首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
The concentrations of Ca, Mg, K, N, P, and C, the ratios of C/N, C/P, and N/P, and pH values in L, F, and H layers were compared between a coniferous dominated forest group and a broad-leaved dominated forest group. L layers in the broad-leaved group displayed significantly higher nutrients concentrations, except for N a and P, and higher pH values than those in the coniferous group. This pattern extended to the F layers. In the F layers the broad-leaved group showed a substantial decrease in K concentrations compared with the L layers. In the H layers, pH values and Ca concentrations became very low for both groups. Carbon concentrations decreased linearly from the L to H layers. The degree of increase in Nand P concentrations from the L to F layers was larger than that from the F to H layers. Magnesium and Na concentrations did not vary appreciably among the layers. Between the groups no significant differences in the values of N, P, C, Na, N/P, and pH were found in the H layers, and the differences in the Ca, K, and C/N values became negligible. The results suggest that the H layers displayed relatively homogeneous characteristics for nutrient conditions even though the above ground vegetation was different.  相似文献   

2.
Soil samples were collected from topsoil and subsoil beneath secondary coastal rainforest and from areas which had undergone forest clearance over periods from less than one year to five years. Soils are characterized using total element, particle size and mineralogical analyses and fertility studies examined parameters associated with the exchange complex of the topsoil horizon. Changes in these parameters less than one year after forest clearance are shown as significant increases in pH, organic carbon, available cations (Ca, Mg, Na, K), available P, total N and effective CEC with exchangeable Al being reduced to zero concentration. However, two and five years after clearance, nutrient concentrations decreased to deficient levels and low pH and organic matter resulted in Al and Mn being potentially toxic to plant growth. Brief reference is made to the Fertility Capability Soil Classification System (FCC) as a means of assessing fertility status. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
Significant amounts of organic carbon (C) and nitrogen (N) are accumulated in soil in boreal forests. However, increased concern has been shown regarding the negative impacts of forestry operations on both the C sequestration and N stocks in soil. Changes in the C and N stocks in woody debris, forest floor and mineral soil (0–20 cm) were studied in Eastern Finland for 10 years after stem‐only clear‐cutting followed by soil harrowing. Samples were taken from the uncut forest and from the different microsites formed by the harrowing (ridges, furrows and undisturbed areas). Carbon and N from logging residues were not incorporated into the forest floor or mineral soil stocks to any great extent. After 5 years the C stock above the mineral soil was smaller (< 20%) in the treated area than in the uncut forest and after 10 years it was < 50% smaller. The corresponding N stock was marginally larger (< 5%) after 5 years, but smaller (< 20%) after 10 years. In the mineral soil there were no changes; only the furrows lost C and N when compared with the other microsites, but not when compared with the forest. Harrowing increased the spatial variation in the forest floor C and N stocks. The comparison of the N losses from the soil and logging residues and woody debris with the leaching losses, the amounts utilized by the regenerating vegetation or estimated to be immobilized by the stumps at the same site indicated that N which remained after the clear‐cutting was retained at the site. For a full understanding of the impact of such a disturbance on stocks at a site all significant fluxes and stocks would need to be monitored.  相似文献   

4.
In tropical montane forests, soil properties change with increasing altitude, and tree‐growth decreases. In a tropical montane forest in Ecuador, we determined soil and tree properties along an altitudinal transect between 1960 and 2450 m asl. In different vegetation units, all horizons of three replicate profiles at each of eight sites were sampled and height, basal area, and diameter growth of trees were recorded. We determined pH and total concentrations of Al, C, Ca, K, Mg, Mn, N, Na, P, S, Zn, polyphenols, and lignin in all soil horizons and in the mineral soil additionally the effective cation‐exchange capacity (CEC). The soils were Cambisols, Planosols, and Histosols. The concentrations of Mg, Mn, N, P, and S in the O horizons and of Al, C, and all nutrients except Ca in the A horizons correlated significantly negatively with altitude. The C : N, C : P, and C : S ratios increased, and the lignin concentrations decreased in O and A horizons with increasing altitude. Forest stature, tree basal area, and tree growth decreased with altitude. An ANOVA analysis indicated that macronutrients (e.g., N, P, Ca) and micronutrients (e.g., Mn) in the O layer and in the soil mineral A horizon were correlated with tree growth. Furthermore, lignin concentrations in the O layer and the C : N ratio in soil affected tree growth. These effects were consistent, even if the effect of altitude was accounted for in a hierarchical statistical model. This suggests a contribution of nutrient deficiencies to reduced tree growth possibly caused by reduced organic‐matter turnover at higher altitudes.  相似文献   

