首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty surface soils from four main Soil Groups in Malawi and their sub-soils were divided into three groups based on cation exchange capacity (group I, CEC < 50; group II, 50–100; and group III > 100μeq g–1). In each soil group the maximum amounts of K removed by successive extraction with 0.005 M CaCl2 solution were well related to the potassium potential pK–0.5p(Ca + Mg), exchangeable K, ‘step K’, and the quotient ‘step K’/CR.K, where CR.K is ‘constant-rate’potassium. In Group III soils only, ‘step K’/CR.K values were significantly correlated with pH, clay, and CEC, and this suggested that the soils were relatively rich in K+ specific binding sites. In 27 soils from an NPK factorial experiment on tea, the rate of depletion of extractable K reserve increased with ammonium sulphate treatment, whereas K fertilizers tended to off-set significantly (P= 0.001) the depletion of K reserve. The values for the change in free energy ΔG =RT In aK/ (a(Ca+Mg)) ½, ranged from –12 to –16 kJ mol–1, and field observations showed that tea plants growing on soils having ΔG values less than –15 kJ mol–1 responded to K fertilizers. The investigation has indicated that heavily cropped soils are likely to show crop responses if the intensive cropping system does not include supplementation of K.  相似文献   

2.
The effectiveness of lime-ammonium-nitrate (LAN) as a nitrogen (N) fertilizer in weathered soils depends on the respective selectivity for ammonium (NH4) and calcium (Ca) by the soils. The study assessed Ca2+/NH4+ exchange selectivity of two benchmark soils from Botswana and examined the soil fertility management implications. Surface horizons (0–20 cm) of Pellustert and Haplustalf were equilibrated with 50 ml stock solution containing variable concentrations of Ca2+ and NH4+. The Ca2+/NH4+ exchange data were fitted into the Vanselow (KV), Gaines and Thomas (KGT), Davies (KD), and the regular solution (KRS) equations. The selectivity coefficients for the Ca2+/NH4+ exchange reactions varied widely with the soil exchanger composition except for the relatively stable KRS. The selectivity coefficients indicated strong preference for NH4+ to Ca2+. The thermodynamic exchange constant, Kex, was 5.75 ± 1.24 in the Pellustert, indicating preferential adsorption of NH4+, but not in the Haplustalf with Kex = 0.92 ± 0.27. The free energy for Ca2+/NH4+ exchange (ΔG°ex) was negative (?4.26 ± 0.59 kJ mol?1) in the Pellustert but slightly positive in the Haplustalf (0.34 ± 0.87 kJ mol?1). In conclusion, the soil-NH4 complex was more stable than soil-Ca complex in the Pellustert, indicating LAN as a N fertilizer would have greater potential effectiveness in the Pellustert than in the Haplustalf.  相似文献   

3.
Abstract

Soil cation exchange capacity (CEC) measurements are important criteria for soil fertility management, vaste disposal on soils, and soil taxonomy. The objective of this research was to compare CEC values for arable Ultisols from the humid region of the United States as determined by procedures varying widely in their chemical conditions during measurement. Exchangeable cation quantities determined in the course of two of the CEC procedures were also evaluated. The six procedures evaluated were: (1) summation of N NH4OAc (pH 7.0) exchangeable Ca, Mg, K, and Na plus BaCl2 ‐ TEA (pH 8.0) exchangeable acidity; (2) N Ca(OAc)2 (pH 7.0) saturation with Mg(OAc)2 (pH 7.0) displacement of Ca2+; (3) N NH4OAc (pH 7.0) saturation with NaCl displacement of NH4 +; (4) N MgCl2 saturation with N KCl displacement of Mg2+; (5) compulsive exchange of Mg2+ for Ba2+; and (6) summation of N NH4OAc (pH 7.0) exchangeable Ca, Mg, K, and Na plus N KCl exchangeable AJ. The unbuffered procedures reflect the pH dependent CEC component to a greater degree than the buffered methods. The compulsive exchange and the summation of N NH4OAc exchangeable cations plus N KCl exchangeable Al procedures gave CEC estimates of the same magnitude that reflect differences in soil pH and texture. The buffered procedures, particularly the summation of N NH4OAc exchangeable cations plus BaCl2 ‐ TEA (pH 8.0) exchangeable acidity, indicated inflated CEC values for these acid Ultisols that are seldom limed above pH 6.5. Exchangeable soil Ca and Mg levels determined from extraction with 0.1 M BaCl2 were consistently greater than values for the N NH4Oac (pH 7.0) extractions. The Ba2+ ion is apparently a more efficient displacing agent than the NH4 + ion. Also, the potential for dissolving unreacted limestone is greater for the Ba2 + procedures than in the NH4 + extraction.  相似文献   

4.

