共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of exogenous fibrolytic enzyme on ruminal fermentation and digestibility of alfalfa and rye-grass hay fed to lambs 总被引:9,自引:0,他引:9
Pinos-Rodríguez JM González SS Mendoza GD Bárcena R Cobos MA Hernández A Ortega ME 《Journal of animal science》2002,80(11):3016-3020
This experiment was carried out to study the effect of a directly fed exogenous fibrolytic enzyme on intake and digestion of DM, OM, protein, NDF, ADF, and hemicellulose of alfalfa and ryegrass hay by sheep. Four diets were randomly assigned to four ruminally cannulated lambs using a 4 x 4 Latin square design, repeated in time, with a factorial arrangement (2 x 2) of diets: 1) alfalfa hay; 2) alfalfa hay + exogenous fibrolytic enzymes (enzyme); 3) ryegrass hay; and 4) ryegrass hay + enzyme. Lambs consumed more DM and OM from alfalfa than from ryegrass hay (P < 0.001). The ADF intake was not different between the hays, but NDF intake was lower for alfalfa (P < 0.001). For both hays, the enzyme increased intake of DM (P < 0.01), as well as OM and CP (P < 0.05); however, NDF and ADF intake were not changed. Alfalfa hay had higher apparent digestibility of DM, OM, and CP (P < 0.001), but lower digestibility for NDF, ADF, and hemicellulose. The enzyme increased apparent digestibility of CP, hemicellulose (P < 0.05), and NDF (P < 0.10) for alfalfa. Also, for both hays, the enzyme improved N balance because lambs retained more N (P < 0.05). The enzyme increased (P < 0.05) total VFA concentration (3 and 6 h) for both hays. Results from this trial indicate that directly fed exogenous fibrolytic enzymes may change ruminal fermentation, intake, and digestibility of forages with different nutritive value. 相似文献
2.
S A Gunter M B Judkins L J Krysl J T Broesder R K Barton B R Rueda D M Hallford D W Holcombe 《Journal of animal science》1990,68(11):3821-3831
Eight ruminally cannulated ewes (four control and four bred; average BW = 85.7 kg), limit-fed alfalfa hay (1.86% BW), were used in two experiments to determine the effects of pregnancy and lactation on digestive function and serum metabolites. Seven-day sampling periods were used starting on d 102, 118 and 132 of gestation (Exp. 1) and d 14 and 32 of lactation (Exp. 2). Particulate (6.8 vs 4.9%/h; PPR) and fluid passage rates (13.9 vs 10.9%/h) were greater (P less than .05) and gastrointestinal mean retention time (28.9 vs 35.7 h) and fluid turnover time (FTT, 7.5 vs 9.5 h) were lesser (P less than .05) in pregnant than in nonpregnant ewes, respectively. Isobutyrate concentration was lower (P less than .05) in pregnant (1.7 mol/100 mol) than in nonpregnant (1.9 mol/100 mol) ewes. No differences (P greater than .10) were noted for any other ruminal fermentation measures between pregnant and nonpregnant ewes. In Exp. 2, no differences (P greater than .10) were noted in digesta kinetics or ruminal fermentation measures except for isobutyrate and isovalerate molar proportions and serum urea N (SUN) concentration. Isobutyrate, isovalerate and SUN concentrations (21.8 vs 26.1 mg/dl) were lower (P less than .05) in lactating ewes than in nonlactating ewes. Gastrointestinal fill (5.7 vs 7.7 g/kg BW) and FTT (9.3 vs 12.7 h) were lesser and DM digestion (66.7 vs 57.4%) was greater (P less than .05) in lactating than in nonlactating ewes. Data suggest that, during pregnancy, passage rate increases occur without affecting DM digestion and that, during lactation, PPR is not affected when ewes are limit-fed. 相似文献
3.
Objectives of this research were to evaluate effects of increasing level of barley supplementation on forage intake, digestibility, and ruminal fermentation in beef steers fed medium-quality forage. Four crossbred ruminally cannulated steers (average initial BW = 200 +/- 10 kg) were used in a 4 x 4 Latin square design. Chopped (5 cm) grass hay (10% CP) was offered ad libitum with one of four supplements. Supplements included 0, 0.8, 1.6, or 2.4 kg of barley (DM basis) and were fed in two equal portions at 0700 and 1600. Supplements were fed at levels to provide for equal intake of supplemental protein with the addition of soybean meal. Forage intake (kg and g/kg BW) decreased linearly (P < 0.01), and total intake increased linearly (P < 0.03) with increasing level of barley supplementation. Digestible OM intake (g/kg BW) increased linearly (P < 0.01) with increasing level of barley supplementation; however, the majority of this response was observed with 0.8 kg of barley supplementation. Treatments had only minor effects on ruminal pH, with decreases occurring at 15 h after feeding in steers receiving 2.4 kg of barley supplementation. Total-tract digestibility of DM, OM, NDF, and CP were increased (P < 0.04) with barley supplementation; however, ADF digestibility was decreased by 1.6 and 2.4 kg of barley supplementation compared with controls. Ruminal ammonia concentrations decreased linearly (P < 0.01) at 1 through 15 h after feeding. Total ruminal VFA concentrations were not altered by dietary treatments. Ruminal proportions of acetate and butyrate decreased (P < 0.10) in response to supplementation. Rate, lag, and extent (72 h) of in situ forage degradability were unaffected by treatment. Generally, these data are interpreted to indicate that increasing levels of barley supplementation decrease forage intake, increase DM, OM, and NDF digestibility, and indicate alteration of the ruminal environment and fermentation patterns. 相似文献
4.