5.
Chronic N deposition has been hypothesized to affect DOC production in forest soils due to the carbon demand exerted by microbial immobilization of inorganic N. We tested this hypothesis in field experiments at the Harvard Forest, Petersham, Massachusetts, USA. During four years of sampling soil solution collected beneath the forest floor in zero-tension lysimeters, we observed little change in DOC concentrations (10-30% increase, not statistically significant) associated with elevated N inputs, but did observe significant increases in DON concentrations. Both DOC and DON varied seasonally with highest concentrations in summer and autumn. Mean DON concentrations increased 200-300 % with the highest rate of inorganic N fertilization, and concentrations of DON were highest in samples with high inorganic N concentrations. We conclude that the organic chemistry of soil solution undergoes qualitative changes as a result of long-term N amendment at this site, with small changes in DOC, large increases in DON, and a decline in the C:N ratio of dissolved organic matter.  相似文献   

6.
Most soils in the Prairie Provinces of Canada are deficient in plant-available nitrogen (N), and many soils in the Parkland region also contain insufficient amounts of plant-available sulfur (S) for high crop production. A field experiment with perennial grass stand was conducted to determine the effects of long-term annual N (112 kg N ha?1), S (11 kg S ha?1) and potassium (K) (40 kg K ha?1) fertilization, and one-time lime application on forage dry matter yield (DMY) and soil properties [pH, total organic carbon (TOC) and N (TON), and light fraction organic C (LFOC) and N (LFON)] on a Dark Gray Chernozem (Boralfic Boroll) loam at Canwood in north-central Saskatchewan, Canada. The experiment had surface-broadcast annual treatments of no fertilizer (Nil), N, S, NS, and NSK fertilizers from 1980 to 2002, and one-time lime application in 1992 to bring soil pH to about 7. Application of N or S alone had only a little effect on DMY compared to unfertilized Nil treatment, while application of both NS together substantially increased DMY, and forage yield was further increased when K was also applied (NSK). The DMY following one-time liming was greater in limed plots than in unlimed plots for at least 10 years. Decline of soil pH by fertilization mainly happened in the 0–10 cm depth with N only, and in the 0–5 cm layer with NS treatment, whereas these treatments tended to increase soil pH in layers below 10 cm. One-time surface application of granular lime increased soil pH, mainly in the 0–5 cm layer, and the effect was maintained for at least 9 years. Mass of TOC, TON, LFOC, and LFON in different soil layers increased with combined applications of N and S fertilizers (NS), but the effect was much more pronounced in the 0–7.5 cm soil layer, and also varied with organic fraction. Light organic fractions were more responsive to applied NS than total organic fractions. The findings suggest that application of N and S together was effective in sustaining high forage yield and increasing C and N sequestration in a soil deficient in both N and S.  相似文献   

7.
This study evaluated the physicochemical changes in the soil of potato field that was irrigated by fresh water, differentially diluted wastewater and undiluted wastewater (hereafter called wastewater). The potato crop was cultivated for consecutive three seasons under fertilized and unfertilized conditions. The wastewater contained higher concentrations of organic carbon (C), nitrogen (N), phosphorus (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), sulfur (S), zinc (Zn) and boron (B) and lower concentrations of heavy metals. In this study, properties of wastewater-irrigated soil were compared with fresh water-irrigated soil. The application of wastewater reduced the bulk density of the surface soil by 2.83% and augmented the porosity by 6.02%. The unsaturated hydraulic conductivity and water retention capacity of the soil were improved under wastewater irrigation. Soil pH increased due to wastewater application but decreased, to a smaller extent, due to fertilizer application. Soil EC increased both with wastewater and fertilizer application; both parameters changed significantly in the top 0–15 cm soil layer. But, at the deeper layers, they were not affected by wastewater application. The organic C, total N, available P and S of the soils increased significantly (p = 0.05) when potato field was irrigated with raw wastewater. The organic C increased by 23.80% under wastewater irrigation in the top soil layer. The N content of the soil showed similarities with the organic C contents. Exchangeable Na, K, Ca, Mg; Zn and B of the soil also increased significantly with wastewater application. So, irrigation with urban wastewater is suggested to improve soil fertility as well as to ease pressure on the fresh water in the area of water scarcity.  相似文献   