Purpose

Understanding of the interactions between cations, mineral particles, and organic matter (OM) in soils is of paramount importance in plant nutrition and environmental science, and thus, these phenomena have been studied extensively. At present, an effective and simple tool to investigate these interactions does not exist. Based on previous studies of Wien effect in suspensions, the interactions of cations with soil mineral particles, complicated by the presence of organic matter, can be easily determined by means of Wien effect measurements, which was the objective of this study.

Materials and methods

A paddy soil originating from a yellow-brown soil, rich in organic matter, served as a test sample, from which the clay fraction of less than 2 μm in diameter was separated. Organic matter of aliquots of the clay fraction was removed by the oxidation with hot H2O2, and the natural and OM-free samples were saturated with various cations: Na+, K+, Ca2+, and Cd2+. The effects of OM present in the paddy soil on the interactions between the cations and the soil mineral particles were investigated by measuring the suspension Wien effect with a homemade apparatus, SHP-2.

Results and discussion

The weak electrical field electrical conductivities (EC0) of suspensions of the natural soils saturated with various cations were higher than those of the OM-free soils. The rate of increase in electrical conductivity of suspensions of the OM-free soil, except that of suspensions saturated with Na+, at electrical field strengths >50~100 kV?cm?1 was higher than those of the natural soil suspensions. The presence of OM increased the mean free binding energies of cations other than Na+. The increasing binding energies for K+ and Ca2+ were 0.56 and 0.57 kJ?mol?1, respectively, which were significantly larger than the increase for Cd2+ as only 0.03 kJ?mol?1. The binding energies of various cations on both natural and OM-free soils were all in the order: Na+?<?K+?<?Ca2+≈Cd2+. As opposed to its effect on the binding energies, the presence of OM reduced the mean free adsorption energies of the cations. Except for Na+, the adsorption energies of K+, Ca2+, and Cd2+ at field strengths >50 kV?cm?1 were lower in the natural soil as compared with the OM-free soil, and the differences between the adsorption energies became larger with increasing field strengths. The presence of OM made the zeta potential of the soil particles saturated with Na+ and K+ positive, and the particles saturated with Ca2+ and Cd2+ negative.

Conclusions

Organic matter affected the interactions of cations with soil mineral particles significantly. Binding and adsorption energies, which were quantitative measures of the interactions between cations and soil particles, could be determined by Wien effect measurements in suspensions. The binding energies on natural soils were larger than those on the corresponding OM-free soils, and the adsorption energies on the natural soils were lower than those on OM-free soils.  相似文献   

5.
Summary Methods of determining exchangeable K+ of soil by mixing extracting solutions and analysing the soil suspension with ion‐selective electrodes were developed and evaluated on 30 samples of soils. From preliminary comparisons of the K+ extracted by BaCl2 and NH4OAc solutions and by batch and leaching treatments of soils, we established that suspensions of 5 g soil in 100 ml 0.5 m BaCl2 and single batch treatments of 1 h should be used. The exchangeable K+ was determined with a K‐selective, valinomycin‐based PVC membrane electrode and electrochemical cells that did or did not include a liquid junction (the reference electrode being a double‐junction reference electrode assembly with a 10 m LiOAc salt bridge solution or a Cl‐selective electrode, respectively). The Ba‐exchangeable K+ values were sensibly the same whether a liquid junction was involved or not, a result that can be attributed to the beneficial effects of the salt bridge and the ionic strength of the extractant. Comparisons of these Ba‐exchangeable results with those obtained by various combinations of batch or leaching treatments, BaCl2 or NH4OAc extractants and filtrate analysis by the ion‐selective electrode method or atomic absorption spectrometry showed they were all highly correlated (r≥ 0.996). The selectivity of the K+‐selective electrode (kpotKNH4 = 0.004) significantly reduced the interference from indigenous soil NH4+ in the BaCl2 suspensions. Overall, the results show potentiometric measurements of K+ in soil suspensions can provide a simple, rapid, and reliable means of determining exchangeable K+ in soils.  相似文献   