Two experiments were conducted to evaluate digestion kinetics of alfalfa (Medicago sativa L.) substitution for grass hay in beef cattle. In Exp. 1, forage combinations evaluated in situ consisted of 0% alfalfa-100% big bluestem (Andropogon gerardi Vitman), 25% alfalfa-75% big bluestem, 50% alfalfa-50% big bluestem, and 100% alfalfa-0% big bluestem. Nonlinear regression was used to determine the immediately soluble fraction A, the potentially degradable fraction B, the undegraded fraction C, and the disappearance rate of DM and NDF. Dry matter fraction A increased linearly (P = 0.03), and DM and NDF fraction B decreased linearly (P = 0.01) with increasing alfalfa substitution. Rate of DM and NDF disappearance increased linearly (P = 0.02) with increasing alfalfa substitution. In Exp. 2, treatments were arranged as a 2 x 2 factorial testing alfalfa substitution [none or 25% (as-fed basis)] to orchardgrass hay (Dactylis glomerata L.) and intake level [restricted to 1% of BW daily (DM basis) or ad libitum]. Nutrient intakes were lowest (P = 0.05) by steers fed restricted diets, intermediate by steers fed orchardgrass ad libitum, and greatest by steers fed orchardgrass plus alfalfa ad libitum. Intake level and forage source had no effect (P >/= 0.23) on total tract apparent digestibility of all nutrients except CP. Steers fed orchardgrass plus alfalfa had 33% greater (P = 0.01) total tract apparent digestibility for CP than those fed orchardgrass alone. Lag time of DM and NDF disappearance was not affected (P >/= 0.20) by alfalfa supplementation or intake level. Rate of DM and NDF disappearance of orchardgrass was faster (P = 0.01) in steers fed orchardgrass plus alfalfa, at both restricted and ad libitum levels of feeding, than in animals fed orchardgrass alone. Mean retention times of large and small particles of orchardgrass tended to be shorter (P = 0.06) when steers consumed ad libitum vs. restricted diets. Small orchardgrass particles tended to have a faster (P = 0.09) rate of passage under ad libitum feeding conditions and with alfalfa addition. Ad libitum intake was associated with a shorter mean retention time of orchardgrass and faster rate of passage of small orchardgrass particles, whereas alfalfa addition increased the rate of passage of small orchardgrass particles and the rate of DM and NDF disappearance. 相似文献
5.
Fawzy M. Abo-Donia Safa N. Abdel-Azim Mona M. Y. Elghandour Abdelfattah Z. M. Salem Germán Buendía N. A. M. Soliman 《Tropical animal health and production》2014,46(1):221-228
This study aimed to assess impacts of fungal treatment on the nutritional value of peanut hulls (PH) or urea at the rate of 5 kg/100 g of PH. Fermented sugar beet pulp inoculated with Trichoderma viride was supplemented to PH at rates of 5.0, 10.0 and 15.0 g/100 g air dry of PH and mixed well before aerobic incubation for 21 days. Organic matter (OM) content of PH declined with increased levels of fermented sugar beet pulp inoculums, while crude protein (CP), ether extract (EE), and ash increased. Fiber contents were decreased with both treatments of fermented sugar beet pulp and urea. Total N of PH increased with urea treatment, which reduced the true protein N to total protein N ratio. In sacco degradabilities of dry matter (DM), OM, and CP with urea treatment increased compared with fungal treatment. The DM intake of peanut hulls treated with fungus (PHF) was higher (P?<?0.05) than with peanut hulls treated with urea (PHU). Digestibility of OM, CP, neutral detergent fiber, and non-fiber carbohydrate by native breed Ossimi sheep with PH were higher (P?<?0.05) than with PH or urea treated PH. The intakes, losses, and balance of N increased (P?<?0.01) with PHF versus PH feeding. Feeding PHF increased (P?<?0.01) ruminal concentrations of NH3-N, acetic acid, butyric acid, and the acetic to propionic acid ratio. Bacterial and protozoal counts increased (P?<?0.05) with feeding PHF or PHU versus PH. Overall, this fungal treatment of peanut hulls created a higher nutritive value feed for ruminants. 相似文献
6.
