首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Densities for carbon dioxide measured by the upper atmospheric mass spectrometers on Viking 1 and Viking 2 are analyzed to yield height profiles for the temperature of the martian atmosphere between 120 and 200 kilometers. Densities for nitrogen and argon are used to derive vertical profiles for the eddy diffusion coefficient over the same height range. The upper atmosphere of Mars is surprisingly cold with average temperatures for both Viking 1 and Viking 2 of less than 200 degrees K, and there is significant vertical structure. Model calculations are presented and shown to be in good agreement with measured concentrations of carbon monoxide, oxygen, and nitric oxide.  相似文献   

2.
Results from the aeroshell-mounted neutral mass spectrometer on Viking I indicate that the upper atmosphere of Mars is composed mainly of CO(2) with trace quantities of N(2), Ar, O, O(2), and CO. The mixing ratios by volume relative to CO(2) for N(2), Ar, and O(2) are about 0.06, 0.015, and 0.003, respectively, at an altitude near 135 kilometers. Molecular oxygen (O(2)(+)) is a major component of the ionosphere according to results from the retarding potential analyzer. The atmosphere between 140 and 200 kilometers has an average temperature of about 180 degrees +/- 20 degrees K. Atmospheric pressure at the landing site for Viking 1 was 7.3 millibars at an air temperature of 241 degrees K. The descent data are consistent with the view that CO(2) should be the major constituent of the lower martian atmosphere.  相似文献   

3.
Soffen GA 《Science (New York, N.Y.)》1976,194(4271):1274-1276
The two Viking missions to Mars have been extraordinarily successful. Thirteen scientific investigations yielded information about the atmosphere and surface. Two orbiters and landers operating for several months photographed the surface extensively from 1500 kilometers and directly on the surface. Measurements were made of the atmospheric composition, the surface elemental abundance, the atmospheric water vapor, temperature of the surface, and meteorological conditions; direct tests were made for organic material and living organisms. The question of life on Mars remains unanswered. The Viking spacecraft are designed to continue the investigations for at least one Mars year.  相似文献   

4.
5.
The search for the landing site of Viking 2 was more extensive than the search for the Viking 1 site. Seven times as much area (4.5 million square kilometers) was examined as for Viking 1. Cydonia (B1) and Capri (C1) sites were examined with the Viking 1 orbiter. The B latitude band (40 degrees to 50 degrees N) was selected before the final midcourse maneuver of Viking 2 because of its high scientific interest (that is, high atmospheric water content, surface temperature, possible near-surface permafrost, and a different geological domain). The Viking 1 orbiter continued photographing the Cydonia (B1) site to search for an area large and smooth enough on which to land (three-sigma ellipse; 100 by 260 kilometers); such an area was not found. The second spacecraft photographed and made infrared measurements in large areas in Arcadia (B2) and Utopia Planitia (B3). Both areas are highly textured, mottled cratered plains with abundant impact craters like Cydonia (B1), but smaller sectors in each area are partially mantled by wind-formed deposits. The thermal inertia, from which the grain size of surface material can be computed, and atmospheric water content were determined from the infrared observations. A region in Utopia Planitia, west of the crater Mie, was selected: the landing took place successfully on 3 September 1976 at 3:58:20 p.m. Pacific Daylight Time, earth received time.  相似文献   

6.
Seiff A  Kirk DB 《Science (New York, N.Y.)》1976,194(4271):1300-1303
The Viking 2 entry science data on the structure of Mars' atmosphere up to 100 kilometers define a morning atmosphere with an isothermal region near the surface; a surface pressure 10 percent greater than that recorded simultaneously at the Viking 1 site, which implies a landing site elevation lower by 2.7 kilometers than the reference ellipsoid; and a thermal structure to 100 kilometers at least qualitatively consistent with pre-Viking modeling of thermal tides. The temperature profile exhibits waves whose amplitude grows with altitude, to approximately 25 degrees K at 90 kilometers. These waves are believed to be a consequence of layered vertical oscillations and associated heating and cooling by compression and expansion, excited by the daily thermal cycling of the planet surface. As is necessary for gravity wave propagation, the atmosphere is stable against convection, except possibly in some very local regions. Temperature is everywhere appreciably above the carbon dioxide condensation boundary at both landing sites, precluding the occurrence of carbon dioxide hazes in northern summer at latitudes to at least 50 degrees N. Thus, ground level mists seen in these latitudes would appear to be condensed water vapor.  相似文献   