6.
Summary This study examined the effects of NH inf4 + fertilizers [(NH4)2SO4, (NH4)2HPO4, CO(NH2)2, NH4OH, and NH4NO3] on NH3 loss and the quantity of Ca + Mg, NH inf4 + and NO inf3 sup– in the solution of a calcareous soil (Harkey sicl, Typic Torrifluvent). Various NH4 fertilizers applied at a depth of 5 cm in the soil produced differing NH3 loss characteristics. Applying (NH4)2SO4 (AS) resulted in high volatile NH3 losses as compared with NH4OH (AH) and (NH4)2CO3 (AC). The AS treatment formed an equal molar amount of CaSO4, which increased the mobility of ammonium, while AH and AC treatments caused Ca precipitation and decreased ammonium mobility. Leaching the AS system before NH3 loss could occur resulted in the most rapid nitrification rate. Lower nitrification rates were found with AH and AC than AS under the same conditions. Surface placement of NH4 fertilizers resulted in variable leachate contents of Ca + Mg. Ammonium sulfate reacted with CaCO3 either to solubilize some Ca + Mg or simply to replace exchangeable Ca + Mg with NH4, while AH, AC, and (NH4)2HPO4 (DAP) precipitated essentially an equivalent molar amount of soluble and adsorbed Ca + Mg. Use of NH4NO3, which does not form an insoluble calcium precipitate, resulted in the leaching of an equivalent molar amount of exchangeable Ca + Mg from the Harkey soil.The authors are Professor and former laboratory technician, respectively, at Texas A&M Research Center at El Paso, 1380 A&M Circle, El Paso, TX 79927, USA  相似文献   

7.
Abstract

In Oxisols, acidity is the principal limiting factor for crop production. In recent years, because of intensive cropping on these soils, deficiency of micronutrients is increasing. A field experiment was conducted on an Oxisol during three consecutive years to assess the response of common bean (Phaseolus vulgaris L.) under a no‐tillage system to varying rates of lime (0, 12, and 24 Mg ha?1) and boron (0, 2, 4, 8, 12, 16, and 24 kg ha?1) application. Both time and boron (B) were applied as broadcast and incorporated into the soil at the beginning of the study. Changes in selected soil chemical properties in the soil profile (0- to 10‐ and 10- to 20‐cm depths) with liming were also determined. During all three years, gain yields increased significantly with the application of lime. However, B application significantly increased common bean yield in only the first crop. Only lime application significantly affected the soil chemical properties [pH; calcium (Ca2+); magnesium (Mg2+); hydrogen (H+)+ aluminum (Al3+); base saturation; acidity saturation; cation exchange capacity (CEC); percent saturation of Ca2+, Mg2+, and potassium (K+); and ratios of exchangeable Ca/Mg, Ca/K, and Mg/K] at both soil depths (0–10 cm and 10–20 cm). A positive significant association was observed between grain yield and soil chemical properties. Averaged across two depths and three crops, common bean produced maximum grain yield at soil pHw of 6.7, exchangeable (cmolc kg?1) of Ca2+ 4.9, Mg2+ 2.2, H++Al3+ 2.6, acidity saturation of 27.6%, CEC of 4.1 cmolc kg?1, base saturation of 72%, Ca saturation of 53.2%, Mg saturation of 17.6%, K saturation of 2.7%, Ca/Mg ratio of 2.8, Ca/K ratio of 25.7, and Mg/K ratio of 8.6. Soil organic matter did not change significantly with addition of lime.  相似文献   

8.
The rates of extraction of Na, K, Mg, Ca, and Al with 1M NH4 NO3 from the mineral-and organic-rich layers of some Park Grass (Rothamsted) soils were measured at the pH of the soil. Below pH 3.7 exchangeable Al, derived from the kinetics curve, increases with decreasing soil pH and is less in the organic-rich layer. The sum of the basic exchangeable cations, ∑(Na + K + Mg + Ca), increases with increasing soil pH and is more in the organic-rich layer. The extraction of exchangeable Al obeys first order kinetics, the rate constant being similar for all the soils (mean value 36 ± 7 × 10?6|s?1), which implies that exchangeable Al is released from surfaces with similar properties for the adsorption of Al, and that the rate is not affected by soil pH and organic matter. The rate of extraction of non-exchangeable Al is the same in the mineral-and organic-rich layers of each soil, and is maximal at about pH 3.7, decreasing sharply at more and less acid pH values.  相似文献   

