首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Brooks JR  Meinzer FC  Coulombe R  Gregg J 《Tree physiology》2002,22(15-16):1107-1117
The magnitude of hydraulic redistribution of soil water by roots and its impact on soil water balance were estimated by monitoring time courses of soil water status at multiple depths and root sap flow under drought conditions in a dry ponderosa pine (Pinus ponderosa Dougl. ex Laws) ecosystem and in a moist Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) ecosystem. The fate of deuterated water applied to small plots to create a strong horizontal soil water potential gradient was also monitored to assess the potential for horizontal redistribution of water and utilization of redistributed water by co-occurring shallow-rooted plants. In a 20-year-old Douglas-fir stand, approximately 28% of the water removed daily from the upper 2 m of soil was replaced by nocturnal hydraulic redistribution during late August. In an old-growth ponderosa pine stand, approximately 35% of the total daily water utilization from the upper 2 m of soil appeared to be replaced by hydraulic redistribution during July and August. By late September, hydraulic redistribution in the ponderosa pine stand was no longer apparent, even though total water use from the upper 2 m of soil was nearly identical to that observed earlier. Based on these results, hydraulic redistribution would allow 21 and 16 additional days of stored water to remain in the upper soil horizons in the ponderosa pine and Douglas-fir stands, respectively, after a 60-day drought. At both sites, localized applications of deuterated water induced strong reversal of root sap flow and caused soil water content to cease declining or even temporarily increase at locations too distant from the site of water application to have been influenced by movement of water through the soil without facilitation by roots. Xylem water deuterium values of ponderosa pine seedlings suggested utilization of redistributed water. Therefore, hydraulic redistribution may enhance seedling survival and maintain overstory transpiration during summer drought. These first approximations of the extent of hydraulic redistribution in these ecosystems suggest that it is likely to be an important process in both wet and dry forests of the Pacific Northwest.  相似文献   

2.
In the Rocky Mountains, ponderosa pine (Pinus ponderosa (ssp.) ponderosa Dougl. ex P. Laws. & C. Laws) often co-occurs with Douglas-fir (Pseudotsuga menziesii var. glauca (Mayr) Franco). Despite previous reports showing higher shoot vulnerability to water-stress-induced cavitation in ponderosa pine, this species extends into drier habitats than Douglas-fir. We examined: (1) whether roots and shoots of ponderosa pine in riparian and slope habitats are more vulnerable to water-stress-induced cavitation than those of Douglas-fir; (2) whether species-specific differences in vulnerability translate into differences in specific conductivity in the field; and (3) whether the ability of ponderosa pine to extend into drier sites is a result of (a) greater plasticity in hydraulic properties or (b) functional or structural adjustments. Roots and shoots of ponderosa pine were significantly more vulnerable to water-stress-induced cavitation (overall mean cavitation pressure, Psi(50%) +/- SE = -3.11 +/- 0.32 MPa for shoots and -0.99 +/- 0.16 MPa for roots) than those of Douglas-fir (Psi(50%) +/- SE = -4.83 +/- 0.40 MPa for shoots and -2.12 +/- 0.35 MPa for roots). However, shoot specific conductivity did not differ between species in the field. For both species, roots were more vulnerable to cavitation than shoots. Overall, changes in vulnerability from riparian to slope habitats were small for both species. Greater declines in stomatal conductance as the summer proceeded, combined with higher allocation to sapwood and greater sapwood water storage, appeared to contribute to the ability of ponderosa pine to thrive in dry habitats despite relatively high vulnerability to water-stress-induced cavitation.  相似文献   

3.
Ponderosa pine, Jeffrey pine, and Douglas-fir seedlings were planted in container or bareroot form at three elevations in northern California. At the lowest elevation (762 m), container seedlings of ponderosa pine were significantly taller than bareroot seedlings at ages 4 and 10, and had breast-height diameters that were significantly larger than bareroot counterparts at age 10. Survival of Douglas-fir container seedlings was significantly greater than that of barefoot seedlings for all ages tested. At the mid-elevation site (1220 m), container seedlings of ponderosa pine and Douglas-fir were significantly larger in breast-height diameter than bareroot seedlings at age 10. Douglas-fir container seedlings survived significantly better at all ages than barefoot seedlings. At the highest elevation (1662 m), seedling height and diameter did not differ significantly, but survival of container seedlings was significantly higher than barefoot seedlings for both pine species at all ages tested.  相似文献   

