首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Extractability and molecular modifications of gliadin and glutenin proteins withdrawn from different stages of a commercial ethanol fuel/distillers dried grains with solubles (DDGS) process using a wheat feedstock were investigated. Materials were taken postliquefaction (PL), postdistillation (whole stillage), and postdrying (DDGS) during the process and then fractionated to separate the gliadins and the soluble high‐ and low‐molecular‐weight glutenins following a modified Verbruggen extraction method. Each fraction was characterized based on the extraction efficiencies within various aqueous alcohols of propan‐1‐ol, electrophoretic patterns, intrinsic and extrinsic fluorescence, free and total sulfhydryl content, and total disulfide bond levels. Findings indicated significant changes to the composition of extracted proteins and modifications to the protein structure (i.e., surface properties and conformation) throughout the ethanol/DDGS process, beginning with the first step of production (PL, ≈83°C). Overall, processing resulted in a shift toward an unextractable gluten matrix, accompanied by increases in hydrophobicity, disulfide bridging, and excessive protein aggregation.  相似文献   

2.
A new low temperature liquefaction and saccharification enzyme STARGEN 001 (Genencor International, Palo Alto, CA) with high granular starch hydrolyzing activity was used in enzymatic dry‐grind corn process to improve recovery of germ and pericarp fiber before fermentation. Enzymatic dry‐grind corn process was compared with conventional dry‐grind corn process using STARGEN 001 with same process parameters of dry solid content, pH, temperature, enzyme and yeast usage, and time. Sugar, ethanol, glycerol and organic acid profiles, fermentation rate, ethanol and coproducts yields were investigated. Final ethanol concentration of enzymatic dry‐grind corn process was 15.5 ± 0.2% (v/v), which was 9.2% higher than conventional process. Fermentation rate was also higher for enzymatic dry‐grind corn process. Ethanol yields of enzymatic and conventional dry‐grind corn processes were 0.395 ± 0.006 and 0.417 ± 0.002 L/kg (2.65 ± 0.04 and 2.80 ± 0.01 gal/bu), respectively. Three additional coproducts, germ 8.0 ± 0.4% (db), pericarp fiber 7.7 ± 0.4% (db), and endosperm fiber 5.2 ± 0.6% (db) were produced in addition to DDGS with enzymatic dry‐grind corn process. DDGS generated from enzymatic dry‐grind corn process was 66% less than conventional process.  相似文献   

3.
In recent years, increasing demand for ethanol as a fuel additive and decreasing dependency on fossil fuels have resulted in a dramatic increase in the amount of grains used for ethanol production. Dry-grind is the major process, resulting in distillers dried grains with solubles (DDGS) as a major coproduct. Like fuel ethanol, DDGS has quickly become a global commodity. However, high compositional variation has been the main problem hindering its use as a feed ingredient. This review provides updated information on the chemical composition of distillers grains in terms of nutrient levels, changes during dry-grind processing, and causes for large variation. The occurrence in grain feedstock and the fate of mycotoxins during processing are also covered. During processing, starch is converted to glucose and then to ethanol and carbon dioxide. Most other components are relatively unchanged but concentrated in DDGS about 3-fold over the original feedstock. Mycotoxins, if present in the original feedstock, are also concentrated. Higher fold of increases in S, Na, and Ca are mostly due to exogenous addition during processing, whereas unusual changes in inorganic phosphorus (P) and phytate P indicate phytate hydrolysis by yeast phytase. Fermentation causes major changes, but other processing steps are also responsible. The causes for varying DDGS composition are multiple, including differences in feedstock species and composition, process methods and parameters, the amount of condensed solubles added to distiller wet grains, the effect of fermentation yeast, and analytical methodology. Most of them can be attributed to the complexity of the dry-grind process itself. It is hoped that information provided in this review will improve the understanding of the dry-grind process and aid in the development of strategies to control the compositional variation in DDGS.  相似文献   