9.
Exchange reactions between 0.0in AlCl3 solutions of different pH and Ca-saturated montmorillonite, vermiculite, illite, and soils from the Park Grass Experiment at Rothamsted and the Deerpark Experiment, Wexford, Ireland, showed that Al3+ and Al(OH)2+ were adsorbed from solutions of pH > 4.0 and Al3+ and H+ from solutions of pH < 3.0. When Al was adsorbed, the cation exchange capacity of Ca-saturated soils and clays increased. Conventional Ca: Al exchange isotherms showed that Al3+ was strongly preferred to Ca2+ on all soils and clays. The equilibrium constant for Ca: Al exchange, K, was identical for soils before and after oxidizing their organic matter and did not vary, for any exchanger, with Al-saturation or the initial pH of the AlCl3 solution. This proved the validity of the procedure used for calculating exchangeable Al3+. K values for Ca:Al exchange favoured Al3+ in the order: vermiculite > Park Grass soil > Deerpark soil > illite > montmorillonite. The influence of surface-charge densities of the clay minerals on this order is discussed and a method proposed and tested for calculating the K value of a soil from its mineralogical composition.  相似文献   

10.
Most tropical soils have high acidity and low natural fertility. The appropriate application of lime and cattle manure corrects acidity, improves physical and biological properties, increases soil fertility, and reduces the use of chemical and/or synthetic fertilizers by crops, such as soybean, the main agricultural export product of Brazil. This study aimed to assess the effects of the combination of the application of dolomite limestone (0, 5, and 10 Mg ha?1) and cattle manure (0, 40, and 80 Mg ha?1) on grain yield and the chemical properties of an Oxisol (Red Latosol) cultivated with soybean for two consecutive years. The maximum grain yield was obtained with the application of 10 Mg ha?1 of lime and 80 Mg ha?1 of cattle manure. Liming significantly increased pH index, the concentrations of calcium (Ca2+) and exchangeable magnesium (Mg2+), and cation exchange capacity (CEC) of soil and reduced potential acidity (H+ + Al3+), while the application of cattle manure increased pH level; the concentrations of potassium (K+), Ca2+, and exchangeable Mg2+; and CEC of the soil. During the 2 years of assessment, the greatest grain yields were obtained with saturation of K+, Ca2+, and Mg2+ in CEC at the 4.4, 40.4, and 17.5 levels, respectively. The results indicated that the ratios of soil exchangeable Ca/Mg, Ca/K, K/Mg, and K/(Ca+Mg) can be modified to increase the yield of soybean grains.  相似文献   

11.
The quantity: potential relationships for Ca→K exchange in six soils were evaluated, where potential is defined by ΔGK,Ca+Mg. Using the percentage K saturation of the CEC as the index of quantity, the Worcester Series soil, rich in hydrous micas, was shown to have the highest concentration of K selective sites, and Newport Series soil, with mainly kaolinitic clay, the lowest. The other soils, containing mainly smectites, had intermediate K selectivities. An algebraic transformation of this relationship to separate the effects of exchangeable K and CEC showed that 0.01 m CaCl2 released more K than m ammonium acetate. From the exchangeable K : ΔG relationship, two regions of K buffering were observed for all but the Newport soil, the transition occurring at a mean ΔGK,Ca+Mg value of ?20.7 kJ mol?1, signifying the K concentration below which K from ‘perlpheral’ regions of micaceous minerals is released. This may explain why the percentage K saturation of the CEC of a soil cropped exhaustively (without K manuring) in the field does not drop below a minimum value. Based on pot experiments, exhaustion and optimum K potentials (ΔGexh and ΔGopt) were derived from second-degree polynomials fitted to the response curves of plant dry matter yield against ΔGK,Ca+Mg for five soils, the Worcester soil showing little response. ΔGexh was inversely related to the 2 : 1 layer silicate content of the soil (r2=0.98 and 0.94 for ryegrass and fescue respectively), and similarly, ΔGopt, to their CEC values (r2=0.74 and 0.77). Potassium uptake was more closely correlated with exchangeable K than with ΔGopt.  相似文献   

12.
Purpose

The majority of biochar studies use soils with only a narrow range of properties making generalizations about the effects of biochar on soils difficult. In this study, we aimed to identify soil properties that determine the performance of biochar produced at high temperature (700 °C) on soil pH, cation exchange capacity (CEC), and exchangeable base cation (Ca2+, K+, and Mg2+) content across a wide range of soil physicochemical properties.

