首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Amylose content in wheat endosperm is controlled by three Wx loci, and the proportion of amylose decreases with successive accumulation of Wx null alleles at the three loci. The proportion of amylose is believed to influence end‐use quality of bread and Asian noodles. The objectives of this study were to determine influence of the allelic difference at Wx‐B1 locus on bread quality, bread firmness, and white salted noodle texture in a spring wheat cross segregating for the Wx‐B1 locus and in a set of advanced spring wheat breeding lines differing in allelic state at the Wx‐ B1 locus. In addition, we examined the relationship between amylose content and flour swelling properties on bread and noodle traits. Fifty‐four recombinant inbred lines of hard white spring wheat plus parents were grown in replicated trials in two years, and 31 cultivars and breeding lines of hard spring wheat were grown in two locations. Bread and white salted noodles were processed from these trials. The presence of the Wx‐B1 null allele reduced amylose content by 2.4% in a recombinant inbred population and 4.3% in a survey of advanced breeding lines and cultivars compared with the normal. The reduced amylose was accompanied by an average increase in flour swelling power (FSP) for the Wx‐B1 null group of 0.8 g/g for the cross progeny and 2.3 g/g for the cultivar survey group. The Wx‐B1 allelic difference did not affect flour protein in cross progeny where the allelic difference was not confounded with genetic background. Bread from the Wx‐B1 null groups on average had increased loaf volume and was softer than the normal group for the cross progeny and cultivar survey group. The Wx‐B1 allelic difference altered white salted noodle texture, most notably noodle springiness and cohesiveness where the Wx‐B1 null groups was more springy and more cohesive than the normal groups for both sets of genetic materials. Flour protein was more highly related to loaf volume than were FSP or amylose. Both flour protein and FSP were positively related to noodle textural traits, but especially noodle springiness and cohesiveness.  相似文献   

2.
Wheat cultivars possessing quality attributes needed to produce optimum quality tortillas have not been identified. This study investigated the effect of variations in high‐molecular‐weight glutenin subunits encoded at the Glu‐1 loci (Glu‐A1, Glu‐B1, and Glu‐D1) on dough properties and tortilla quality. Flour protein profiles, dough texture, and tortilla physical quality attributes were evaluated. Deletion at Glu‐D1 resulted in reduced insoluble polymeric protein content of flour, reduced dough compression force, and large dough extensibility. These properties produced very large tortillas (181 mm diameter) compared with a control made with commercial tortilla wheat flour (161 mm). Presence of a 7 + 9 allelic pair at Glu‐B1 increased dough strength (largest compression force, reduced extensibility, and small‐diameter tortillas). Deletion at Glu‐A1 produced large tortillas (173 mm) but with unacceptable flexibility during storage (score <3.0 at day 16). In general, presence of 2* at Glu‐A1, in combination with 5 + 10 at Glu‐D1, produced small‐diameter tortillas that required large force to rupture (tough texture). Presence of 2 + 12 alleles instead of 5 + 10 at Glu‐D1 produced tortillas with a good compromise between diameter (>165 mm) and flexibility during storage (>3.0 at day 16). These allele combinations, along with deletion at Glu‐D1, show promise for tortilla wheat development.  相似文献   

3.
This study evaluated the blending of flours made from an Ontario hard red winter wheat (HWF) and an Ontario soft red winter wheat (SWF) and compared it with a commercial standard noodle flour (control) made from Canadian Western Hard Red Spring wheat to assess the impact on white salted noodle‐making performance and texture of cooked noodles. Flour characteristics, gluten aggregation, and starch pasting properties were assessed with a farinograph, GlutoPeak tester, and Rapid Visco Analyzer, respectively. The machinability of dough was evaluated with an SMS/Kieffer rig attached to a TA.XT Plus texture analyzer. Tensile and bite tests of cooked noodles were also conducted. Blending HWF with standard noodle flour decreased gluten strength and dough extensibility linearly proportional to the blend ratio, whereas a curvilinear response from blending SWF with standard noodle flour was observed. HWF demonstrated more favorable pasting properties except for lower peak viscosity for noodle making than standard noodle flour. Below a 20% blend ratio with HWF, no significant changes were seen on dough extensibility, cooking loss, tensile properties, and bite testing parameters of cooked noodles. It can be concluded that blending HWF up to a 20% level caused no significant change in the processing properties of dough and cooked noodle quality. The results also showed that the GlutoPeak tester is a sensitive tool for evaluating gluten strength in wheat flour.  相似文献   