Gelvin AA Lardy GP Soto-Navarro SA Landblom DG Caton JS 《Journal of animal science》2004,82(12):3589-3599
Two experiments evaluated digestive and performance effects of field pea-based creep feed in nursing calf diets. In Exp.1, eight nursing steer calves (145 +/- 27 kg initial BW) with ruminal cannulas were used to evaluate effects of supplementation and advancing season on dietary composition, intake, digestion, and ruminal fermentation characteristics. Treatments were unsupplemented control (CON) and field pea-based creep (SUP; 19.1% CP, DM basis) fed at 0.45% BW (DM basis) daily. Calves grazed native range with their dams from early July through early November. Periods were 24 d long and occurred in July (JUL), August (AUG), September (SEP), and October (OCT). Experiment 2 used 80 crossbred nursing calves, 48 calves in yr 1 and 32 calves in yr 2 (yr 1 = 144 +/- 24 kg; yr 2 = 121 +/- 20 kg initial BW), to evaluate effects of field pea-based creep on calf performance. Treatments included unsupplemented control (CON); field pea-based creep feeds containing either 8% (LS); or 16% (HS) salt; and soybean meal/field pea-based creep containing (as-fed basis) 16% salt (HIPRO). Masticate samples from SUP calves in Exp.1 had greater CP (P = 0.05) than those from CON calves. Forage CP and ADIN decreased linearly with advancing season (P = 0.01 and 0.03, respectively). In vitro OM digestibility of diet masticate decreased from JUL to OCT (P < 0.01; 58.5 to 41.3%). Forage intake did not differ (P = 0.33) between treatments but increased linearly with advancing season (1.67, 1.90, 3.12, 3.38 kg/d for JUL, AUG, SEP, and OCT, respectively; P < 0.01). Milk intake (percentage of BW) did not differ (P = 0.56) between CON and SUP calves but decreased linearly (P < 0.01) with advancing season. Supplemented calves had greater (P = 0.03) total intake (g/kg of BW; forage + milk + creep) compared with CON calves. Treatment did not affect (P < 0.30) rate of in situ disappearance of forage or creep. Forage DM, CP, and creep DM disappearance rate decreased linearly (P < or = 0.02) with advancing season. Supplementation decreased (P = 0.05) ruminal pH, whereas ruminal ammonia and VFA concentrations were greater (P < or = 0.02) in SUP calves. In Exp. 2, creep-fed calves had greater ADG and final BW than CON calves (P < 0.01). Calves offered HS tended (P = 0.07) to have increased gain efficiency above CON than LS calves. Field peas can be used as an ingredient in creep feed to increase calf weight gain without negatively affecting ruminal fermentation and digestion. 相似文献
7.
Thirty-two beef cows (467 kg) were individually fed native grass hay and supplement for two 14-d periods in each of 2 yr. Supplement treatments and amounts fed (kilograms/day) were negative control (NC), 0, or equal amounts of protein from soybean meal (SBM), .7; a blend of soybean meal and corn gluten feed (SBM/CGF), 1.0; or corn gluten feed (CGF) 1.6. Cows received supplement at 0645 and had ad libitum access to native grass hay from 0700 to 1130 and from 1530 to 2000. Compared with NC, all protein supplements increased (P less than .05) ruminal NH3, propionate and butyrate concentrations at 4 and 25 h postfeeding. Ruminal fluid pH, total VFA and acetate concentrations at 4 and 35 h postfeeding were not affected by supplements. All supplements increased (P less than .01) hay intake as well as hay, acid detergent fiber (ADF) and total diet dry matter (DM) digestibility. Compared to supplemental SBM, feeding CGF reduced (P less than .01) hay intake. Calculated daily intakes of metabolizable energy (ME) were 12, 17, 18, and 17 Mcal for NC, SBM, SBM/CGF and CGF, respectively. Hay intake, DM and ADF digestibility and ME intakes tended to be higher for SBM/CGF than for the average of SBM and CGF fed alone. Intakes of digestible DM and ADF were not altered by protein supplements, suggesting that intake responses were due to increased diet digestibility. Corn gluten feed appears to be an effective source of supplemental protein and energy for cows consuming low-quality roughage. 相似文献
8.