Materials and methods

Ten distinct soils with varying physicochemical properties were incubated for 12 weeks with four rates of biochar application (0.5, 2, 4, and 8% w/w). Soil pH, CEC, and exchangeable base cations (Ca2+, K+, and Mg2+) were determined on the 7th and 84th day of incubation.

Results and discussion

Our results indicate that the highest biochar application rate (8%) was more effective at altering soil properties than lower biochar rates. Application of 8% biochar increased pH significantly in all incubated soils, with the increment ranging up to 1.17 pH unit. Biochar induced both an increment and a decline in soil CEC ranging up to 35.4 and 7.9%, respectively, at a biochar application rate of 8%. Similarly, biochar induced increments in exchangeable Ca2+ up to 38.6% and declines up to 11.4%, at an 8% biochar application rate. The increment in CEC and exchangeable Ca2+ content was found in soils with lower starting exchangeable Ca2+ contents than the biochar added, while decreases were observed in soils with higher exchangeable Ca2+ contents than the biochar. The original pH, CEC, exchangeable Ca2+, and texture of the soils represented the most crucial factors for determining the amount of change in soil pH, CEC, and exchangeable Ca2+ content.

Conclusions

Our findings clearly demonstrate that application of a uniform biochar to a range of soils under equivalent environmental conditions induced two contradicting effects on soil properties including soil CEC and exchangeable Ca2+ content. Therefore, knowledge of both biochar and soil properties will substantially improve prediction of biochar application efficiency to improve soil properties. Among important soil properties, soil exchangeable Ca2+ content is the primary factor controlling the direction of biochar-induced change in soil CEC and exchangeable Ca2+ content. Generally, biochar can induce changes in soil pH, CEC, and exchangeable Ca2+, K+, and Mg2+ with the effectiveness and magnitude of change closely related to the soil’s original properties.

  相似文献   

13.
Accurate estimation of the available potassium (K+) supplied by calcareous soils in arid and semi‐arid regions is becoming more important. Exchangeable K+, determined by ammonium acetate (NH4OAc), might not be the best predictor of the soil K+ available to crops in soils containing micaceous minerals. The effectiveness of different extraction methods for the prediction of K‐supplying capacities and quantity–intensity relationships was studied in 10 calcareous soils in western Iran. Total K+ uptake by wheat grown in the greenhouse was used to measure plant‐available soil K+. The following methods extracted increasingly higher average amounts of soil K+: 0.025 M H2SO4 (45 mg K+ kg?1), 1 M NaCl (92 mg K+ kg?1), 0.01 M CaCl2 (104 mg K+ kg?1), 0.1 M BaCl2 (126 mg K+ kg?1), and 1 M NH4OAc (312 mg K+ kg?1). Potassium extracted by 0.01 M CaCl2, 1 M NaCl, 0.1 M BaCl2, and 0.025 M H2SO4 showed higher correlation with K+ uptake by the crop (P < 0.01) than did NH4OAc (P < 0.05), which is used to extract K+ in the soils of the studied area. There were significant correlations among exchangeable K+ adsorbed on the planar surfaces of soils (labile K+) and K+ plant uptake and K+ extracted by all extractants. It would appear that both 0.01 M CaCl2 and 1 M NaCl extractants and labile K+ may provide the most useful prediction of K+ uptake by plants in these calcareous soils containing micaceous minerals.  相似文献   