8.
The quantities of earthworm surface casts were monitored in traditional bush fallow regrowth (BFR), Pueraria phaseoloides live mulch (PLM), Leucaena leucocephala alley cropping (LAC) and undisturbed forest. The fallow systems were planted to maize/cassava intercrop either permanently or for one year after three years of fallow i.e. at 100 and 25% cropping frequencies. Earthworm casting activity was lower in fields cropped after clearing three year old fallow than in the respective permanently cropped fallow management system. The reduction in casting was related both to the degree of biomass removed through burning and to re-establishment of cover crops. Higher exchangeable cation concentration in the soil did not cause increased casting activity. Concentrations of organic C, total N and exchangeable Ca and Mg in casts were significantly higher than in the 0–15 cm topsoil. Exchangeable Ca and Mg in casts did not significantly differ between treatments, with the exception of significantly higher Mg in casts after three years of P. phaseoloides fallow. Topsoil (0–15 cm) exchangeable Ca and Mg were not correlated with cast exchangeable Ca and Mg, but concentrations of organic C and total N in casts were significantly correlated with organic C and total N in the topsoil. Coefficients of variability of organic C, total N and exchangeable Ca and Mg were about twice as high in the soil than in casts. Significant negative correlations between the cast to soil ratio (cast enrichment factor) of organic C, total N and exchangeable Ca and Mg and the respective concentrations in the soil show that earthworms are increasingly selective in organic carbon and nutrient uptake as these parameters of soil fertility are declining.  相似文献   

9.
In tropical montane forests nutrients released from the organic layers of the soil can supply a large part of the vegetation's requirements. We have examined concentrations, storage, and turnover times of nutrients in the organic layer and the fluxes of nutrients by the fall of small litter (leaves, seeds, flowers, small twigs, and plant debris that passed an opening of 0.3 m × 0.3 m) in such a forest in Ecuador. The times taken for litter to turn over were estimated by relating nutrient storage in the organic layer to rate of litterfall and by incubating samples in the laboratory. The organic layer had a thickness of 2–43 cm, a mass of 30–713 t ha?1, and a nutrient storage of 0.87–21 t N, 0.03–0.70 t P, 0.12–2.5 t K, 0.09–3.2 t Ca, and 0.07–1.0 t Mg ha?1. The pH (in H2O) ranged between 3.1 and 7.4 and was correlated with the concentrations of Ca and Mg (r= 0.83 and 0.84, respectively). The quantity of small litter (8.5–9.7 t year?1) and mean concentrations of nutrients in litter (19–22 g N, 0.9–1.6 g P, 6.1–9.1 g K, 12–18 g Ca, and 3.5–5.8 g Mg kg?1) were larger than in many other tropical montane forests. The mean turnover times of elements in the organic layer increased in the order, Mg (7.0 years) < Ca (7.9) < K (8.5) < P (11) < N (14) < S (15) when calculated as the quotient of storage in the organic layer to flux by litterfall; they were < 12 years for N, P, and S in the incubation experiment. Under optimum conditions in the laboratory, the mineralization of S was just as large as the S deposition by litterfall. In weakly acid soils Mn and Zn and in strongly acid soils Ca added in a nutrient solution were immobilized during incubation. Thus, lack of S, Mn, Zn, and Ca might limit plant growth on some soils.  相似文献   

10.
Francisco L. Prez 《CATENA》2009,76(3):191-205
The influence of tephra covers on soil water was studied in Haleakala (Maui, Hawai'i) during two summers; eight sites with tephra layers and silverswords (Argyroxiphium sandwicense DC.) were sampled at 2415–2755 m. At each site, eight paired-sample sets were obtained in bare soils and under adjacent tephra, at three depths. Tephra were sharply separated from underlying soils and showed prominent vertical stratification. Tephra clast size-distribution was assessed by photosieving and on interstitial-gravel samples; stones included 45.6% cobbles, 29.4% pebbles, and 25% blocks.Moisture content increased with depth in both positions, but soils below tephra had more water at all depths than exposed areas. Surface soils beneath tephra contained 83% more water than bare ground. Soils at 5–10 cm had  106% greater moisture under rocks, but only  70% at 10–15 cm. Differences between plots were statistically significant ( p < 0.001) for surface soils, but less pronounced for subsoils. Soils above 2650 m had greater water content than at lower elevations, and moisture disparity between sample pairs increased with altitude.All soils were coarse, with  20% gravel and  94% sand; most fine material (≤ 0.063 mm) was silt, as clay content was negligible. Organic-matter percentage was low (1.65%). Bulk density and porosity were associated with moisture variation both in tephra-insulated and bare soils; 80% of field moisture was statistically (p < 0.001) accounted for by pore space. Air and soil temperatures were recorded at three sites during  one-week periods prior to moisture sampling. Tephra substantially decreased soil maxima and daily thermal amplitude in underlying soils, but did not noticeably affect nightly minima. Thin (5–6 cm) tephra layers were nearly as effective as thicker (9–15 cm) deposits in depressing soil maxima. Possible water-conservation mechanisms under tephra include: decreased evaporation due to ground shielding and lower maxima; reduced capillary flow; greater infiltration depth; nocturnal dew condensation; and fog interception by blocks.  相似文献   