4.
Little is known about ponderosa pine forest ecosystem responses to restoration practices in the Northern Rocky Mountains, USA. In this study, restoration treatments aimed at approximating historical forest structure and disturbances included modified single-tree selection cutting, with and without prescribed burning. We compared the effectiveness of restoration treatments on growth, vigor, and composition of recruitment responses with untreated controls. We used a randomized block design to detect treatment differences in mean individual tree basal area increment (BAInc10), growth efficiency (GE), and recruitment abundance between two restoration treatments (Cut-only and Cut-burn) and a Control. We further examined treatment effects by tree age-class (Young, Mature, Presettlement) using a spatial ANOVA model that incorporates the spatial autocorrelation among trees within experimental units. Ten years after implementing restoration treatments, mean individual tree BAInc10 and GE were significantly higher for treated units relative to Control units; all three age-classes benefited similarly from restoration treatments relative to the Control, with the greatest response in the Cut-only and moderate response in the Cut-burn. When treated units were compared, Cut-burn negatively affected BAInc10 and GE relative to Cut-only. Presettlement trees responded positively to treatment relative to the Control, particularly for BAInc10, demonstrating the potential of these old trees to respond to reduced competition. The Cut-burn treatment, in contrast, negatively affected the BAInc10 and GE response of postsettlement trees when compared to Cut-only. Restoration treatments did not reduce the amount of Douglas-fir recruits. In addition, the recruitment of both ponderosa pine and Douglas-fir species was associated with the proximate cover of woody debris in Cut-only and Control treatments. Finally, special consideration needs to be taken for spring Cut-burn treatments, which appeared to dampen growth and vigor, relative to Cut-only, particularly for Young and Mature trees, and increased recruitment of ponderosa pine and particularly Douglas-fir.  相似文献   

5.
Root growth in seedling transplants of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Pacific silver fir (Abies amabilis(Dougl.) Forbes), noble fir (Abies procera Rehd.), lodgepole pine (Pinus contorta Dougl. ex Loud.) and ponderosa pine (Pines ponderosa Doug. ex Laws.) began when soil temperature exceeded 5 °C. Root growth increased rapidly after 10 °C and attained maximum values at 20 °C. At 30 °C, no root growth occurred in the firs; in the pines, root growth was 30 to 39% of maximum. Maximum shoot growth also occurred at 20 °C. In ponderosa pine, height growth of seedlings from a high-elevation source was unaffected by cold soil, but in low-elevation seedlings it was reduced. Budburst in Douglas-fir and the pines was delayed up to 11 days by cold soil, whereas in silver fir and noble fir, it was only slightly delayed. Prior to new root growth in ponderosa pine, xylem pressure potentials and stomatal conductances during the afternoon indicated reduced stomatal opening at all soil temperatures, whereas 23 days later, stomata were open to a greater degree when temperatures exceeded 10 °C.  相似文献   

6.
Ponderosa pine (Pinus ponderosa Dougl.) grown in mixture with whiteleaf manzanita (Arctostaphylos viscida Parry) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) grown in mixture with Pacific madrone (Arbutus menziesii Pursh) in southwestern Oregon showed an increase in growth with removal of competing woody cover. Both conifer species had roughly one-third the volume at plantation ages 26–27 when grown with uncontrolled competition compared to where woody competition was completely controlled at age 2. Intermediate levels of competitors usually led to intermediate levels of growth, but this was more evident with Douglas-fir than pine. When competition was reduced or removed, height/age relationships for Douglas-fir at plantation ages 23 and 27 reflected medium site quality rather than low quality as estimated from adjacent stands, indicating that these sites are potentially more productive than perceived with uncontrolled dense woody cover. These studies support the concept that competition management may allow some poor sites of ponderosa pine or Douglas-fir to be managed on the basis of a higher site potential.  相似文献   