4.
Understanding the relationship between basic and applied rheological parameters and the contribution of wheat flour protein content and composition in defining these parameters requires information on the roles of individual flour protein components. The high molecular weight glutenin subunit (HMW‐GS) proteins are major contributors to dough strength and stability. This study focused on eight homozygous wheat lines derived from the bread wheat cvs. Olympic and Gabo with systematic deletions at each of three HMW‐GS encoding gene loci, Glu‐A1, Glu‐B1, and Glu‐D1. Flour protein levels were adjusted to a constant 9% by adding starch. Functionality of the flours was characterized by small‐scale methods (2‐g mixograph, microextension tester). End‐use quality was evaluated by 2‐g microbaking and 10‐g noodle‐making procedures. In this sample set, the Glu‐D1 HMW‐GS (5+10) made a significantly larger contribution to dough properties than HMW‐GS coded by Glu‐B1 (17+18), while subunit 1 coded by Glu‐A1 made the smallest contribution to functionality. These differences remained after removing variations in glutenin‐to‐gliadin ratio. Correlations showed that both basic rheological characteristics and protein size distributions of these flours were good predictors of several applied rheological and end‐use quality tests.  相似文献   

5.
A panel of monoclonal antibodies was assessed in a two‐site sandwich ELISA format, using both reduced glutenin subunit and gliadin‐rich antigen preparations, to develop assays that could potentially discriminate between Gli‐1/Glu‐3 allelic variants in hexaploid wheat. Each antibody was assessed as the immobilized and the enzyme‐labeled antibody in the sandwich ELISA. A number of antibody combination were identified which could discriminate different Gli‐1/Glu‐3 allelic variants in a population of doubled haploid lines derived from a cross between parents that differed at each of these loci. Certain labeled antibodies consistently detected allelic variation at a particular locus when used in conjunction with any of several immobilized antibodies. However, the level of discrimination was largely dependent on the choice of immobilized antibody. Two antibody combinations were identified that provided twofold differences in ELISA absorbances in flour extracts from different allelic variants at the Gli‐A1/Glu‐A3 and Gli‐B1/Glu‐B3 loci. By analyzing the prolamin composition of the antigen preparations, and the performance of the assays with flour extracts from a set of Gli‐1/Glu‐3 biotypes and a range of diverse cultivars, the biochemical basis for the discrimination was determined. The assays may have potential for use in high‐throughput screening in wheat breeding programs.  相似文献   

6.
Grain hardness, amylose content, and glutenin subunit composition are critical determinants for end‐use properties of wheat. To improve the end‐use properties of domestic wheats, we studied these traits between the Australian and North American wheat classes exported to Japan in 2009 and 2011 by analyzing the corresponding alleles. Most hard classes had Pina‐D1b or Pinb‐D1b. A partial waxy allele (Wx‐B1b) was found in all Australian Standard White (ASW) seeds in 2009 and two‐thirds of ASW seeds in 2011. All or most American hard wheat seeds had Glu‐D1d. Most U.S. Western White (WW) seeds had a null allele (Glu‐A1c) or alleles that lacked one of the two Glu‐B1 subunits. Most hard red winter (HRW) seeds had Glu‐B3b or Glu‐B3g. Quality characteristics of these classes seemed to be consistent with these results. In addition, we also found new Glu‐1 and Glu‐3 alleles in HRW and WW. These results suggested that although there are variations in its allelic composition from year to year, each class has unique quality‐related alleles corresponding to its end use. We proposed two matrices for classification of starch properties on the basis of Pin and Wx allelic combinations and for classification of gluten strength on the basis of glutenin allelic combinations.  相似文献   