11.
Tephra from volcanic eruptions contains only small amounts of mercury (Hg) right after the eruption because the high temperature at eruption evaporates Hg in volcanic ash. Thus, accumulation of Hg in tephra soil layers during the dormant periods of the volcano may reflect Hg deposition while the layer was exposed to the atmosphere. To estimate sequential changes in Hg deposition, we measured the Hg content and accumulation in tephra layers from 6 sites in Hokkaido known to have many tephra layers derived from volcanic eruptions over a 34,000-year period. Mercury content and accumulation rate in the soil profiles varied widely depending on the tephra. In each tephra layer, the Hg content and accumulation rates increased principally at the upper soil horizons and decreased at the lower depths. The Hg deposition rates calculated from the amount of Hg accumulated in the tephra layers were similar within the same tephra. These characteristics of Hg distribution indicate that Hg deposition accumulated on the surface of each tephra layer during the period the tephra layer was exposed to the atmosphere. Although physicochemical processes such as leaching out, wind erosion, and volatilization might lead to over- and/or underestimation of the deposition rates, our estimated amounts of Hg were markedly higher in the tephra soils after 1,600 year BP than before that time. The results of this study suggest that tephra layers in Hokkaido offer important implications for understanding of the historical changes in atmospheric Hg deposition.  相似文献   

12.
Measurements were made in southern Nigeria of soil organic C, N, S and P after forest clearance and cultivation of the site over a period of 22 months. Sampling depth, initially 0–10 cm, was adjusted as soil bulk density increased. Assuming a first order decay equation, the resulting mineralization constants for C, N, P and S were 0.179, 0.193, 0.136 and 0.262, giving half lives of 3.5, 3.3, 4.7 and 2.3 years. The amounts of N and P mineralized in the surface soil layer were equal to or exceeded the uptake of N and P by one crop of soybeans and three crops of maize. The observations are discussed in relation to a model that might be used for the more effective use of nutrients after a forest fallow. Also reported is the spatial variability of the soil C, N, S, organic P and total P at the time of forest clearance. Total and organic P had a high long-range variability which is related to the clay content. C, N and S had high short-range variability which is attributed to the vegetation.  相似文献   

13.
Abstract

Tephra from volcanic eruptions contains only small amounts of mercury (Hg) right after the eruption because the high temperature at eruption evaporates Hg in volcanic ash. Thus, accumulation of Hg in tephra soil layers during the dormant periods of the volcano may reflect Hg deposition while the layer was exposed to the atmosphere. To estimate sequential changes in Hg deposition, we measured the Hg content and accumulation in tephra layers from 6 sites in Hokkaido known to have many tephra layers derived from volcanic eruptions over a 34,000-year period. Mercury content and accumulation rate in the soil profiles varied widely depending on the tephra. In each tephra layer, the Hg content and accumulation rates increased principally at the upper soil horizons and decreased at the lower depths. The Hg deposition rates calculated from the amount of Hg accumulated in the tephra layers were similar within the same tephra. These characteristics of Hg distribution indicate that Hg deposition accumulated on the surface of each tephra layer during the period the tephra layer was exposed to the atmosphere. Although physicochemical processes such as leaching out, wind erosion, and volatilization might lead to over- and/or underestimation of the deposition rates, our estimated amounts of Hg were markedly higher in the tephra soils after 1,600?year?BP than before that time. The results of this study suggest that tephra layers in Hokkaido offer important implications for understanding of the historical changes in atmospheric Hg deposition.  相似文献   