7.
Greenhouse-cultured, container-grown ponderosa pine (Pinus ponderosa var. scopulorum Engelm.), interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and Engelmann spruce (Picea engelmannii (Parry) Engelm.) were cold acclimated and deacclimated in growth chambers over 19 weeks. Stem cold hardiness, total new root length at 14 days and days to bud break were measured weekly. Relationships among cold hardiness, root growth potential (RGP) and bud dormancy suggest that cold hardiness, which can be measured quickly, could provide a useful basis for estimating the two other parameters. During cold acclimation, there was a lag period in which stem cold hardiness remained at -15 degrees C and RGP was at a minimum, in all three species. Douglas-fir and Engelmann spruce buds remained fully dormant during this lag period. Ponderosa pine buds had no chilling requirement for the loss of dormancy, and reached quiescence during the lag period. Immediately following the lag period, as stem cold hardiness progressed to -22 degrees C, RGP increased to a high plateau in all three species, and Douglas-fir and Engelmann spruce buds approached quiescence. Cold deacclimation and bud development began immediately on exposure to warm, long days, but RGP remained high until stem cold hardiness returned to approximately -15 degrees C. At bud break, cold hardiness and RGP were at the minimum.  相似文献   

8.
We investigated variation in height growth, gas exchange, chlorophyll fluorescence and leaf stable carbon isotope ratio among wind-pollinated progenies of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca), ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and western white pine (Pinus monticola Dougl. ex D. Don) from a small group of contiguous stands on the Priest River Experimental Forest in northern Idaho. Photosynthetic variables differed between height classes in the pines, but not in Douglas-fir. Among species and families, tall families of ponderosa pine regained photosynthetic capacity earliest in the spring and maintained it latest in the growing season. Tall families of western white pine had higher instantaneous water-use efficiencies and lower photosynthetic rates than short families on warm days in August.  相似文献   

9.
One-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings were grown for 17 weeks in 100-cm deep, 7.8-liter containers. Two Douglas-fir provenances, one from a wet and one from a dry site in coastal British Columbia, and two lodgepole pine provenances, one from a wet and one from a dry site in interior British Columbia, were grown in wet (522% water content) or dry (318% water content) peat/vermiculite soil in a factorial design. Each container was sealed so that water loss occurred only through the seedling. Five harvests were made at three to five week intervals and water use, dry matter increment, root length and root weight were determined at each harvest. Stomatal conductance and shoot water potentials were measured during the last 12 weeks of the experiment. Lodgepole pine seedlings had greater dry matter production, water use, stomatal conductance and new root length than Douglas-fir seedlings. New root weight of lodgepole pine seedlings exceeded that of Douglas-fir seedlings during the last five weeks of the experiment, and specific root length (root length per unit root weight) of new roots was higher for lodgepole pine seedlings throughout the experiment. Douglas-fir seedlings showed higher water use efficiency (WUE) than lodgepole pine seedlings, and both species showed higher WUE in the dry soil treatment. Douglas-fir seedlings had lower water potentials and higher water uptake rates per unit of new root length than lodgepole pine seedlings, although water uptake rates per unit of root dry weight showed little difference between species. Soil water treatment influenced specific root length of new roots, water uptake per unit of new root length, and WUE in Douglas-fir seedlings more than in lodgepole pine seedlings.  相似文献   