7.
The results of two of the three biology experiments carried out on the Viking Mars landers have been simulated. The mixture of organic compounds labeled with carbon-14 used on Mars released carbon dioxide containing carbon-14 when reacted with a simulated martian surface and atmosphere exposed to ultraviolet light (labeled release experiment). Oxygen was released when metal peroxides or superoxides were treated with water (gas exchange experiment). The simulations suggest that the results of these two Viking experiments can be explained on the basis of reactions of the martian surface and atmosphere.  相似文献   

8.
The two Viking spacecraft launched to Mars in 1975 were designed for 90 days of intense observations followed by an extended mission phase to end in 1978. Because the spacecraft were still operating so well in 1978, three more mission phases were added and the project was not officially terminated until 1980. During these last three mission phases delays in controlling the orbiters from the earth increased. The spacecraft were kept functional and the length of the Viking mission was extended because the ground crew, over a period of 2 years, gradually made the orbiters autonomous.  相似文献   

9.
Selected observations made with the Viking infrared thermal mapper after the first landing are reported. Atmospheric temperatures measured at the latitude of the Viking 2 landing site (48 degrees N) over most of a martian day reveal a diurnal variation of at least 15 K, with peak temperatures occurring near 2.2 hours after noon, implying significant absorption of sunlight in the lower 30 km of the atmosphere by entrained dust. The summit temperature of Arsia Mons varies by a factor of nearly two each day; large diurnal temperature variation is characteristic of the south Tharsis upland and implies the presence of low thermal inertia material. The thermal inertia of material on the floors of several typical large craters is found to be higher than for the surrounding terrain; this suggests that craters are somehow effective in sorting aeolian material. Brightness temperatures of the Viking 1 landing area decrease at large emission angles; the intensity of reflected sunlight shows a more complex dependence on geometry than expected, implying atmospheric as well as surface scattering.  相似文献   

10.
During the past several years the Viking project developed plans to use Viking orbiter instruments and Earth-based radar to certify the suitability of the landing sites selected as the safest and most scientifically rewarding using Mariner 9 data. During June and July 1976, the Earth-based radar and orbital spacecraft observations of some of the prime and backup sites were completed. The results of these combined observations indicated that the Viking 1 prime landing area in the Chryse region of Mars is geologically varied and possibly more hazardous than expected, and was not certifiable as a site for the Viking 1 landing. Consequently, the site certification effort had to be drastically modified and lengthened to search for a site that might be safe enough to attempt to land. The selected site considered at 47.5 degrees W, 22.4 degrees N represented a compromise between desirable characteristics observed with visual images and those inferred from Earth-based radar. It lies in the Chryse region about 900 kilometers northwest of the original site. Viking 1 landed successfully at this site on 20 July 1976.  相似文献   

11.
Throughout the complete Mars year during which they have been on the planet, the imaging systems aboard the two Viking landers have documented a variety of surface changes. Surface condensates, consisting of both solid H(2)O and CO(2), formed at the Viking 2 lander site during the winter. Additional observations suggest that surface erosion rates due to dust redistribution may be substantially less than those predicted on the basis of pre-Viking observations. The Viking 1 lander will continue to acquire and transmit a predetermined sequence of imaging and meteorology data as long as it is operative.  相似文献   

12.
Stellar ultraviolet light transmitted through the earth's upper atmosphere is strongly absorbed by ozone and molecular oxygen. The stellar ultraviolet photometers aboard the Orbiting Astronomical Observatory (OAO-2) satellite have measured the intensity changes of several stars during occultation of the star by the earth's atmosphere. From the occultation data the nighttime vertical number density profiles of molecular oxygen at altitudes from 120 to 200 kilometers and of ozone at altitudes from 60 to 100 kilometers have been obtained.  相似文献   

13.
Radar observations of Mars at centimeter wavelengths in May, June, and July 1976 provided estimates of surface roughness and reflectivity in three potential landing areas for Viking 1. Surface roughness is characterized by the distribution of surface landing slopes or tilts on lateral scales of the order of 1 to 10 meters; measurements of surface reflectivity are indicators of bulk surface density in the uppermost few centimeters. By these measures, the Viking 1 landing site at 47.5 degrees W, 22.4 degrees N is rougher than the martian average, although it may be near the martian average for elevations accessible to Viking, and is estimated to be near the Mars average in reflectivity. The AINW site at the center of Chryse Planitia, 43.5 degrees W, 23.4 degrees N, may be an area of anomalous radar characteristics, indicative of extreme, small-scale roughness, very low surface density, or a combination of these two characteristics, Low signal-to-noise ratio observations of the original Chryse site at 34 degrees W, 19.5 degrees N indicate that that area is at least twice as rough as the Mars average.  相似文献   