14.
15.
《Geoderma》2005,124(1-2):203-214
The accumulation of carbon (C), nitrogen (N) and phosphorus (P) and their vertical distribution in the soil profile in relation to site age were studied in a chronosequence of 19 sites on reclaimed spoil heaps from open-cast coal mining, near Sokolov (Czech Republic) and compared to a semi-natural alder forest in the vicinity of the mining area. The reclaimed sites were located on tertiary clay or quaternary gravel–sand spoil material and afforested with alder species (Alnus glutinosa, A. incana) 4–65 years ago.Rapid accumulation of C and N in the soil profile was registered within 15 years after reclamation. The rate of increase in C and N contents in the whole profile and the thickness of the litter and fermentation layers was slower in 25-year-old and older reclaimed sites. The soil of the semi-natural alder forest was richer in C and N in the 5–10-cm layer compared with 40-year-old (clays) and even with 65-year-old (gravel–sand) reclaimed soils. N accumulated more slowly in comparison with C, especially in deeper (5–10 cm) parts of the profile. Accumulation of organic C resulted in a decrease in substrate pH from alkaline, which was characteristic of young sites, to slightly acidic on older sites. The pH decreased gradually with increasing site age in all soil layers but increased with depth in the soil profile. In contrast to C and N, P content did not significantly change with site age in any layer of the soil profile. The highest amount of P was found in the fermentation layer, but there was no difference to the other layers. The soil profile of the semi-natural sites was richer in P in comparison to 40-year-old reclaimed ones.  相似文献   

16.
Dissolved organic nitrogen and carbon (DOC) are significant in the C and N cycle in terrestrial ecosystems. Little is known about their dynamics in the field and the factors regulating their concentrations and fluxes. We followed the fluxes and concentrations of the two in a Norway spruce (Picea abies (L.) Karst.) forest ecosystem in Germany from 1995 to 1997 by sampling at fortnightly intervals. Bulk precipitation, throughfall, forest floor percolates from different horizons and soil solutions from different depths were analysed for major ions, dissolved organic N and DOC. The largest fluxes and concentrations were observed in percolates of the Oi layer, which contain amino N and amino sugar N as the major components. The average ratio of dissolved organic C to N in forest floor percolates corresponded to the C/N ratio of the solid phase. Concentrations and fluxes were highly dynamic with time and decreased with depth. The largest fluxes in forest floor percolates occurred when the snow melted. The concentrations and fluxes of dissolved organic N were significantly correlated with DOC, but the correlation was weak, indicating different mechanisms of release and consumption. The dynamics of dissolved organic N and DOC in forest floor percolates were not explained by pH and ionic strength of the soil solution nor by the water flux, despite large variations in these. Furthermore, the release of these fractions from the forest floor was not related to the quality and amount of throughfall. Concentrations of dissolved organic N in forest floor percolates increased with soil temperature, while temperature effects on DOC were less pronounced, but their fluxes from the forest floor were not correlated with temperature. In the growing season concentrations of both dissolved organic N and C in forest floor percolates decreased with increasing intensity of throughfall. Thus, the average throughfall intensity was more important than the amount of percolate in regulating their concentrations in forest floor percolates. Our data emphasize the role of dissolved organic N and DOC in the N and C cycle of forest ecosystems.  相似文献   

17.
猫儿山自然保护区不同林分类型土壤生态化学计量特征   总被引:1,自引:0,他引:1  
  目的  为揭示猫儿山自然保护区不同林分下的土壤有机碳(C)、全氮(N)、全磷(P)、全钾(K)含量与化学计量比之间的相关性及其变化特点。  方法  采用野外调查采样与室内实验分析相结合的方法,测定水青冈林、毛竹林、杉木林3种林分类型的不同深度土层土壤有机C、全N、全P、全K养分含量,计算其化学计量比,并用多重比较和相关性分析方法综合评价土壤生态化学计量特征。  结果  不同林分类型土壤养分含量与生态化学计量比都存在显著差异(P < 0.05)。土壤有机C、全N含量在林分和土层间差异显著(P < 0.05),在同一林分下随土层深度增加而降低。土壤有机C、全N含量在3种林分间表现为水青冈 > 毛竹 > 杉木,即以水青冈林分最大,其平均值分别达55.91 g kg?1和4.20 g kg?1;全P、全K含量在林分间、土层间存在差异,但未达显著水平;而不同养分含量比C/N、C/P、C/K、N/P、N/K、P/K整体变化相似,在林分间排列顺序为水青冈 > 毛竹 > 杉木。相关分析结果表明,土壤有机C与全N、全P与全K间分别呈极显著(P < 0.01)和显著正相关关系(P < 0.05),而全P与有机C、全N均无显著相关性,全K与有机C、全N呈显著负相关关系。  结论  水青冈天然次生林分土壤有机C、全N高于毛竹人工林、杉木人工林两林分,有较好的养分归还及地力维持效果。  相似文献   