Six heifers (two Hereford X Jersey, four Hereford X Longhorn; average BW 278 kg) cannulated at the rumen and duodenum and fed a grass hay (fescue/orchardgrass) diet were used in a replicated 3 X 3 Latin square. Treatments were either no infusion (C), 150 ml of duodenally infused soybean oil (DI), or 150 ml of ruminally infused soybean oil (RI)/heifer twice daily for a total daily infusion of 300 ml of soybean oil. Periods of the Latin square included 18 d for adaptation and 5 d for collection. Forage OM, ADF, NDF, and N intakes were not affected (P greater than .10) by soybean oil infusion. Ruminal (P = .11) and total tract (P less than .10) OM digestibilities were decreased by RI compared with C or DI, but ADF and NDF digestibilities were not affected by treatment. Duodenal N (P less than .05) and microbial N flows were increased (P less than .10) for C and RI compared with DI. Microbial efficiency (g of N/kg of OM truly fermented) was improved (P less than .10) by RI compared with DI but did not differ (P greater than .10) from C. Ruminal pH was lower (P less than .05) with RI than with either C or DI. Ruminal NH3 N, total VFA, and acetate were not affected (P greater than .10) by treatment. Propionate (mol/100 mol) was greater (P less than .05) with RI than with DI and C, but the proportion of butyrate did not differ among treatments. These data indicate minimal direct benefits for improving forage usage as a result of soybean oil infusion with a 100% grass diet; however, animals should realize benefits from additional dietary energy provided by infused lipid. 相似文献
9.
Li YL McAllister TA Beauchemin KA He ML McKinnon JJ Yang WZ 《Journal of animal science》2011,89(8):2491-2501
The objective of this study was to evaluate the effects of substituting wheat dried distillers grains with solubles (DDGS) for barley grain and barley silage on intake, digestibility, and ruminal fermentation in feedlot beef cattle. Eight ruminally cannulated Angus heifers (initial BW 455 ± 10.8 kg) were assigned to a replicated 4 × 4 Latin square design with 4 treatments: control, low (25%), medium (30%), and high (35%) wheat DDGS (DM basis). The diets consisted of barley silage, barley concentrate, and wheat DDGS in ratios of 15:85:0 (CON), 10:65:25 (25DDGS), 5:65:30 (30DDGS), and 0:65:35 (35DDGS; DM basis), respectively. The diets were formulated such that wheat DDGS was substituted for both barley grain and barley silage to evaluate whether wheat DDGS can be fed as a source of both energy (grain) and fiber in feedlot finishing diets. Intakes (kg/d) of DM and OM were not different, whereas those of CP, NDF, ADF, and ether extract (EE) were greater (P < 0.01) and intake of starch was less (P < 0.01) for the 25DDGS compared with the CON diet. The digestibilities of CP, NDF, ADF, and EE in the total digestive tract were greater (P < 0.05) for 25DDGS vs. CON. Ruminal pH and total VFA concentrations were not different (P > 0.15) between 25DDGS and CON diets. Replacing barley silage with increasing amounts of wheat DDGS (i.e., from 25DDGS to 35DDGS) linearly reduced (P < 0.05) intakes of DM and other nutrients without altering (P=0.40) CP intake. In contrast, digestibilities of DM and other nutrients in the total digestive tract linearly increased (P < 0.05) with increasing wheat DDGS except for that of EE. Additionally, with increasing amounts of wheat DDGS, mean ruminal pH tended (P=0.10) to linearly decrease, and ruminal pH status decreased with longer (P=0.04) duration of pH <5.5 and <5.2, and greater (P=0.01) curve area under pH <5.8 and <5.5 without altering (P > 0.19) ruminal VFA and NH(3)-N concentrations. Results indicated that wheat DDGS can be effectively used to replace both barley grain and silage at a moderate amount to meet energy and fiber requirements of finishing cattle. However, when silage content of the diet is low (<10%), wheat DDGS is not an effective fiber source, so replacing forage fiber with wheat DDGS in finishing diets decreases overall ruminal pH status even though the rapidly fermentable starch content of the diet is considerably reduced. 相似文献
10.