7.
Physicochemical properties and protein composition of 39 selected wheat flour samples were evaluated and correlated with the textural properties of Chinese hard‐bite white salted noodles. Flour samples were analyzed for their protein and wet gluten contents, sedimentation volume, starch pasting properties, and dough mixing properties by farinograph and extensigraph. Molecular weight distribution of wheat flour proteins was determined with size‐exclusion (SE) HPLC, SDS‐PAGE, and acid‐PAGE. Textural properties of Chinese hard‐bite white salted noodles were determined through texture profile analysis (TPA). Hardness, springiness, gumminess, and chewiness of cooked noodles were found to be related to the dough mixing properties. Both protein content and protein composition were found to be related to TPA parameters of noodles. The amount of total flour protein was positively correlated to hardness, gumminess, and chewiness of noodles. The absolute amounts of different peak proteins obtained from SE‐HPLC data showed positive correlations with the hardness, gumminess, chewiness, and springiness of noodles. The proportions of these peak proteins were, however, not significantly related to texture parameters. The proportions of low‐molecular‐weight glutenins/gliadins and albumins/globulins, as observed from SDS‐PAGE, were correlated positively and negatively, respectively, to the hardness, gumminess, and chewiness of cooked noodles. Among the alcohol‐soluble proteins (from acid‐PAGE data), β‐gliadins showed strong correlations with the texture properties of cooked noodles. For the selected flour samples, the total protein content of flour had a stronger relationship with the noodle texture properties than did the relative proportion of different protein subgroups. Prediction equations were developed for TPA parameters of cooked noodles with SE‐HPLC and rapid visco analysis data of the 30 flour samples, and it was found that about 75% of the variability in noodle hardness, gumminess, and chewiness values could be explained by protein composition and flour pasting properties combined together. About 50% of the variations in cohesiveness and springiness were accounted for by these prediction equations.  相似文献   

8.
The objective of this study was to evaluate protein composition and its effects on flour quality and physical dough test parameters using waxy wheat near‐isogenic lines. Partial waxy (single and double nulls) and waxy (null at all three waxy loci, Wx‐A1, Wx‐B1, and Wx‐D1) lines of N11 set (bread wheat) and Svevo (durum) were investigated. For protein composition, waxy wheats in this study had relatively lower albumins‐globulins than the hard winter wheat control. In the bread wheats (N11), dough strength as measured by mixograph peak dough development time (MDDT) (r = 0.75) and maximum resistance (Rmax) (r = 0.70) was significantly correlated with unextractable polymeric protein (UPP), whereas in durum wheats, moderate correlation was observed (r = 0.73 and 0.59, respectively). This may be due to the presence of high molecular weight glutenin subunits (HMW‐GS) Dx2+Dy12 at the Glu‐D1 locus instead of Dx5+Dy10, which are associated with dough strength. Significant correlation of initial loaf volume (ILV) to flour polymeric protein (FPP) (r = 0.75) and flour protein (FP) (r = 0.63) was found in bread wheats, whereas in durum wheats, a weak correlation of ILV was observed with FP (r = 0.09) and FPP (r =0.51). Significant correlation of ILV with FPP in bread wheats and with % polymeric protein (PPP) (r = 0.75) in durum lines indicates that this aspect of end‐use functionality is influenced by FPP and PPP, respectively, in these waxy wheat lines. High ILV was observed with 100% waxy wheat flour alone and was not affected by 50% blending with bread wheat flour. However, dark color and poor crumb structure was observed with 100% waxy flour, which was unacceptable to consumers. As the amylopectin content of the starch increases, loaf expansion increases but the crumb structure becomes increasingly unstable and collapses.  相似文献   

9.
We investigated the relationship between the protein content and quality of wheat flours and characteristics of noodle dough and instant noodles using 14 hard and soft wheat flours with various protein contents and three commercial flours for making noodles. Protein content of wheat flours exhibited negative relationships with the optimum water absorption of noodle dough and lightness (L*) of the instant noodle dough sheet. Protein quality, as determined by SDS sedimentation volume and proportion of alcohol‐ and salt‐soluble protein of flour, also influenced optimum water absorption and yellow‐blueness (b*) of the noodle dough sheet. Wheat flours with high protein content (>13.6%) produced instant noodles with lower fat absorption, higher L*, lower b*, and firmer and more elastic texture than wheat flours with low protein content (<12.2%). L* and free lipid content of instant noodles were >76.8 and <20.8% in hard wheat flours of high SDS sedimentation volume (>36 mL) and low proportion of salt‐soluble protein (<12.5%), and <75.7 and >21.5% in soft wheat flours with low SDS sedimentation volume (<35 mL) and a high proportion of salt‐soluble protein (>15.0%). L* of instant noodles positively correlated with SDS sedimentation volume and negatively correlated with proportion of alcohol‐ and salt‐soluble protein of flour. These protein quality parameters also exhibited a significant relationship with b* of instant noodles. SDS sedimentation volume and proportion of salt‐soluble protein of flours also exhibited a significant relationship with free lipid content of instant noodles (P < 0.01 and P < 0.001, respectively). Protein quality parameters of wheat flour, as well as protein content, showed significant relationship with texture properties of cooked instant noodles.  相似文献   