4.
The majority of fuel ethanol in the United States is produced by using the dry-grind corn ethanol process. The corn oil that is contained in the coproduct, distillers' dried grains with solubles (DDGS), can be recovered for use as a biodiesel feedstock. Oil removal will also improve the feed quality of DDGS. The most economical way to remove oil is considered to be at the centrifugation step for separating thin stillage (liquid) from coarse solids after distilling the ethanol. The more oil there is in the liquid, the more it can be recovered by centrifugation. Therefore, we studied the effects of corn preparation and grinding methods on oil distribution between liquid and solid phases. Grinding the corn to three different particle sizes, flaking, flaking and grinding, and flaking and extruding were used to break up the corn kernel before fermentation, and their effects on oil distribution between the liquid and solid phases were examined by simulating an industrial decanter centrifuge. Total oil contents were measured in the liquid and solids after centrifugation. Dry matter yield and oil partitioning in the thin stillage were highly positively correlated. Flaking slightly reduced bound fat. The flaked and then extruded corn meal released the highest amount of free oil, about 25% compared to 7% for the average of the other treatments. The freed oil from flaking, however, became nonextractable after the flaked corn was ground. Fine grinding alone had little effect on oil partitioning.  相似文献   

5.
With increasing production of distillers dried grains with solubles (DDGS), both fuel ethanol and animal feed industries are demanding standardized protocols for characterizing quality. AOCS Approved Procedure (Am 5‐04) was used for measuring crude oil content in milled corn and resulting DDGS. Selected factors, including sample type (milled corn, DDGS), sample origin (ethanol plant 1, 2, 3), sample particle size (original matrix, <0.71 mm, <0.50 mm mesh opening; the last two materials were obtained by grinding and sieving), solvent type (petroleum ether, hexane), extraction time (30, 60 min), and postextraction drying time (30, 60 min) were investigated by a complete factorial design. For milled corn, only sample origin and extraction time had significant effects (P < 0.05) on crude oil values measured, but for DDGS, besides those two factors, sample particle size, solvent type, and drying time also had significant effects. Among them, the particle size of DDGS had the most effect. On average, measured oil content in DDGS ranged from 11.11% (original matrix) to 12.12% (<0.71 mm) and to 12.55% (<0.50 mm). For measuring the crude oil content of DDGS, particle size reduction, 60 min of extraction, and 60 min of drying are recommended. Regardless of the underlining factors, the method was very repeatable (standard errors <0.05). The observed particle size effect on crude oil analysis of DDGS suggests the need for similar confirmations using other analytical methods.  相似文献   

6.
One of the fastest growing industries in the United States is the fuel ethanol industry. In terms of ethanol production capability, the industry has grown by more than 600% since the year 2000. The major coproducts from corn‐based ethanol include distillers dried grains with solubles (DDGS) and carbon dioxide. DDGS is used as a livestock feed because it contains high quantities of protein, fiber, amino acids, and other nutrients. The goal of this study was to quantify various chemical and physical properties of DDGS, distillers wet grains (DWG), and distillers dried grain (DDG) from several plants in South Dakota. Chemical properties of the DDGS included crude ash (5.0–21.93%), neutral detergent fiber (NDF) (26.32–43.50%), acid detergent fiber (ADF) (10.82–20.05%), crude fiber (CF) (8.14–12.82%), crude protein (27.4–31.7%), crude fat (7.4–11.6%), and total starch (9.19–14.04%). Physical properties of the DDGS included moisture content (3.54–8.21%), Aw (0.42–0.53), bulk density (467.7–509.38 kg/m3), thermal conductivity (0.05–0.07 W/m·°C), thermal diffusivity (0.1–0.17 mm2/sec), color L* (36.56–50.17), a* (5.2–10.79), b* (12.53–23.36), and angle of repose (25.7–47.04°). These properties were also determined for DWG and DDG. We also conducted image analysis and size determination of the DDGS particles. Carbon group characterization in the DDGS and DDG samples were determined using NMR spectroscopy; O‐alkyl comprised >50% of all DDGS samples. Results from this study showed several possibilities for using DDGS in applications other than animal feed. Possibilities include harvesting residual sugars, producing additional ethanol, producing value‐added compounds, using as food‐grade additives, or even using as inert fillers for biocomposites.  相似文献   