Soto-Navarro SA Knight MH Lardy GP Bauer ML Caton JS 《Journal of animal science》2004,82(12):3560-3566
Six Angus crossbred cow-calf pairs (653 +/- 35 kg and 157 +/- 10 kg initial BW for cows and calves, respectively) were used to evaluate the influence of a fiber-based creep feed on intake, ruminal fermentation, digestion characteristics, and microbial efficiency in nursing beef calves. Cow-calf pairs were stratified by calf age and assigned randomly to one of two treatments: control (no supplement) or supplemented. Supplemented calves received 0.9 kg of a 49% soy hulls, 44% wheat middlings, 6% molasses, and 1% limestone supplement (DM basis) daily. All calves were cannulated in the rumen and duodenum and given ad libitum access to chopped brome hay (Bromus inermus L; 7.43% CP, 40.96% ADF, and 63.99% NDF; DM basis). Supplementation was initiated on May 1 (88 +/- 10.3 d calf age). Three sampling periods were conducted throughout the study (June 14 to 25, July 5 to 16, and August 9 to 20). Supplement and forage were offered at 0800 daily. Total, hay, and milk OM intakes of nursing calves were not affected by supplementation (2,014 vs. 2,328 +/- 288.8, 1,486 vs. 1,029 +/- 3,06.9, and 528 vs. 575 +/- 87.0 g/d, respectively). Milk OM intake was less (P < 0.09) in August than in June and July (635, 691, and 345 +/- 110.6 g/d for June, July, and August, respectively). A supplementation x month interaction occurred (P < 0.10) for total-tract OM digestion. Supplementation did not affect (P > 0.40) total-tract OM digestibility during June and August; however, during July, total-tract OM digestibility was lower (P = 0.03) for the control calves. Ruminal ammonia concentration, total VFA, and butyrate molar proportion increased (P < 0.05), whereas acetate proportion decreased (P = 0.01) in supplemented calves. Microbial efficiency was not influenced by supplementation (11.8 vs. 12.0 g/kg of OM truly fermented for control and supplemented calves, respectively). These data indicate that fiber-based supplements can be used as creep feed without negative effects on OM intake, total-tract OM digestibility, and ruminal fermentation characteristics in nursing beef calves. 相似文献
11.
L J Krysl M E Branine M L Galyean R E Estell W C Hoefler 《Journal of animal science》1987,64(4):1178-1188
To determine the influence of protein supplementation on intake and fermentation of low-quality hay, six ruminal- and cecal-cannulated Rambouillet ewes (avg wt 43.6 kg) in a crossover design were given ad libitum access to prairie hay with or without 80 g of cottonseed meal (CSM) X head-1 X d-1. Voluntary hay intake was measured the last 7 d of each 18-d period. Ruminal, cecal and blood samples were collected at 0, 1 (except cecal), 3, 6, 9, 12, 15, 18, 21 and 24 h post-supplementation on d 14 of each period to measure fluid dilution rate, fermentation characteristics and serum concentrations of insulin and growth hormone. An intraruminal dose of Yb-labeled hay, followed by fecal sampling on d 15 through 18, was used to measure particulate passage rate. Voluntary intake of prairie hay was increased (P less than .04) from 23.7 to 28.3 g/kg of body weight by CSM supplementation. Particulate passage rate constants did not differ (P greater than .15) between supplemented (3.76%/h) and control (3.72%/h) ewes, and total mean retention time was not altered (P greater than .15) by CSM supplementation. Ruminal retention time of particulates did not differ (P greater than .15) between treatments; however, intestinal transit time was faster (P less than .03; 18.1 vs 22.6 h) in supplemented than in control ewes. Estimated gastrointestinal dry matter fill was greater (P less than .05; 14.3 vs 12.9 g/kg body weight) in supplemented ewes. Ruminal fluid volume did not differ (P greater than .15) between treatments; however, supplemented ewes tended to have faster fluid dilution rates (P less than .14) and fluid outflow rates (P less than .11) than control ewes. Cecal fluid volume, dilution rate and outflow rate did not differ (P greater than .15) between groups. Ruminal and cecal pH and total volatile fatty acids were similar between treatments. Similarly, cottonseed meal supplementation did not affect (P greater than .15) ruminal or cecal ammonia concentrations. Molar proportions of ruminal and cecal individual fatty acids were not affected (P greater than .15) by CSM supplementation. Feeding cottonseed meal increased (P less than .05) serum insulin, decreased (P less than .07) serum growth hormone and increased (P less than .06) serum free fatty acids, but did not influence (P greater than .15) either serum urea N or glucose concentrations. Cottonseed meal supplementation in ewes fed prairie hay caused increased hay intake but had minimal effects on ruminal and cecal fermentation. 相似文献
12.
Effects of level and frequency of supplementation with alfalfa (A) on feed intake and digestion by steers fed bermudagrass (B) or orchardgrass (O) were determined in two Latin square experiments. In Exp. 1, six Holstein steers (224 kg) were fed B (2.25% N; 71.4% NDF) or O (2.52% N; 64.3% NDF) with 0, 15 or 30% (DM) A (2.70% N; 44.0% NDF). Total DMI was 2.43, 2.72 and 2.85% BW for B and 2.98, 3.00 and 2.87% BW for O with 0, 15 and 30% A, respectively. Total DMI was affected by forage (P less than .05), A level (linear; P less than .06) and a forage x A level (linear) interaction (P less than .05). Digestible OM intake increased .42 (15%) and .67 kg (24%) with feeding of 15 and 30% A, respectively, for B, but for O, only dietary inclusion of 30% A elevated digestible OM intake (.14 kg and 4% increases). In Exp. 2, five Holstein steers (165 kg) were fed B (1.81% N; 78.6% NDF) alone or with A (2.76% N; 52.8% NDF). Morning meals consisted of ad libitum B (OA), .3% BW of A daily (.3A), .6% BW of A every 2nd d (.6A), .9% BW of A every 3rd d (.9A) or 1.2% BW of A every 4th d (1.2A). All steers received B in the afternoon ad libitum, and B was given in the morning when A was not fed. Total DMI was 2.31, 2.12, 2.12, 2.26 and 2.29% BW for OA, .3A, .6A, .9A and 1.2A, respectively (SE .049). Grass characteristics affected response in feed intake to legume supplementation. Frequency of dietary legume addition may alter feed intake. 相似文献
13.