10.
Knowledge of composition of high molecular weight glutenin subunits (HMW‐GS) and low molecular weight glutenin subunits (LMW‐GS) and their associations with pan bread and noodle quality will contribute to genetically improving processing quality of Chinese bread wheats. Two trials including a total of 158 winter and facultative cultivars and advanced lines were conducted to detect the allelic variation at Glu‐1 and Glu‐3 loci by SDS‐PAGE electrophoresis and to understand their effects on dough properties, pan bread, and dry white Chinese noodle (DWCN) quality. Results indicate that subunits/alleles 1 and null at Glu‐A1, 7+8 and 7+9 at Glu‐B1, 2+12 and 5+10 at Glu‐D1, alleles a and d at Glu‐A3, and alleles j and d at Glu‐B3 predominate in Chinese germplasm, and that 34.9% of the tested genotypes carry the 1B/1R translocation (allelic variation at Glu‐D3 was not determined because no significant effects were reported previously). Both variations at HMW‐GS and LMW‐GS/alleles and loci interactions contribute to dough properties and processing quality. For dough strength related traits such as farinograph stability and extensigraph maximum resistance and loaf volume, subunits/alleles 1, 7+8, 5+10, and Glu‐A3d are significantly better than those of their counterpart allelic variation, however, no significant difference was observed for the effects of d, b, and f at Glu‐B3 on these traits. For extensigraph extensibility, only subunits 1 and 7+8 are significantly better than their counterpart alleles, and alleles d and b at Glu‐B3 are slightly better than others. For DWCN quality, no significant difference is observed for HMW‐GS at Glu‐1, and Glu‐A3d and Glu‐B3d are slightly better than other alleles. Glu‐B3j, associated the 1B/1R translocation, has a strong negative effect on all quality traits except protein content. It is recommended that selection for subunits/alleles 1, 7+8, 5+10, and Glu‐A3d could contribute to improving gluten quality and pan bread quality. Reducing the frequency of the 1B/1R translocation will be crucial to wheat quality improvement in China.  相似文献   

11.
The independent effects of flour protein and starch on textural properties of Chinese fresh white noodles were investigated through reconstitution of fractionated flour components. Noodle hardness decreased with decreased protein content, whereas it unexpectedly increased as protein content decreased to a very low level (7.0%). Noodle cohesiveness, tensile strength, and breaking length increased with increased protein content. Higher glutenin‐to‐gliadin ratio resulted in harder and stronger noodles at constant protein content. Increased starch amylose content resulted in increased flour peak viscosity. When water absorption remained the same during noodle making, hardness and cohesiveness of cooked noodles also increased with increased starch amylose content, while springiness did not vary significantly. Increased starch damage of ≈5.5–10.4% effectively improved noodle hardness; however, starch damage >10.4% decreased it. Increased starch damage also enhanced noodle springiness while it decreased cohesiveness.  相似文献   