7.
8.
The Sequential Extraction Process (SEP), a process that uses ethanol to fractionate corn into high‐value co‐products when producing fuel ethanol, was evaluated using high‐oil corn (HOC). Oil and protein recoveries, ethanol‐drying capability, and oil and protein properties were compared with those produced from normal soft dent corn (SDC) using SEP. Moisture adsorption capacities (≈24 g of water/kg of corn) and oil recoveries (>95%) were nearly identical for both corn types. However, oil yield from HOC (7.1 g of oil/100 g of corn) was 65% more than that of SDC (4.3 g of oil/100 g of corn). HOC crude oil was less red and contained lower free fatty acid and phosphatide contents than did SDC oil. HOC zein contained higher crude protein content (86% db) than did SDC zein (79% db). The freeze‐dried glutelin‐rich fractions (GRF) from both types of corn contained >90% (db) crude protein, which meet the criteria of protein isolates. SEP GRF protein isolates had >85% protein soluble in water at pH ≥ 7. Both GRF protein isolates from HOC and SDC were heat‐stable, had good emulsifying capacities, and produced highly stable emulsions. They also had substantial foaming capacities, but the foam from HOC GRF protein isolate was significantly more stable than the foam from SDC GRF protein isolate. SEP is a suitable process for recovering oil and protein products from HOC corn when producing fuel ethanol and, if competitively priced, HOC is a preferred feedstock to SDC because of higher yields and qualities of valuable co‐products when using HOC.  相似文献   

9.
In the dry-grind process, corn starch is converted into sugars that are fermented into ethanol. The remaining corn components (protein, fiber, fat, and ash) form a coproduct, distillers dried grains with solubles (DDGS). In a previous study, the combination of sieving and elutriation (air classification), known as the elusieve process, was effective in separating fiber from DDGS. In this study, elusieve fiber was evaluated for ethanol production and results were compared with those reported in other studies for fiber from different corn processing techniques. Fiber samples were pretreated using acid hydrolysis followed by enzymatic treatment. The hydrolyzate was fermented using Escherichia coli FBR5 strain. Efficiency of ethanol production from elusieve fiber was 89–91%, similar to that for pericarp fiber from wet-milling and quick fiber processes (86–90%). Ethanol yields from elusieve fiber were 0.23–0.25 L/kg (0.027–0.030 gal/lb); similar to ethanol yields from wet-milling pericarp fiber and quick fiber. Fermentations were completed within 50 hr. Elusieve fiber conversion could result in 1.2–2.7% increase in ethanol production from dry-grind plants. It could be economically feasible to use elusieve fiber along with other feedstock in a plant producing ethanol from cellulosic feedstocks. Due to the small scale of operation and the stage of technology development for cellulosic conversion to ethanol, implementation of elusieve fiber conversion to ethanol within a dry-grind plant may not be currently economically feasible.  相似文献   

10.
Four pearl millet genotypes were tested for their potential as raw material for fuel ethanol production in this study. Ethanol fermentation was performed both in flasks on a rotary shaker and in a 5‐L bioreactor using Saccharomyces cerevisiae (ATCC 24860). For rotary‐shaker fermentation, the final ethanol yields were 8.7–16.8% (v/v) at dry mass concentrations of 20–35%, and the ethanol fermentation efficiencies were 90.0–95.6%. Ethanol fermentation efficiency at 30% dry mass on a 5‐L bioreactor reached 94.2%, which was greater than that from fermentation in the rotary shaker (92.9%). Results showed that the fermentation efficiencies of pearl millets, on a starch basis, were comparable to those of corn and grain sorghum. Because pearl millets have greater protein and lipid contents, distillers dried grains with solubles (DDGS) from pearl millets also had greater protein content and energy levels than did DDGS from corn and grain sorghum. Therefore, pearl millets could be a potential feedstock for fuel ethanol production in areas too dry to grow corn and grain sorghum.  相似文献   