Effects of supplemental zinc and manganese on ruminal fermentation, forage intake, and digestion by cattle fed prairie hay and urea 总被引:3,自引:0,他引:3
One in vitro and one in vivo metabolism experiment were conducted to examine the effects of supplemental Zn on ruminal parameters, digestion, and DMI by heifers fed low-quality prairie hay supplemented with urea. In Exp. 1, prairie hay was incubated in vitro for 24 h with five different concentrations of supplemental Zn (0, 5, 10, 15, and 20 ppm) and two concentrations of supplemental Mn (0 and 100 ppm), both provided as chloride salts. Added Mn increased (P < 0.02) IVDMD, but added Zn linearly decreased (P < 0.03) IVDMD. Added Zn tended to increase the amount of residual urea linearly (P < 0.06) at 120 min and quadratically (P < 0.02) at 180 min of incubation, although added Mn counteracted these effects of added Zn. Six 363-kg heifers in two simultaneous 3 x 3 Latin squares were fed prairie hay and dosed once daily via ruminal cannulas with urea (45 or 90 g/d) and with Zn chloride to provide the equivalent of an additional 30 (the dietary requirement), 250, or 470 ppm of dietary Zn. After a 7-d adaptation period, ruminal contents were sampled 2, 4, 6, 12, 18, 21, and 24 h after the supplement was dosed. Supplemental Zn did not alter prairie hay DMI (mean = 4.9 kg/d) or digestibility, although 470 ppm added Zn tended to decrease (P < 0.06) intake of digestible DM, primarily due to a trend for reduced digestibility with 470 ppm supplemental Zn. Zinc x time interactions were detected for both pH (P = 0.06) and NH3 (P = 0.06). At 2 h after dosing, ruminal pH and ruminal ammonia were linearly decreased (P < 0.05; P < 0.01) by added Zn. At 5 h after feeding, ruminal pH was linearly increased (P < 0.05) by added Zn, suggesting that added Zn delayed ammonia release from urea. The molar proportion of propionate in ruminal fluid was linearly and quadratically increased (P < 0.02; P < 0.01) whereas the acetate:propionate ratio was linearly and quadratically decreased (P = 0.02; P < 0.05) by added Zn. Through retarding ammonia release from urea and increasing the proportion of propionate in ruminal VFA, Zn supplementation at a concentration of 250 ppm may decrease the likelihood of urea toxicity and increase energetic efficiency of ruminal fermentation. 相似文献
14.
15.
D L Harmon T G Nagaraja R T Brandt R W Lee T B Avery 《Journal of animal science》1987,64(4):1227-1234
Three experiments utilizing three Holstein steers (235 and 299 kg avg body weight for Exp. 1 and 2, respectively) were conducted to evaluate the effects of decoquinate, a synthetic coccidiostat, on ruminal fermentation, diet digestibility and performance of steers fed a finishing diet containing monensin and tylosin. Experiment 1 utilized a 70% forage diet, whereas Exp. 2 utilized a 20% forage diet. Each experiment was a 3 X 3 Latin-square design with treatments being 0, .5 and 5 mg decoquinate/kg body weight. Ruminal fermentation characteristics, water kinetics and blood constituents were measured on d 11 of each period, and zero-time volatile fatty acid (VFA) production was measured at 3 and 6 h post-feeding on d 12 to 14. No changes were seen in plasma glucose or L-lactate, ruminal pH, NH3-N or ruminal L-lactate for either experiment. Dry matter digestibility was depressed (P less than .05) at the .5- and 5-mg levels of decoquinate in Exp. 1, but dry matter digestibility was not affected in Exp. 2. No changes were seen in ruminal volume, outflow or total VFA concentration for either experiment. Molar proportions of VFA were not affected in Exp. 1, but the proportions of isobutyrate and butyrate decreased (P less than .05) at the 5-mg level of decoquinate in Exp. 2. Volatile fatty acid production was not changed in Exp. 1, but butyrate production was decreased (P less than .05) at the 5-mg level in Exp. 2. Experiment 3 involved 135 crossbred steers (259 kg avg initial wt), which were stratified by weight into 12 pens.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
M B Judkins L J Krysl R K Barton D W Holcombe S A Gunter J T Broesder 《Journal of animal science》1991,69(9):3789-3797
Four ruminally cannulated Holstein steers (average BW 303 kg) were used in a 4 x 4 Latin square design digestion trial to study the influence of daily cottonseed meal (CSM; 1.6 g of CP/kg of BW) supplementation time on forage intake and ruminal fluid kinetics and fermentation. Steers were housed individually in tie stalls and were fed chopped fescue hay on an ad libitum basis at 0600 and 1400. Treatments were 1) control, grass hay only (CON) and grass hay and CSM fed once daily at 2) 0600 (EAM) 3) 1000 (MAM), or 4) 1400 (PM). Ruminal NH3 N concentrations reflected a time of supplementation x sampling time interaction (P less than .05); CON steers had the lowest (P less than .05) ruminal NH3 N concentrations at all times other than at 0600, 1000, 1200, and 2400, when they did not differ (P greater than .05) from at least one of the supplemented groups. Forage intake, ratio of bacterial purine:N, rate of DM and NDF disappearance, and ruminal fluid kinetics were not influenced (P greater than .05) by supplementation time. Total ruminal VFA differed (P less than .05) between CON and supplemented steers, as well as among supplemented steers (linear and quadratic effects P less than .05). Acetate, propionate, and valerate proportions were influenced (P less than .05) by a sampling time X supplementation time interaction. Under the conditions of this study, greater peak ammonia concentrations with morning supplementation than with afternoon supplementation did not stimulate ruminal fermentation or rate of NDF disappearance. 相似文献