12.
The progenies of four intervarietal durum wheat crosses were used to determine the effects of glutenin variants coded at Glu‐1 and Glu‐3 loci on durum wheat quality properties. The F2 lines were analyzed for high molecular weight (HMW) and low molecular weight (LMW) glutenin composition by electrophoresis. Whole grain derived F3 and F4 samples were analyzed for vitreousness, protein, and dry gluten contents, gluten index, SDS sedimentation volume, mixograph, and alveograph properties. Allelic variation at the Glu‐B1 and Glu‐B3 loci affected gluten quality significantly. Comparisons among the Glu‐B3 and Glu‐B1 loci indicated that the LMW glutenin subunits controlled by Glu‐B3 c and j made the largest positive contribution, followed by the alleles a, k, and b. HMW glutenin subunits 14+15 gave larger SDS values and higher mixing development times than subunits 7+8 and 20. The positive effects of the glutenin subunits LMW c and HMW 14+15 were additive. Flour protein content, vitreousness, and mixograph peak height values were positively correlated with each other as well as with Dglut values, whereas the SDS sedimentation highly correlated with mixing development time, alveograph strength, and extensibility but was not correlated with the other parameters. The results of quality analysis, together with the results of the genetic analysis, led to the conclusion that SDS sedimentation, mixograph mixing development time, and peak breakdown are the tests more influenced by allelic variation of prolamin. The uses of the results in durum wheat quality breeding programs are discussed.  相似文献   

13.
Both cultivar and noodle composition and preparation have important effects on noodle quality. In this study, the effects of flour extraction rate (50, 60, and 70%), added water (33, 35, and 37%), and salt concentration (0, 1, and 2%, w/w) on color and texture of Chinese white noodle (CWN) were investigated using flour samples from five leading Chinese wheat cultivars. The five samples showed large variations in protein content, ash content, flour color, farinograph, and extensigraph parameters, and starch pasting properties. Analyses of variance indicated that cultivar, flour extraction rate, level of water addition, salt concentration, and the interactions had significant effects on color of raw noodle sheets and color and textural properties of CWN. Cultivar and water addition were more important sources of variation than flour extraction rate and salt concentration. The brightness (L*) and redness (a*) values of raw noodle sheets were significantly reduced and increased, respectively, as flour extraction rate increased from 50 to 70%, and noodle scores were slightly higher at flour extraction rates of 50%. Water addition showed different effects on raw noodle sheet color at 2 and 24 hr, and a significant improvement was observed for noodle appearance, firmness, viscoelasticity, smoothness, and total score as water addition increased from 33 to 37%. L* of raw noodle sheets, and firmness and viscoelasticity of cooked noodles, were significantly improved, but noodle flavor significantly deteriorated as salt concentration increased from 0 to 2%; 1% salt produced the highest noodle score. Thus, the recommended composition for laboratory preparation of CWN is 60% flour extraction, 35% water addition, and 1% salt concentration.  相似文献   

14.
A high throughput centrifugal mixer capable of using smaller amounts of flour (50 g) was evaluated for the production of oriental alkaline noodles. The unit requires a small footprint on a laboratory bench and offers variable speed mixing (300–3,500 rpm) for 5–60 sec. Three different mixing bowls, plain, pin, and paddle, were evaluated for the small‐scale production of alkaline noodles using straight‐grade flour derived from Canada Western Red Spring (CWRS) and Canada Prairie White Spring (CPSW) wheat. Under optimized mixing conditions (3,000 rpm for 30 sec), the pin and paddle bowls produced noodle dough with crumb size distribution and adhesion characteristics consistent with commercial requirements. The plain bowl produced dough with larger undesirable dough chunks and showed excessive heat buildup. Noodle sheets produced from this dough were not comparable in color characteristics to conventionally produced noodle sheets. Noodles prepared using the paddle mixer also displayed some significantly different color and texture characteristics than conventionally prepared noodles. However, raw noodle sheets or cooked noodles of either wheat class, prepared using the pin bowl mixer, displayed color values (L*, a*, and b*) at 2 and 24 hr and cooked noodle texture characteristics (bite, chewiness, resistance to compression, and recovery) comparable to a conventional laboratory‐scale Hobart type mixer. In addition to the very short mixing time and small equipment footprint for the centrifuge mixer, rapid throughput is enhanced by the ability to rapidly clean or interchange bowls and to potentially vary sample size to as little as 5 g. These attributes should be particularly useful in earlier generation breeder programs where large numbers of samples require rapid screening.  相似文献   