11.
Chickens from a randomly bred genetic line were segregated into high and low growth rates and high and low water-holding capacities (WHCs). The objective of this study was to identify protein markers associated with slow and fast growth rates and low and high WHCs from water-soluble protein (WSP) and crude myofibrillar protein (CMP) extracts of chicken breast muscle. Proteins were fractionated using two-dimensional electrophoresis, and a total of 22 protein spots were selected, excised, and analyzed by in-gel tryptic digestion and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proteins expressed in extracts from slow and fast growth rates and low and high WHCs included metabolic enzymes, such as creatine kinase, pyruvate kinase, triosephosphate isomerase, and ubiqitin; housekeeping proteins, such as heat shock protein; contractile proteins, such as myosin heavy chain; actin; and also MHC isoforms and actin isoforms. The mass spectra of 20 protein spots significantly matched (protein score >83; P < 0.05) an online database. In CMP, there were unique proteins that were present only in the fast-growth population: gi|118099530 , gi|20664362 , gi|71895043 , gi|114794125 , gi|297343122 , and gi|71895043 . This information identified protein markers associated with growth rate and water holding capacity. Some of those protein markers could be added to the chicken database.  相似文献   

12.
In the dry‐grind ethanol process, distillers dried grains with solubles (DDGS) is the main coproduct, which is primarily used as an ingredient in ruminant animal diets. Increasing the value of DDGS will improve the profitability of the dry‐grind ethanol process. One way to increase DDGS value is to use pigmented maize as the feedstock for ethanol production. Pigmented maize is rich in anthocyanin content, and the anthocyanin imparts red, blue, and purple color to the grain. It is reported that anthocyanin would be absorbed by yeast cell walls during the fermentation process. The effects of anthocyanin on fermentation characteristics in the dry‐grind process are not known. In this study, the effects of anthocyanin in conventional (conventional starch hydrolyzing enzymes) and modified (granular starch hydrolyzing enzymes [GSHE]) dry‐grind processes were evaluated. The modified process using GSHE replaced high‐temperature liquefaction. The ethanol conversion efficiencies of pigmented maize were comparable to that of yellow dent corn in both conventional (78.4 ± 0.5% for blue maize, 74.3 ± 0.4% for red maize, 81.2 ± 1.0% for purple maize, and 75.1 ± 0.2% for yellow dent corn) and modified dry‐grind processes using GSHE (83.8 ± 0.8% for blue maize, 81.1 ± 0.3% for red maize, 93.5 ± 0.8% for purple maize, and 85.6 ± 0.1% for yellow dent corn). Total anthocyanin content in DDGS from the modified process was 1.4, 1.9, and 2.4 times of that from the conventional process for purple, red, and blue maize samples, respectively. These results indicated that pigmented maize rich in anthocyanin did not negatively affect the fermentation characteristics of the dry‐grind process and that there was a potential to use pigmented maize in the dry‐grind process, especially when using GSHE.  相似文献   

13.
Corn can be fractioned to produce starch, fiber, oil, and protein in relatively pure forms. The corn kernel contains 9–12% protein, but half of this is an industrially useful protein called zein. Dry milled corn (DMC), corn gluten meal (CGM), and distiller's dried grains with solubles (DDGS) are all coproducts from corn that contain zein and are used for zein extraction. Because it is insoluble in water, zein has found uses in many products such as coatings, plastics, textiles, and adhesives. Newer applications are taking advantage of zein's biological properties for supporting growing cells, delivering drugs, producing degradable sutures, and producing biodegradable plastics. This review covers zein characteristics and nomenclature, past and current practices in processing and extraction of zein from corn products and coproducts, and the modifications of zein for various applications.  相似文献   