17.
Chuncheng XU Yimin CAI Naoko MORIYA Bayaru ERUDEN Kenji HOSODA Hiroki MATSUYAMA 《Animal Science Journal》2008,79(2):226-233
An experiment was conducted to examine feed intake, apparent digestibility, nitrogen balance, ruminal fermentation and blood components of wethers fed diets containing increasing levels of wet green tea grounds (WGTG). The experimental design was a 4 × 4 Latin square with four wethers in four 15‐day periods. Wethers were allowed access to diets ad libitum, and allotted to one of four treatments in which WGTG replaced 0% (no WGTG added, CTG), 5% (low level, LBG), 10% (medium level, MTG), and 15% (high level, HTG) of total mixed ration (TMR) dry matter (DM) as wet brewers grains (WBG). All TMR silages were ensiled for 120 days and, irrespective of the WGTG addition, they were well preserved with a high lactic acid content, low pH and ammonia‐N contents. There were no differences among treatments in feed intake, with the exception of ether extract intake (P = 0.032). Digestibilities for LTG and MTG treatments were not different from CTG. However, the organic matter, crude protein, acid detergent fiber and energy digestibilities for HTG treatment were lower than the CTG (P < 0.05). As the level of WGTG increased, nitrogen intake did not differ, but fecal nitrogen increased (P = 0.002), while urinary nitrogen decreased (P < 0.001). No differences among treatments were found in pH level and volatile fatty acids concentrations. However, the ruminal ammonia‐N of the HTG silage was lower than for the CTG silage at all times (P < 0.05). Increasing concentrations of WGTG in the TMR silage decreased (P = 0.019) plasma urea nitrogen content. Therefore, the possible mixing proportion of WGTG for TMR silages can be 10% of the diet DM. 相似文献
18.
Nine Angus x Gelbvieh heifers (average BW = 347 +/- 2.8 kg) with ruminal and duodenal cannulas were used in a split-plot designed experiment to determine the effects of soybean oil or corn supplementation on intake, OM, NDF, and N digestibility. Beginning June 8, 1998, heifers continually grazed a 6.5-ha predominantly bromegrass pasture and received one of three treatments: no supplementation (Control); daily supplementation of cracked corn (Corn) at 0.345% of BW; or daily supplementation (0.3% of BW) of a supplement containing cracked corn, corn gluten meal, and soybean oil (12.5% of supplemental DM; Oil). Soybean oil replaced corn on a TDN basis and corn gluten meal was included to provide equal quantities of supplemental TDN and N. Three 23-d periods consisted of 14 d of adaptation followed by 9 d of sample collections. Treatment and sampling period effects were evaluated using orthogonal contrasts. Other than crude fat being greater (P = 0.01) for supplemented heifers, chemical and nutrient composition of masticate samples collected via ruminal evacuation did not differ (P = 0.23 to 0.56) among treatments. Masticate NDF and ADF increased quadratically (P < or = 0.003) and N decreased linearly (P = 0.0001) as the grazing season progressed. Supplementation did not influence (P = 0.37 to 0.83) forage OM intake, total and lower tract OM digestibility, ruminal and total tract NDF digestibility, or total ruminal VFA; however, supplemented heifers had lower ruminal molar proportions of acetate (P = 0.01), higher ruminal molar proportions of butyrate (P = 0.007), and greater quantities of OM digested in the rumen (P = 0.10) and total tract (P = 0.02). As the grazing season progressed, total tract OM and N and ruminal NH3 concentrations and NDF digestibility decreased quadratically (P < or = 0.04). Microbial N flow (P = 0.09) and efficiency (P = 0.04) and postruminal N disappearance (P = 0.02) were greater for Control heifers and declined linearly (P < or = 0.02) as the grazing season advanced. Depressed microbial N flow seemed to be more pronounced for Oil than for the Corn treatment. Although total digestible OM intake increased with supplementation, metabolizable protein supply was reduced in supplemented heifers. Therefore, feeding low levels of supplemental grain with or without soybean oil is an effective strategy to increase dietary energy for cattle grazing high-quality forages, but consideration should be given to reduced supply of metabolizable protein. 相似文献
19.