15.
Several reduction grinding conditions were used on a Canadian Western Red Spring (CWRS) farina to yield flours of comparable protein content within three specific particle size ranges (132–193, 110–132, 85–110 μm) at three starch damage levels (3.0, 3.9, 7.0 Megazyme units). White salted noodles (1% w/w NaCl) were initially processed at a fixed absorption (32%). Dynamic oscillatory and large deformation creep measurements indicated that doughs with lower starch damage, thick or thin, exhibited lower G′ (storage modulus), higher tan δ (G″ [loss modulus]/G′) values, and greater maximum strain during creep than doughs with higher starch damage. There were no clear trends between work input during sheeting and either starch damage or particle size. Instrumental texture analysis of raw noodles showed no significant differences due to either starch damage or flour particle size. Flours with fine particle size gave cooked noodles with the best textural attributes, whereas starch damage exhibited no consistent relationship with cooked noodle texture. Cooking loss was greatest in samples with highest starch damage and coarsest particle size; water uptake was inversely related to starch damage and particle size. Experiments were repeated at adjusted water absorptions (32–36.5%) for fine and coarse flours with highest and lowest starch damage. Differences in raw noodle dough rheological properties were largely eliminated, confirming that differences noted at constant absorption were primarily due to flour water absorption. Work input during sheeting was inversely related to starch damage and was higher for fine particle size. Cooking losses were highest for higher starch damage and fine particle size. Water uptake was highest for fine particle size, but in contrast to cooking loss, was higher at lower starch damage. Textural parameters indicated superior cooking quality when particle size was finer and starch damage was lower. Flour particle size and starch damage (as indicated by water absorption) are both primary quality determinants of white salted noodle properties and, to some extent, exert their influence independently.  相似文献   

16.
Proximate characteristics and protein compositions of selected commercial flour streams of three Australian and two U.S. wheats were investigated to evaluate their effects on the quality of white salted noodles. Wheat proteins of flour mill streams were fractionated into salt‐soluble proteins, sodium dodecyl sulfate (SDS)‐soluble proteins, and SDS‐insoluble proteins with a sequential extraction procedure. SDS‐soluble proteins treated by sonication were subsequently separated by nonreducing SDS polyacrylamide gel electrophoresis (SDS‐PAGE). There was a substantial amount of variation in distributions of protein content and protein composition between break and reduction mill streams. SDS‐insoluble proteins related strongly to differences in protein quantity and quality of flour mill streams. The soluble protein extracted by SDS buffer included smaller glutenin aggregates (SDS‐soluble glutenin) and monomeric proteins, mainly gliadin (α‐, β‐, γ‐, and ω‐types) and albumin and globulin. SDS‐soluble proteins of different flour mill streams had similar protein subunit composition but different proportions of the protein subunit groups. Noodle brightness (L) decreased and redness (a) increased with increased SDS‐insoluble protein and decreased monomeric gliadin. Noodle cooking loss and cooking weight gain decreased with increased glutenin aggregate (SDS‐soluble glutenin and SDS‐insoluble glutenin) and decreased monomeric gliadin. Noodle hardness, springiness, cohesiveness, gumminess, chewiness, tensile strength, breaking length, and area under the tensile strength versus breaking length curve increased with increased glutenin aggregate. Monomeric gliadin contributed differently to texture qualities of cooked noodles from glutenin aggregate. Monomeric albumin and globulin were not related to noodle color attributes (except redness), noodle cooking quality, and texture qualities of cooked noodles. The results suggested that variation in protein composition of flour mill streams was strongly associated with noodle qualities.  相似文献   

17.
Wheat (Triticum aestivum L.) grain hardness is controlled by the Hardness locus on chromosome 5D which consists of the linked genes Puroindoline a and b (Pina and Pinb, respectively). The Ha locus haplotype, Pina‐D1a/Pinb‐D1a, is found in all soft hexaploid wheats. While Pin diversity is low among soft wheats, several novel Ha haplotypes were reported among synthetic hexaploid wheats created using the D genome donor, Aegilops tauschii. One haplotype, Pina‐D1c/Pinb‐D1h, confers a soft phenotype with increased grain hardness over Pina‐D1a/Pinb‐D1a wheats. Here, the Pina‐D1c/Pinb‐D1h haplotype was backcrossed into the soft white spring wheat cultivars ‘Vanna’ and ‘Alpowa’. Then the effect of the two haplotypes on soft wheat milling and baking quality was compared. The effects of the Pina‐D1c/Pinb‐D1h Ha locus haplotype were similar in both the Vanna and Alpowa backgrounds. The Pina‐D1c/Pinb‐D1h lines had significantly more large and fewer small flour particles in both backgrounds and 1.51% higher flour yield in the Alpowa background. The Pina‐D1c/Pinb‐D1h haplotype group was not associated with any consistent differences in solvent retention capacities or sugar snap cookie quality parameters. The results indicate that the Pina‐D1c/Pinb‐D1h haplotype could be used to modify soft wheat milling properties without substantial effects on baking quality.  相似文献   