14.
The direct application of Sokoto phosphate rock to restore phosphorus in the savanna soil of Nigeria has not been very successful. The dissolution of Sokoto phosphate rock was investigated in three electrolyte solutions – 0.01 m CaCl2, NaCl and KCl – at pH range 3.5–7.0 under laboratory conditions to provide solubility and kinetic data that are required to develop guidelines for direct application in the field. The phosphate rock dissolved in the salt solutions in the order KCl > NaCl > CaCl2. Particle size and ionic strength had no significant effect on the dissolution. The standard free energy of reaction ΔG°R in an acidic solution with no basic cations was ?38 kJ mol?1. If Ca2+ ions were in the acidic solution, then ΔG°R increased to 210 kJ mol?1, 170 kJ mol?1 for Na+ ions, and 107 kJ mol?1 for K+ ions in the solution. The theoretical solubility constant (Ks) calculated from the relation ΔG° = ?RT ln Ks gave Ks = 106.7 in an acidic solution without basic cations, but decreased to 10?36.8 with Ca2+ ions in solution, 10?29.8 with Na+ ions, and 10?18.8 with K+ ions in solution. At pH ≥ 5.5, the dissolution was more constrained by Ca2+ ions or basic cations in solution than by availability of protons. The kinetics of the dissolution reaction was best described by a power function: Ct = atb, where Ct is the amount of P released from the rock phosphate at time t, and a and b are fitting parameters. An Elovich and a parabolic diffusion expression equally gave satisfactory fits to the dissolution data, suggesting that the rate of dissolution was limited by a combination of film‐ and intra‐particle diffusion. To utilize this rock phosphate as an effective source of P, management practices that increase Ca sinks and the supply of protons to the soil are necessary. In the savanna, increasing the soil's organic matter greatly enhances cation exchange capacity and availability of protons. The practice should provide adequate sinks for Ca2+ and the acidic environment required for the release of P from rock phosphate.  相似文献   

15.
日光温室番茄缺镁与土壤盐分组成及离子活度的关系   总被引:3,自引:0,他引:3  
研究了石灰性土壤日光温室不同栽培年限及番茄不同程度缺镁的土壤水溶盐分中离子组成、比例及Mg2+、Ca2+、K+离子活度等的变化及关系.结果表明:随着栽培年限的增加,温室土壤水溶盐分中Ca2+、K+、NO3-含量显著增加;水溶性盐分中阳离子以Ca2+为主,栽培5 a后NO3-成为阴离子主要成分;土壤中NO3-含量的增加是导致土壤盐分累积的主要因素.随番茄缺镁程度的加剧,土壤水溶性盐中Ca2+、K+、NO3-、全盐量及Ca2+/Mg2+、K+/Mg2+摩尔比均呈增加趋势,番茄出现缺镁的土壤含盐量达到盐渍化水平.随着土壤盐分含量增加,Ca2+、Mg2+活度均呈指数下降趋势,番茄缺镁的土壤溶液中Mg2+和Ca2+活度显著低于不缺镁土壤,(K+)/(Mg2+)、(Ca2+)/(Mg2+)活度比显著高于不缺镁土壤,(K+)/(Mg2+)活度比随缺镁程度加剧达显著差异,番茄缺镁的土壤溶液(K+)/(Mg2+)活度比大于1.盐分累积使Mg2+活度大幅降低以及K+富集对植物吸收Mg2+的拮抗作用是石灰性土壤上番茄缺镁的主要诱因.  相似文献   

16.
为揭示不同白榆(Ulmus pumila L.)品系对滨海盐碱地土壤盐分的改良作用及盐分离子在土壤-白榆系统中的分布与吸收特征,筛选适宜在滨海盐碱地造林的耐盐白榆品系,以中度盐渍化生境下4年生的6种白榆品系(1,5,28,30,46,105号)为试验材料,采用野外取样与室内测试相结合的方法,研究了Na+、K+、Ca2+、Mg2+等盐离子在土壤及白榆品系各器官(根、茎、叶)中的分布特征。结果表明:(1)白榆可降低滨海盐碱地土壤中盐离子及全盐含量,不同白榆品系较对照的土壤全盐含量降低了55.0%~63.1%,30号白榆降幅最大。(2)不同白榆品系将Na+、K+、Ca2+、Mg2+优先积累到叶中,且叶中维持较高的K+/Na+、Ca2+/Na+、Mg2+/Na+比值,不同白榆品系通过建立新的离子平衡以适应盐胁迫环境。(3)不同白榆品系的离子吸收选择性系数均为SK,NaSCa,NaSMg,Na,其对K+的吸收选择性大于对Ca2+、Mg2+吸收选择性;种内差异导致不同白榆品系对Na+、K+、Ca2+、Mg2+吸收选择能力不同,28号白榆根系对K+的吸收性最强,5号白榆根系对Ca2+、Mg2+的吸收性最强。  相似文献   

