumption of each treatment for analysis of CGA and metabolites by HPLC/LC-MS. The amount of CGA and metabolites recovered after consumption of combined coffee-milk (40% ± 27%) was consistently lower in all subjects compared to that of coffee alone (68% ± 20%). Concluding, the simultaneous consumption of milk and coffee may impair the bioavailability of coffee CGA in humans.  相似文献   

11.
During storage of raw coffee beans (green coffee) atypical odors may develop, which are suggested to influence the aroma of particularly the coffee beverage. To gain insight into the aroma compounds responsible for such odor changes, a comparative aroma extract dilution analysis was applied on unstored, raw Arabica coffee beans from Colombia (water content=11.75%) and on the same beans with a water content of 13.5%, which were stored for 9 months at 40 degrees C. In combination with the flavor dilution (FD) factors, the results of the identification experiments showed strong increases in (E)-beta-damascenone (cooked apple-like), 2-methoxy-4-vinylphenol (clove-like), and methyl 2-methyl- and methyl 3-methylbutanoate (fruity), whereas others, such as the earthy smelling 3-isopropyl-2-methoxypyrazine as well as 2-phenylethanol and 3-methoxyphenol, remained unchanged during storage. In addition, the previously unknown coffee odorant 2-methoxy-5-vinylphenol (intense smoky odor) increased significantly during storage. Quantitative measurements performed on raw coffee samples stored at various temperatures, water contents, and oxygen availabilities indicated that the significant increase of, in particular, the methyl esters of 2- and 3-methylbutanoic acid were responsible for the pronounced and fruity odor quality perceived in the stored green coffee, whereas the higher concentrations of 2-methoxy-4-vinylphenol and 2-methoxy-5-vinylphenol led to the more pronounced smoky, clove-like odor quality. On the basis of the results obtained, in particular the reduction of the water content in combination with lower temperatures can be suggested to avoid aroma changes in raw coffee beans caused by storage.  相似文献   

12.
13.
Lonicera confusa, a traditional Chinese medicine herb for treating cold, flu, acute fever, and so forth, is often grown artificially in acidic soils and suffers from phosphorus (P) deficiency. A five-year field experiment was carried out to study the colonization rate, growth, nutrition, and chlorogenic acid content of Lonicera confusa seedlings inoculated with arbuscular mycorrhizal (AM) fungi, Glomus etunicatum and Glomus intraradices. Before transplanting into a field, both AM-inoculated and uninoculated control plants were cultured in nursery beds. In the plants inoculated with the AM fungi, the colonization rate decreased linearly with time and a greater decrease was observed in the plants inoculated with G. intraradices than with G. etunicatum, while the AM colonization increased from 0% to 12.1% in the uninoculated control plants 5 years after transplanting. Plant height, crown diameter, number of new branches, and flower yield increased significantly by AM inoculation as compared to the uninoculated control. Phosphorus concentrations in leaves and flowers increased, and plant uptake of nutrients, e.g., nitrogen (N), P, and potassium (K), was also enhanced significantly by AM inoculation. The Lonicera confusa seedlings had a better response to inoculation of G. intraradices than G. etunicatum in both growth and chlorogenic acid content in flowers. In contrast, both plant P uptake and P concentrations in leaves and flowers were similar between two fungal inoculations. The positive responses of Lonicera confusa to AM inoculation in growth, nutrient uptake, flowering, and chlorogenic acid content in flowers suggested that AM inoculation in nursery beds could promote the plant growth and increase chlorogenic acid content in flowers of Lonicera confusa when grown on acidic and P-deficient soils.  相似文献   

14.
Nitrate and nitrite reduction was studied in a waterlogged soil after γ-irradiation with 2.5 Mrad. Before irradiation and mineral-N addition the pH was controlled at 4.5, 6 and 8, and the redox potential controlled at 0, +200 and +400 mV Nitrate reduction rate increased with increasing pH as well as with decreasing redox potential. Nitrate reduction rate was doubled by decreasing the redox potential from +400 to 0 mV. At pH 4.5 almost no nitrite accumulated regardless of redox potential, while at pH 6 and 8 marked nitrite accumulation occurred at low redox potential. In relation to non-irradiation. γ-irradiation had a stimulating effect on nitrate reduction at pH 6 and 8 but a retarding effect at pH 4.5; nitrite reduction proceeded slower at pH 6 and 8 but at the same rate at pH 4.5. It has been demonstrated that nitrate and nitrite reduction can be carried out by radiation-resistant enzyme systems of non-proliferating cells of denitrifying organisms.  相似文献   