18.
The quality of wheat (Triticum aestivum L.) grain favored in breadmaking is strongly affected by components of seed storage protein, particularly high molecular weight glutenin subunits (HMW‐GS). The HMW‐GS 2.2 controlled by the Glu‐D1ƒ allele is frequently found in Japanese cultivars and landraces. In the investigation into the factors affecting the distribution of the allele, the available data on HMW‐GS of common wheats from Japan were analyzed and compared with the data for intensity of winter habit and wheat flour hardness. We show that the main factors affecting the Glu‐D1ƒ allele frequency in Japanese wheat were the intensity of natural selection for winter habit and artificial selection for flour hardness. According to a study of the worldwide distribution of Glu‐1 alleles, the Glu‐D1ƒ allele is rare. However, Glu‐D1ƒ allele was the most common Japanese wheat seed storage protein allele. It is well known that Chinese wheat contributed to Japanese landraces, and Japanese landraces contributed to modern cultivars from Japan. However, common Japanese and Chinese wheats differ in the frequencies of Glu‐D1ƒ allele. These results may be explained either by the founder effect or by a selective bottleneck in Japanese common wheat genetic resources.  相似文献   

19.
Fresh and dried white salted noodles (WSN) were prepared by incorporating up to 40% flour from hull‐less barley (HB) genotypes with normal amylose, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch into a 60% extraction Canada Prairie Spring White (cv. AC Vista) wheat flour. The HB flours, depending on genotype, contained four to six times the concentration of β‐glucan of the wheat flour, offering potential health benefits. The HB‐enriched noodles were made with conventional equipment without difficulty. Noodles containing 40% HB flour required less work input during sheeting, probably due to higher optimum water absorption and weakening of the dough due to dilution of wheat gluten. The addition of HB flour had a negative impact on WSN color and appearance, as evident from decreased brightness, increased redness, and more visible specking. The impact of HB flour on cooked WSN texture varied by starch type. Enrichment with HA or normal starch HB flour produced WSN with bite and chewiness values equivalent to or superior to the wheat flour control. Addition of waxy and ZAW HB flour resulted in WSN with lower values for bite and chewiness. The diversity of HB starch types allows tailoring of WSN texture to satisfy specific markets. HB flour also has potential as an ingredient in novel noodle products targeting health‐conscious consumers who associate darker colored cereal‐based foods with superior nutritional composition.  相似文献   

20.
A small increase in amylose content may impact end‐product quality of wheat. The effect of elevated amylose content in durum wheat is not known. We surveyed 255 durum wheat accessions and found two genotypes that lacked the SGP‐A1 protein. These genotypes were crossed to Mountrail, an adapted durum genotype, to create populations segregating for the SSIIa‐Ab null allele. Our goal was to determine the influence of allelic variation at the SSIIa‐A locus on semolina properties and end‐product quality with noodles as a test product. Amylose content increased 3% and cooked noodle firmness increased 2.8 g·cm for the SSIIa‐Ab class compared with the SSIIa‐Aa class for the PI 330546 source, but no change in either trait was detected between classes for the IG 86304 source. The SSIIa‐Ab class had a 10% reduction in flour swelling compared with the SSIIa‐Aa class for both crosses. Grain protein and semolina yield did not differ between SSIIa‐A classes. The relationship between flour swelling power and noodle firmness did not differ between SSIIa‐A allelic classes within a cross. The different results for amylose content and noodle firmness between these sources may be because the two sources of the SSIIa‐Ab null mutation contributed different linkages to the segregating populations. Results show that the SSIIa‐Ab allele could be used to produce durum‐based products that are slightly more firm in texture. However, the effect of the SSIIa‐Ab allele may depend on the source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号