14.
Cake donuts were prepared using wheat flour (WF), long grain rice flour (LGRF), and waxy rice flour (WRF). They were also prepared with the flours partially replaced by pregelatinized rice flour (PGRF) or propylene glycol alginate (PGA). The dough consistency was maintained at a comparable predetermined level by adjusting the water content. Without PGRF or PGA in the formulation, the WRF donut had the lowest oil uptake (11.8%) and the WF donut the highest (23.6%). With modified flour formulations, the oil uptake decreased for LGRF donuts and WF donuts. Oil uptake of the LGRF donut decreased with increased PGRF. Up to 30% PGRF could be used, with characteristics comparable to the traditional WF donuts but as much as 54% lower in oil uptake on a dry basis.  相似文献   

15.
《Cereal Chemistry》2017,94(6):934-941
Distillers dried grains with solubles (DDGS) are widely used as feed for cattle, dairy, and swine because of their protein, fiber, amino acids, fat, and other vital nutrients. Corn ethanol plants in the United States recently have started extracting oil from DDGS to gain additional profit, thus producing low‐oil DDGS. So far, there has been no comprehensive study reported with bulk handling and flowability properties of low‐oil DDGS. We measured the air resistance, moisture diffusivity, and air permeability properties for low‐oil DDGS at different temperature and relative humidity conditions, along with some important physical and chemical properties. Physical property comparisons between regular and low‐oil DDGS showed differences in key properties such as particle size, color, density, porosity, and angle of repose. The modified Henderson model predicted the equilibrium moisture content (EMC)–equilibrium relative humidity (ERH) relationship of low‐oil DDGS with a low standard error of regression value (0.008); it showed no pattern in the residuals and was judged the most appropriate model tested for EMC‐ERH predictions. Results of EMC‐ERH nonlinear modeling were used to define conditions for moisture diffusivity. Moisture diffusivities of low‐oil DDGS at varying drying temperatures ranged from 0.74 × 10−11 to 1.77 ×10−11m2/s. The properties are important for understanding and modeling heat and moisture transport through and flow properties of low‐oil DDGS.  相似文献   

16.
Separation of fiber from distillers dried grains with solubles (DDGS) provides two valuable coproducts: 1) enhanced DDGS with reduced fiber, increased fat and increased protein contents and 2) fiber. Recently, the elusieve process, a combination of sieving and elutriation was found to be effective in separating fiber from two commercial samples of DDGS (DDGS‐1 and DDGS‐2). Separation of fiber decreased the quantity of DDGS, but increased the value of DDGS by increasing protein content and produced a new coproduct with higher fiber content. Economic analysis was conducted to determine the payback period, net present value (NPV), and internal rate of return (IRR) of the elusieve process. The dependence of animal foodstuff prices on their protein content was determined. Equipment prices were obtained from industrial manufacturers. Relative to crude protein content of original DDGS, crude protein content of enhanced DDGS was higher by 8.0% for DDGS‐1 and by 6.3% for DDGS‐2. For a dry‐grind plant processing corn at the rate of 2,030 metric tonnes/day (80,000 bushels/day), increase in revenue due to the elusieve process would be $0.4 to 0.7M/year. Total capital investment for the elusieve process would be $1.4M and operating cost would be $0.1M/year. Payback period was estimated to be 2.5–4.6 years, NPV was $1.2–3.4M, and IRR was 20.5–39.5%.  相似文献   

17.
Effects of phytase addition, germ, and pericarp fiber recovery were evaluated for the E‐Mill dry grind corn process. In the E‐Mill process, corn was soaked in water followed by incubation with starch hydrolyzing enzymes. For each phytase treatment, an additional phytase incubation step was performed before incubation with starch hydrolyzing enzymes. Germ and pericarp fiber were recovered after incubation with starch hydrolyzing enzymes. Preliminary studies on phytase addition resulted in germ with higher oil (40.9%), protein (20.0%), and lower residual starch (12.2%) contents compared to oil (39.1%), protein (19.2%), and starch (18.1%) in germ from the E‐Mill process without phytase addition. Phytase treatment resulted in lower residual starch contents in pericarp fiber (19.9%) compared to pericarp fiber without phytase addition (27.4%). Results obtained led to further investigation of effects of phytase on final ethanol concentrations, germ, pericarp fiber, and DDGS recovery. Final ethanol concentrations were higher in E‐Mill processing with phytase addition (17.4% v/v) than without addition of phytase (16.6% v/v). Incubation with phytases resulted in germ with 4.3% higher oil and 2.5% lower residual starch content compared to control process. Phytase treatment also resulted in lower residual starch and higher protein contents (6.58 and 36.5%, respectively) in DDGS compared to DDGS without phytase incubations (8.14 and 34.2%, respectively). Phytase incubation in E‐Mill processing may assist in increasing coproduct values as well as lead to increased ethanol concentrations.  相似文献   