P H Robinson W Chalupa C J Sniffen W E Julien H Sato T Fujieda K Watanabe H Suzuki 《Journal of animal science》1999,77(10):2781-2792
Four multiparous Holstein cows were fed a basal diet balanced with the Cornell Net Protein and Carbohydrate System (CNCPS). Diets were formulated to be co-limiting in intestinally absorbable supplies of methionine, lysine, and isoleucine. Cows were supplemented with no amino acids (control); lysine and methionine in a ruminally protected form; isoleucine by abomasal infusion; or lysine, methionine, and isoleucine in a 4x4 Latin square arrangement of treatments with 28-d periods. Performance of cows on all treatments was lower than expected due to low intake of DM that could have been caused by the high fiber level of the basal diet. This high fiber level was likely responsible for the high daily chewing times for cows fed all diets, which was consistent with the high ruminal pH values. Intake of DM and its components were not influenced by any treatment. Milk protein percentage tended to be higher when cows were fed diets supplemented with ruminally protected lysine and methionine; however, production of milk, milk fat, and milk lactose were not affected by any treatment. Cows tended to have a higher milk lactose proportion and tended to produce more milk and milk lactose when they were abomasally infused with isoleucine alone. However, when cows were supplemented with all three amino acids, milk production and composition did not differ from that of cows fed the unsupplemented diet. Use of the CNCPS to evaluate the performance of the cows fed the unsupplemented diet suggested that these cows may have been colimited by intestinally absorbable supplies of lysine, isoleucine, and methionine in addition to metabolizable protein. Evaluation of the unsupplemented diet with an alternate model, Shield, suggested that cows fed the unsupplemented diet may have been colimited by intestinally absorbable supplies of lysine, isoleucine, and arginine. Results suggest that enhanced delivery of intestinally absorbable isoleucine may stimulate milk lactose synthesis. 相似文献
20.
Lysocellin effects on growth performance, ruminal fermentation, nutrient digestibility and nitrogen metabolism in steers fed forage diets 总被引:1,自引:0,他引:1
Studies were conducted to determine the effects of lysocellin on growth performance and metabolism of steers fed forage-based diets. Treatments in all experiments consisted of 1) control, 2) 100 mg lysocellin/d, 3) 200 mg lysocellin/d and 4) 200 mg monensin/d. In each of two 90-d performance studies, 24 Hereford steers were individually fed greenchop (fungus-free tall fescue and Coastal and Tifton-44 bermudagrass) ad libitum and .91 kg/d of a corn-trace mineral salt supplement. In Exp. 1, tall fescue was fed from d 1 to 45 and bermudagrass from d 46 to 90. Bermudagrass was offered during d 1 to 45 and tall fescue during d 46 to 90 in Exp. 2. Lysocellin improved gain (Exp. 1, P less than .01) and feed conversion (Exp. 1 and 2 combined, P less than .05), decreased total VFA concentrations (P less than .05), increased molar proportions of propionate, isobutyrate and isovalerate (P less than .01), decreased molar proportions of acetate and butyrate (P less than .01) and lowered acetate:propionate (P less than .01). Two metabolism studies involving a total of 16 Hereford steers were conducted. Steers were fed tall fescue greenchop and .91 kg/d supplement for a 34-d adjustment period followed by a 5-d total collection period. Lysocellin increased N digestibility (P less than .01) and N retention (P less than .06) but did not (P greater than .05) affect DM, NDF or ADF digestibility. Data indicate that lysocellin results in major alterations in ruminal fermentation and can increase growth performance and N retention in steers fed forage-based diets. 相似文献