18.
Most of the carbon (C) in terrestrial ecosystems is stored in the mineral soil layers. Thus, the response of the mineral soil to potential increases in temperature is crucial for the prediction of the impact of climate change on terrestrial ecosystems. Samples from three mineral soil layers were collected from eight mature forest sites in the European network CARBOEUROFLUX and were incubated at four temperatures (4, 10, 20 and 30°C) for c. 270 days. Carbon mineralization rates were related to soil and site characteristics. Soil water holding capacity, C content, nitrogen (N) content and organic matter all decreased with soil depth at all sites, with significantly larger amounts of organic matter, C and N in the top 0–5 cm of mineral soil than in the deeper layers. The conifer forest soils had significantly lower pH, higher C/N ratios and carbon contents in the top 5 cm than the broadleaf forest soils. Carbon mineralization rates decreased with soil depth and time at all sites but increased with temperature, with the highest rates measured at 30°C for all sites. Between 50 and 70% of the total C respired after 270 days of incubation came from the top 5 cm. The percentage C loss was small in all cases, ranging from 1 to 10%. A two‐compartment model was fitted to all data to derive the labile/active and slow/recalcitrant fractions, as well as their decomposition constants. Although the labile fraction was small in all cases, we found significantly larger amounts of labile C in the broadleaf forest soils than in the conifer forest soils. No statistically significant differences were found in the temperature sensitivity parameter Q10 among sites, soil layers or between conifer and broadleaf soils. The average Q10 for all soils was 2.98 (± 0.10). We found that despite large differences among sites, C mineralization can be successfully predicted as a combined function of site leaf area index, mean annual temperature and content of labile carbon in the soil (R2 = 0.93).  相似文献   

19.
Tephrochronology provides a valuable method of dating peat deposits but results may be compromised if tephra undergoes significant post-depositional movement. This study takes an experimental approach to investigate the processes of tephra taphonomy. Tephra was applied to peats and movement monitored over periods of up to 6 years. Experiments combined field studies on six British peatlands with rainfall simulation experiments in the laboratory. Tephra moved up to 15 cm down through the peat but the vast majority remained at the surface at time of deposition, forming a layer which accurately recorded the palaeo-surface. Tephra moved both down, by shards sinking through the peat, and up, with shards probably being moved by plant growth or with water table variability. The extent of tephra movement most likely depends on the density and porosity of the surface peat; there is no simple relationship with wetness. There is some indication that the extent of tephra movement depends on the tephra particle size but this will require further work to confirm. The taphonomy of tephra is an important issue which should be considered in all tephrochronology studies in peatlands.  相似文献   

20.
Charles C. Rhoades   《Pedobiologia》2007,50(6):553-562
American chestnut trees once dominated vast areas of deciduous forest in eastern North America, but the exotic chestnut blight almost eliminated the species from the region. Introduction of blight-resistant American chestnut hybrids will probably start in the next decade after many years of tree breeding. What were the historic effects of chestnut on forest soils, and what changes may follow reintroduction of hybrid chestnuts? A site in southern Wisconsin provided an opportunity to examine the effect of chestnut trees on soil properties. At this site, 600 km northwest of chestnut's historic distribution, naturalized chestnuts have spread throughout an intact mixed-species forest from nine planted trees. The site contains soil developed on a silty loess-mantled ridge that abuts sandier hillslopes, allowing the effects of individual chestnuts to be examined on two soil types. I sampled and analyzed forest floor and mineral soils beneath canopies of individual American chestnuts and the surrounding mixed-species deciduous forest on fine-silt and sandy-loam soil types. On sandy loam soils, total soil carbon (C) and nitrogen (N), inorganic N and net mineralization and nitrification rates were 10–17% higher beneath chestnut canopies compared to soils beneath mixed-species deciduous forest. The pool of total soil N beneath chestnut canopies was positively related to the silt content of the sandy loam soils. In contrast, there were no differences between properties of chestnut canopy and mixed-species deciduous forest soils on the fine silt texture class. On sandy loam soil conditions common throughout the pre-blight distribution of American chestnut, soil biogeochemical processes differ beneath individual chestnut trees relative to a diverse mixture of deciduous species. These findings suggest that widespread chestnut reintroduction has the potential to alter both stand- and watershed-scale processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号