15.
16.
Roasting is a critical process in coffee production as it enables the development of flavor and aroma. At the same time, roasting may lead to the formation of nondesirable compounds, such as polycyclic aromatic hydrocarbons (PAHs). In this study, Arabica green coffee beans from Cuba were roasted under controlled conditions to monitor PAH formation during the roasting process. Roasting was performed in a pilot spouted bed roaster, with the inlet air temperature varying from 180 to 260 degrees C, using both dark (20 min) and light (5 min) roasting conditions. Several PAHs were determined in both roasted coffee samples and green coffee samples. Also, coffee brews, obtained using an electric coffee maker, were analyzed for final estimation of PAH transfer coefficients to the infusion. Formation of phenanthrene, anthracene, and benzo[a]anthracene in coffee beans was observed at temperatures above 220 degrees C, whereas formation of pyrene and chrysene required 260 degrees C. Low levels of benzo[g,h,i]perylene were also noted for dark roasting under 260 degrees C, with simultaneous partial degradation of three-cycle PAHs, suggesting that transformation of low molecular PAHs to high molecular PAHs occurs as the roasting degree is increased. The PAH transfer to the infusion was quite moderate (<35%), with a slightly lower extractability for dark-roasted coffee as compared to light-roasted coffee.  相似文献   

17.
Traces of N-nitrosopyrrolidine (NPYR) may occur in some samples of both instant coffee and fine-ground roasted coffee. The identity of NPYR in 2 samples of instant coffee was confirmed by mass spectrometry as well as by liquid chromatography-thermal energy analysis. A 2-step cleanup procedure, involving fractionation on basic alumina followed by gradient elution on reverse-phase C18 cartridge, is described that allows full-scan mass spectrometric confirmation of NPYR in tested samples.  相似文献   

18.
Absorption of orally administered chlorogenic acid (5-caffeoylquinic acid) and caffeic acid in rats was studied to obtain plasma pharmacokinetic profiles of their metabolites. Rats were administered 700 micromol/kg body weight of chlorogenic or caffeic acid, and blood was collected from the tail for 6 h after administration. Ingested caffeic acid was absorbed from the alimentary tract and was present in the rat blood circulation in the form of various metabolites. On the other hand, only traces of metabolites, supposedly caffeic and ferulic acids conjugates, were detected in rat plasma for 6 h after chlorogenic acid administration. Chlorogenic acid and small amounts of caffeic acid were found in the small intestine for 6 h after chlorogenic acid administration. These results suggest that chlorogenic acid is not well absorbed from the digestive tract, unlike caffeic acid, and subject to almost no structural changes to the easily absorbed forms.  相似文献   

19.
The fermentations, at a commercial winery, of six different grape musts encompassing the varieties Riesling, Chardonnay, Sauvignon blanc, Shiraz, Grenache, and Pinot noir were monitored for damascenone concentration. In every case, the concentration of damascenone increased during fermentation from low or undetectable levels to concentrations of several parts per billion. Further increases in damascenone concentration were observed during barrel aging of three of these wines. Two ketones, megastigma-4,6,7-triene-3,9-dione (4) and 3-hydroxymegastigma-4,6,7-trien-9-one (5), were synthesized and subjected to fermentation conditions using two yeasts, AWRI 796, and AWRI 1537. In the case of the former compound, 4, synthesis confirmed the original, tentative assignment of the structure and confirmed 4 as a natural product, isolated from honey. Both compounds, under the action of both yeasts, produced appreciable amounts of damascenone (1), with ketone 5 and AWRI 796 yeast yielding the highest concentration of 1.  相似文献   

20.
Motivated by the identification of numerous novel tetrahydro-beta-carboline-carboxylic acids in food samples, we studied the reactions of tetrahydro-beta-carbolines in the presence of nitrosating agents. The anticipated formation of nitroso derivatives from unsubstituted tetrahydro-beta-carbolines, and from tetrahydro-beta-carboline-3-carboxylic acids was indicated by HPLC-MS/MS analysis and validated by the characteristic product ion spectra of the respective nitroso compounds. In addition, oxidative decarboxylation resulted in formation of the corresponding dihydro-beta-carbolines, and in the generation of the beta-carbolines harman or norharman. Subsequently, we studied the reactivity of tetrahydro-beta-carboline-1-carboxylic acids derived from the Pictet-Spengler condensation of indole amines with alpha-oxo acids. Again, in the presence of nitrosating agents the rapid disappearance of the starting material was obvious, but no nitroso derivatives could be observed. Instead, further HPLC-MS/MS studies demonstrated that dihydro-beta-carbolines were the major products of tetrahydro-beta-carboline-1-carboxylic acids. Finally, we demonstrated that freshly isolated nitroso-precursors spontaneously decomposed to yield harman alkaloids. In conclusion, we revealed that nitroso-tetrahydro-beta-carbolines can represent intermediates involved in the generation of beta-carbolines, and we established a novel pathway for the formation of harman alkaloids from nutritional tetrahydro-beta-carbolines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号