10.
Effects of water supply on gas exchange, carbon isotopic composition, and relative growth rate were compared among seedlings from three populations of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) grown in a controlled environment chamber. The three populations were chosen to represent high, moderate and low drought tolerance. There was no indication that drought tolerance was related to high water-use efficiency. Populations differed (P < 0.05) in relative growth rate (RGR), but did not differ (P > 0.10) in gas exchange variables or carbon isotope ratio (delta(13)C). Well-watered seedlings had significantly higher RGR, xylem pressure potential (Psi(xpp)), net photosynthesis (A), stomatal conductance to water vapor (g), and lower delta(13)C and instantaneous water-use efficiency than water-stressed seedlings. With decreasing Psi(xpp), A decreased linearly, whereas g decreased exponentially. Seedlings of the highly drought-tolerant population were more sensitive to water availability than seedlings from the other populations; they used water quickly when water was available, but closed their stomata in response to water stress. We conclude that, in ponderosa pine, the drought avoidance mechanism is more important for survival and growth in arid and semiarid environments than the efficient use of water.  相似文献   

11.
WORRELL  R. 《Forestry》1992,65(3):253-280
Data describing the growth, survival and stem form of: a) Europeancontinental, and b) British provenances of trees native to Britainwere collated from Forestry Commission records. The growth ratesof European continental provenances of Scots pine (Pinus sylvestris),silver birch (Betulo pendula), sessile oak (Quercus petraea)and common alder (Alnus glutinosa) were inferior to those ofBritish provenances in 90 per cent of cases. European provenancesof these species also showed inferior survival. The growth ratesof continental provenances of beech (Fagus sylvatica) were superiorto British provenances in about 50 per cent of cases, provenancesfrom northern France, Belgium and Holland being the fastestgrowing. Relationships between the relative height growth offoreign provenances and latitude were demonstrated for Scotspine, silver birch and beech (relative height growth = the heightgrowth of a foreign provenance expressed relative to that ofBritish provenances at the same site). The continental provenancesthat grew best originated at 0–4° south of the latitudesof the planting sites. Relative height growth decreased bothnorth and south of these latitudes. In the case of oak, relativeheight growth did not vary widely between origins. The survivalof continental provenances of Scots pine was particularly pooron exposed upland sites. The stem form of British provenancesof Scots pine was intermediate between Fennoscandian provenancesand provenances from the rest of Europe. In oak and beech therewas generally little difference in stem form between Britishand continental provenances, but the best continental provenances(Belgian beech; French oak) were most reliable. The growth andsurvival of native trees is interpreted in the light of thepost-glacial history of these species. The implications regardingthe continued use of seed of native hardwoods imported fromcontinental Europe are discussed.  相似文献   

12.
Two species of pine native to Oregon and three native to Mexico were reciprocally planted in southwest Oregon and northeastern Mexico. The Oregon study site has very dry, hot summers; the Mexican site has hot, dry springs, but has rainy summers. Total rainfall and native genera are similar on both sites. Site-preparation trials were carried out on north and south slopes at both locations. For all species on both sites, survival on south slopes was satisfactory only with site-preparation treatments that gave near-complete vegetation control. Overall survival was best on north slopes in Mexico, and herb control was not required. Woody cover decreased survival and growth at all locations and aspect combinations. Chemical control improved survival, but the standing dead shade did reduce growth slightly as compared to growth on the totally cleared sites. Clearing without chemical control gave poor results in Oregon, but permitted good seedling survival and growth at the location in northeastern Mexico. Overall, ponderosa pine (Pinus ponderosa Dougl. ex Laws.) was the least sensitive species to environmental stress, and Hartweg pine (Pinus hartwegii Engelm.), the most sensitive. Mexican pines appeared to require more protection from water stress than did ponderosa pine.  相似文献   

13.
Many recent inventories have shown a marked drop in the amount of forest land dominated by ponderosa pine, with replacement by other species. I documented an imbalance in the size-class distribution of ponderosa pines at high elevation on the Paunsaugunt Plateau of southern Utah, due to a lack of individuals in smaller size classes. Germination and seedling survival experiments were conducted to investigate this reproductive failure. Fire-suppression policies of the 1900's, as well as the cooler and wetter recent climate, have probably made natural ponderosa pine regeneration difficult and have favored the more competitive, shade-tolerant spruce and fir. If these trends continue, this population of aged pines may be heading towards extinction. I would speculate that this phenomenon may occur among ponderosa pine populations growing at the upper elevational or northern latitudinal limit of the species.  相似文献   