17.
Measurements of pH and A1 concentration were made on 10-2 M CaCl2, suspensions of a number of acid soils that had been limed to give 3 range of pH values, and exchangeable A1 and Ca+Mg were determined in 1.0 M NH4Cl extracts. The variation of pH with A1 concentration did not support the theory that pH is controlled by the solubility of Al(OH)3. For some of the soils, proton release on hydrolysis of A13+ions in solution accounted for the pH values, and explained quantitatively the variation of pH with the Ca:Al balance of the exchange complex, taking account of the selectivity coefficient for exchange, Kca→A1 Although Kca→A1 was smaller for soils containing more humus, their pH values were also less than those predicted by the hydrolysis of A13+ in solution, indicating that they contained other sources of protons, presumably the carboxyl groups in humus.  相似文献   

18.
Abstract

Release of native and added K+ and NH+ 4 from two soils was monitored during a 166 day incubation/leaching experiment. One soil (Brookston) represented a major soil series In Ontario whereas the other (Harriston) was suspected having a relatively large fixation capacity. Treatments were imposed involving addition of 50 μM g‐1 soil of K+(KCl) or NH+ 4 (NH4Cl) only or one added after the other on successive days. The addition of either K+ or NH+ 4 on day 2 tended to inhibit the release of the other added on day I. Also the addition of either K+ or NH+ 4 on day 1 tended to inhibit the sorption or fixation of the other on day 2. The release rate of K+ during the 10 to 166 day period was almost constant and not affected by the addition of NH+ 4. Alternatively, the addition of K+ on day 2 slowed the release rate of NH+ 4 measured by NO? 3 appearance from day 10 to 40 but had no effect thereafter. At the end of the experiment considerably more K+ than NH+ 4 was retained suggesting that K+ was more firmly fixed. However, the continuing nitrification of NH+ 4 must be contrasted with periodic removal of K+ by leaching with 0.01 M CaCl2 solution since the equilibrium between exchangeable and fixed ions was affected. There were no notable differences between the two soils inspite of a considerable difference in clay content.  相似文献   

19.
Solution cation concentrations and base cation leaching were simulated for a homogenous soil block and a soil showing five horizons of a podzolic forest soil. The dynamic model ACIDIC simulated water flow, nutrient uptake for tree growth, and cation exchange between H+, Al3+, Ca2+, Mg2+ and K+ in forest soil. In the multi-layer simulations exchangeable base cation concentrations changed most in the O horizon. The subsoil had a decisive effect on the pH of the runoff and base cation leaching from the soil. The one-layer model underestimated Ca and Mg leaching and overestimated H+ and Al concentrations in the runoff. In the eluvial and the top of illuvial horizon the solution Al / (Ca + Mg) ratio exceeded that in one-layer structure more than 10-fold. Cases with the horizon-specific cation exchange coefficient values and mean coefficient values for all layers showed only minor differences in Al / (Ca + Mg) ratio. The vertical variation in the soil chemical properties should be accounted for even if some details of processes and parameters were unavailable.  相似文献   

20.
The Gaines–Thomas selectivity coefficient, K, was used to express the relation between the cations in solution and the cations in exchange sites in podzolic forest soils. Soil solution was obtained by centrifuging a fresh bulked soil sample. Exchangeable cations HX, AlX, CaX, MgX and KX and effective cation-exchange capacity, CECe, were determined with 0.1 m BaCl2. Apparent values of K indicated a preference of Ca2+ over Mg2+ and over Al3+ in O, A and B horizons (log KAl–Ca < 0 and log KMg–Ca < 0), whereas log KK–Ca and log KH–Ca exceeded zero. The horizons were similar with respect to log KH–Ca, and the differences in log KMg–Ca were small. Log KK–Ca and log KAl–Ca increased in the horizons in the order O < A < B. Log KAl–Ca was not significantly correlated with the fraction AlX/CECe. Log KMg–Ca was positively correlated with the fractions HX/CECe and AlX/CECe, and negatively correlated with log (CaX/MgX). The selectivity coefficient of binary cation exchange seemed to be applicable to in situ soil solutions. However, the fraction of each cation on exchange sites should be based on the CECe rather than on the sum of the two cations. The latter, also, seemed to be acceptable in cases of exchangeable cations with a large relative content in soil, e.g. in Al3+–Ca2+ exchange in A and B horizons, and in H+–Ca2+ exchange in O and A horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号