14.
Kieffer HH 《Science (New York, N.Y.)》1976,194(4271):1344-1346
The annual temperature range for the martian surface at the Viking lander sites is computed on the basis of thermal parameters derived from observations made with the infrared thermal mappers. The Viking lander 1 (VL1) site has small annual variations in temperature, whereas the Viking lander 2 (VL2) site has large annual changes. With the Viking lander images used to estimate the rock component of the thermal emission, the daily temperature behavior of the soil alone is computed over the range of depths accessible to the lander; when the VL1 and VL2 sites were sampled, the daily temperature ranges at the top of the soil were 183 to 263 K and 183 to 268 K, respectively. The diurnal variation decreases with depth with an exponential scale of about 5 centimeters. The maximum temperature of the soil sampled from beneath rocks at the VL2 site is calculated to be 230 K. These temperature calculations should provide a reference for study of the active chemistry reported for the martian soil.  相似文献   

15.
The results from the meteorology instruments on the Viking 1 lander are presented for the first 20 sols of operation. The daily patterns of temperature, wind, and pressure have been highly consistent during the period. Hence, these have been assembled into 20-sol composites and analyzed harmonically. Maximum temperature was 241.8 degrees K and minimum 187.2 degrees K. The composite wind vector has a mean diurnal magnitude of 2.4 meters per second with prevailing wind from the south and counterclockwise diurnal rotation. Pressure exhibits diurnal and semidiurnal oscillations. The diurnal is ascribed to a combination of effects, and the semidiurnal appears to be the solar semidiurnal tide. Similarities to Earth are discussed. A major finding is a continual secular decrease in diurnal mean pressure. This is ascribed to carbon dioxide deposition at the south polar cap.  相似文献   

16.
Drifts of fine-grained sediment are present in the vicinity of the Viking 1 lander. Many drifts occur in the lees of large boulders. Morphologic analysis indicates that the last dynamic event was one of general deflation for at least some drifts. Particle cohesion implies that there is a distinct small-particle upturn in the threshold velocity-particle size curve; the apparent absence of the most easily moved particles (150 micrometers in diameter) may be due to their preferential transport to other regions or their preferential collisional destruction. A twilight rescan with lander cameras indicates a substantial amount of red dust with mean radius on the order of 1 micrometer in the atmosphere.  相似文献   

17.
Results from the neutral mass spectrometer carried on the aeroshell of Viking 1 show evidence for NO in the upper atmosphere of Mars and indicate that the isotopic composition of carbon and oxygen is similar to that of Earth. Mars is enriched in (15)N relative to Earth by about 75 percent, a consequence of escape that implies an initial abundance of nitrogen equivalent to a partial pressure of at least 2 millibars. The initial abundance of oxygen present either as CO(2) or H(2)O must be equivalent to an exchangeable atmospheric pressure of at least 2 bars in order to inhibit escape-related enrichment of (18)O.  相似文献   

18.
Observations of the latitude dependence of water vapor made from the Viking 2 orbiter show peak abundances in the latitude band 70 degrees to 80 degrees north in the northern midsummer season (planetocentric longitude approximately 108 degrees ). Total column abundances in the polar regions require near-surface atmospheric temperatures in excess of 200 degrees K, and are incompatible with the survival of a frozen carbon dioxide cap at martian pressures. The remnant (or residual) north polar cap, and the outlying patches of ice at lower latitudes, are thus predominantly water ice, whose thickness can be estimated to be between 1 meter and 1 kilometer.  相似文献   

19.
During October 1976, the Viking 2 orbiter acquired approximately 700 high-resolution images of the north polar region of Mars. These images confirm the existence at the north pole of extensive layered deposits largely covered over with deposits of perennial ice. An unconformity within the layered deposits suggests a complex history of climate change during their time of deposition. A pole-girdling accumulation of dunes composed of very dark materials is revealed for the first time by the Viking cameras. The entire region is devoid of fresh impact craters. Rapid rates of erosion or deposition are implied. A scenario for polar geological evolution, involving two types of climate change, is proposed.  相似文献   

20.
The Infrared Thermal Mappers aboard the two Viking orbiters obtained solar reflectance and infrared emission measurements of the Martian north and south polar regions during an entire Mars year. The observations were used to determine annual radiation budgets, infer annual carbon dioxide frost budgets, and constrain spring season surface and atmospheric properties with the aid of a polar radiative model. The results provide further confirmation of the presence of permanent CO(2)frost deposits near the south pole and show that the stability of these deposits can be explained by their high reflectivities. In the north, the observed absence of solid CO(2) during summer was primarily the result of enhanced CO(2) sublimation rates due to lower frost reflectivities during spring. The results suggest that the present asymmetric behavior of CO(2)frost at the Martian poles is caused by preferential contamination of the north seasonal polar cap by atmospheric dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号