14.
Forests that were subject to frequent wildfires, such as ponderosa pine/Douglas-fir forests, had fire-return intervals of approximately 6–24 years. However, fire suppression over the last century has increased the fire-return interval by a factor of 5 in these forests, possibly resulting in changes to the soil. The objective of this study was to determine if soils of recently burned areas (representative of the natural fire-return interval) have different properties relative to soils in areas without recent fire. To assess this, recent low-intensity, lightning-caused, spot wildfire areas were located within fire-suppressed stands of ponderosa pine/Douglas-fir of the central, eastern Cascade Mountains of Washington State. Soil horizon depths were measured, and samples collected by major genetic horizons. Samples were analyzed for pH, C, N, C/N ratio, cation exchange capacity (CEC), base saturation (%BS), hydrophobicity and extractable P. Results show very little difference in soil properties between sites burned by low-severity fires and those areas left unburned. Such minimal changes, from these low-severity fires, in soil properties from fire suppression suggest there has also been little change in soil processes.  相似文献   

15.
对1984年种植在广西和浙江的22个种源的火炬松及在浙江的8个种源的湿地松的木材密度和管胞长度进行了测定和分析。结果表明,两个树种的木材密度和管胞长度在种源间和种源内单株间均表现出显著差异,但株间差异较种源间差异显著得多。不同地区火炬松的差异较之同一地区不同种源间的差异更为显著。种源、地区的交互作用对火炬松的木材密度和管胞长度都表现出显著影响,种源和单株的交互作用对两个树种的木材密度也有显著影响。两个树种的木材材性与年轮宽度之间没有显著的相关关系。与马尾松和早期引种的火炬松、湿地松比较表明,用新引进的材料可选育出木材材质更为优良的品种。  相似文献   

16.
17.
The stable oxygen isotope ratio (delta(18)O) of tree-ring cellulose is jointly determined by the delta(18)O of xylem water, the delta(18)O of atmospheric water vapor, the humidity of the atmosphere and perhaps by species-specific differences in leaf structure and function. Atmospheric humidity and the delta(18)O of water vapor vary seasonally and annually, but if the canopy atmosphere is well mixed, atmospheric characteristics should be uniform among co-occurring trees. In contrast, xylem water delta(18)O is determined by the delta(18)O of water being drawn from the soil, which varies with depth. If co-occurring trees draw water from different soil depths, this soil-water delta(18)O signal would be manifest as differences in delta(18)O among the trees. We examined the variation in tree ring delta(18)O, over eight decades during the 20th Century, among three species co-occurring in natural forest stands of the northern Rocky Mountains in the USA. We sampled 10 Douglas-firs (Pseudotsuga menziesii (Mirb.) Franco var. glauca), 10 ponderosa pines (Pinus ponderosa Laws.) and seven western white pines (Pinus monticola Dougl.). As expected, variation in atmospheric conditions was recorded in the delta(18)O of the cellulose produced in a given year, but observed climatic correlations with delta(18)O were weak. Significant correlations with June climate data included: daily maximum temperature (r = 0.29), daily minimum temperature (r = -0.25), mean temperature (r = 0.20), mean daily precipitation (r = -0.54), vapor pressure deficit (r = 0.32) and solar radiation (r = 0.44). Lagged effects were observed in Douglas-fir and western white pine. In these species, the delta(18)O of a given annual ring was correlated with the delta(18)O of the previous ring. Ponderosa pine showed no significant autocorrelation. Although the species means were correlated among years (r = 0.67 to 0.76), ponderosa pine was consistently enriched in delta(18)O relative to the other species; differences were close to 2 per thousand and they are steadily increasing. Relative to the mean for the three species, ponderosa pine is becoming steadily more enriched (-1.0 per thousand). In contrast, Douglas-fir is being steadily depleted and western pine is intermediate, with an enrichment of 0.5 per thousand. Because all trees were exposed to the same atmospheric conditions, the differences in delta(18)O observed between species are likely due either to differences in the depth of water extraction or leaf function. If the former, presumably ponderosa pine has steadily taken up more water from near the soil surface and Douglas-fir has shifted uptake to a greater depth. If the latter, we suggest the pronounced changes in leaf-water delta(18)O are a result of changes in leaf structure and function with tree size and age.  相似文献   