18.
A modified dry‐grind corn process has been developed that allows recovery of both pericarp and endosperm fibers as coproducts at the front end of the process before fermentation. The modified process is called enzymatic milling (E‐Mill) dry‐grind process. In a conventional dry‐grind corn process, only the starch component of the corn kernel is converted into ethanol. Additional ethanol can be produced from corn if the fiber component can also be converted into ethanol. In this study, pericarp and endosperm fibers recovered in the E‐Mill dry‐grind process were evaluated as a potential ethanol feedstock. Both fractions were tested for fermentability and potential ethanol yield. Total ethanol yield recovered from corn by fermenting starch, pericarp, and endosperm fibers was also determined. Results show that endosperm fiber produced 20.5% more ethanol than pericarp fiber on a g/100 g of fiber basis. Total ethanol yield obtained by fermenting starch and both fiber fractions was 0.370 L/kg compared with ethanol yield of 0.334 L/kg obtained by fermenting starch alone.  相似文献   

19.
In dry‐grind corn processing, the whole kernel is fermented to produce ethanol and distillers dried grains with solubles (DDGS); the E‐Mill process was developed to generate coproducts in addition to DDGS. Compositions of thin stillage and wet grains obtained from the E‐Mill process will be different from the dry‐grind process. Knowledge of thin stillage compositions will provide information to improve coproducts from both processes. Laboratory dry‐grind and E‐Mill processes that used granular starch hydrolyzing enzymes (GSHE) were compared and process yields determined. Two methods, centrifugation and screening, were used to produce thin stillage and wet grains from the laboratory processes. Compositions of process streams were determined. In the dry‐grind process using GSHE, solids contents of beer, whole stillage, and wet grains were higher compared to the same fractions from the E‐Mill process using GSHE. Solids contents of mash for both processes were similar. Total solids, soluble solids, and ash contents of thin stillage were similar for the two processes. Fat content of thin stillage from E‐Mill was lower than that from the dry‐grind process; protein content of E‐Mill thin stillage was higher than that from dry‐grind thin stillage. Removal of germ and fiber before fermentation changed composition of thin stillage from the E‐Mill process. The screening method produced higher thin stillage and lower wet grains yields than using a centrifugation method. The screening method was less time consuming but resulted in limited wet grains material for additional analyses or processing. The centrifugation method of thin stillage separation removed more solids from thin stillage than the screening method.  相似文献   

20.
The purpose of this study was to determine the efficacy of extracting phenolic compounds with antioxidant activity from distillers' dried grains with solubles (DDGS) with water, 50% aqueous ethanol, and absolute ethanol, using microwave irradiation or a water bath at various temperatures. DDGS was extracted for 15 min with each solvent while heating at 23, 50, 100, and 150°C by microwave irradiation or in a water bath at 23, 50, and 100°C. Phenolic content of extracts increased with increasing temperature to a maximum of 12.02 mg/g in DDGS extracts that were microwave irradiated in water or with 50% aqueous ethanol at 150°C. Antioxidant activity range was 1.49–6.53 μmol of Trolox equivalents/g of DDGS. Highest antioxidant activities were obtained from 50% aqueous ethanol extracts at all temperatures, and water extracts that were heated at 100 and 150°C. These data indicate that DDGS extracts with high phenolic content and antioxidant activity can be obtained from DDGS, particularly with the use of water or 50% ethanol and high temperature (100 or 150°C). This may be valuable to ethanol manufacturers, livestock producers, and food and nutraceutical companies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号