18.
Four equations were developed for predicting the probability of Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] and ponderosa pine (Pinus ponderosa Dougl. ex Laws.) survival for the first (0–1) and first to third (1–3) growing seasons after applying mulching, scalping, or artificial shading (shade cards) treatments in plantations in southwestern Oregon, U.S.A. Variables describing conifer size, levels of competing vegetation, presence of silvicultural treatments, site factors, and climate factors were collected from 13 sites ranging from 0 to 6 years after planting and examined as potential predictors of survival. Age, stem diameter, a competition index for shrubs, severity of growing season at time of treatment, average annual precipitation, aspect, and slope angle were predictors of Douglas-fir survival during 0–1 and 1–3 growing seasons after treatment; the presence of silvicultural treatments was also a predictor only during the first growing season after treatment. Age, aspect, and slope angle were predictors of ponderosa pine survival over both 0–1 and 1–3 growing seasons after treatment; height-diameter ratio, competition indices for herbs, shrubs, and hardwoods, silvicultural treatment, severity of growing season at time of treatment, and average annual precipitation were also predictors only during the first growing season after treatment; crown width was a predictor of survival only during 1–3 growing seasons after treatment. When significant in the models, predicted probability of survival increases with treatments, less severe weather conditions, diameter, crown width, age, and precipitation; probability decreases with increasing height-diameter ratio and competition indices for herbs, shrubs, and hardwoods.  相似文献   

19.
Introduction of non-native species, such as Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), can be a means of mitigating the effects of climate change by meeting the growing demand for biomass and high quality wood. The aim of this study was to investigate early growth, survival and damage from late-spring frost and winter desiccation. A provenance trial with four coastal and three interior provenances of Douglas-fir originating from British Columbia, Canada, was established in Southwest Sweden (56°43′N, 13°08′E). Seedling height, length of the leading shoot, and occurrence of frost damage, were measured after one, three, and six growing seasons. Timing of bud break in spring was also observed. The interior Douglas-fir were more frequently damaged by late-spring frost compared to the coastal Douglas-fir. The interior Douglas-fir still had a higher survival after six growing seasons compared to the coastal variety. All provenances were damaged by winter desiccation, but the provenances originating from the coastal area were more severely damaged. Choice of variety may reduce the risk for either late-spring frost or winter desiccation.  相似文献   

20.
We determined whether in vitro plant growth regulator production by mycorrhizal fungi is correlated with conifer seedling growth and root IAA concentrations. Container-grown seedlings of interior Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), lodgepole pine (Pinus contorta Dougl.) and ponderosa pine (Pinus ponderosa Dougl.) were inoculated at seeding with ectomycorrhizal fungi having a high, moderate or low capacity to produce either IAA or ethylene in vitro. Inoculated seedlings were grown for one season in the nursery, harvested in December, cold stored over winter and then transplanted to either a nursery field or a forest site in the spring. Seedling morphology and endogenous IAA in roots were measured immediately after cold storage and again six and 12 months after transplanting. Morphological responses to inoculation varied among different mycorrhizal fungi. Free IAA concentration of roots was increased in some inoculation treatments for all conifer species. In seedlings transplanted to a nursery field, in vitro ethylene-producing capacity of the ectomycorrhizal fungi was highly correlated with more morphological features than in vitro IAA-producing capacity. Both IAA- and ethylene-producing capacity were significantly correlated with more morphological features in seedlings transplanted to a forest site than in seedings transplanted to a nursery field. One year after transplanting, only in vitro IAA-producing capacity was correlated with endogenous IAA concentration of roots of the inoculated seedlings. We conclude that growth responses of conifer seedlings can be partially influenced by IAA and ethylene produced by ectomycorrhizal fungal symbionts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号