首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Canopies of 22-year-old Santa Rosa plum trees irrigated with mini-sprinklers below the canopy with nonsaline (0.3 dS/m) water were sprayed weekly during one irrigation season with water having six levels of salinity (0.3, 1.1, 2.1, 3.3, 4.5, and 6.8 dS/m) to evaluate the extent of leaf injury, foliar absorption of Cl and Na, and yield response. Recognizable leaf injury was caused by spray water containing 29 mol/m3 of chloride and 15 mol/m3 of sodium. Severe leaf damage occurred when the leaf chloride and sodium concentrations exceeded 300 and 125 mmol/kg (dry weight), respectively. These concentrations were higher than those causing foliar damage on other trees in the same orchard which had been irrigated below the canopy with water having the same salinity as that sprayed on the canopy. No residual foliar injury was observed during the irrigation season following the year when the spray treatments were applied. Fruit yield measured six weeks after treatments were initiated was unaffected. In the following 2 years, yield was reduced by the highest salinity levels, even though the salt spray treatments were not continued and no foliar injury was visible.  相似文献   

2.
Summary An irrigation experiment with water of different salinities (2.8, 7.6 and 12.7 mol Cl m–3) was carried out from 1982 to 1988 in a mature Shamouti orange grove in the coastal plain of Israel. Seasonal accumulation of salts in the soil solution of the root zone (EC of more than 4.0 dS m–1 at the end of the irrigation season) was almost totally leached during the winter. The average annual rainfall of 550 mm reduced EC values below 1.0 dS m–1. Tree growth, as measured by the increase in cross sectional area of main branches, was retarded by saline irrigation water (123, 107 and 99 cm2 growth per tree during six years for the 2.8, 7.6 and 12.7 mol Cl m–3 treatments, respectively). Potassium fertilization (360 kg K2O ha–1) increased yield at all salinity levels during the last three years of the experiment, mainly by increasing fruit size. Saline irrigation water slightly increased sucrose and C1 concentrations in the fruit juice. Salinity decreased transpiration, increased soil water potential before irrigation and decreased leaf water potential. However, the changes in leaf water potential were small. Leaf Cl and Na concentrations increased gradually during the experimental period, but did not reach toxic levels up to the end of the experiment (4.4 g Cl kg–1 dry matter in the high salt treatment vs. 1.7 in the control). Relatively more leaf shedding occurred in the salinized trees as compared to the control. The sour orange root-stock apparently provided an effective barrier to NaCl uptake; therefore, the main effect of salinity was probably osmotic in nature. No interactions were found between N or K fertilization and salinity. Additional N fertilization (160 kg N ha–1 over and above the 200 kg in the control) did not reduce Cl absorption nor did it affect yield or fruit quality. Additional K had no effect on Na absorption but yield and fruit size were increased at all salinity levels. No significant differences were obtained between partial and complete soil surface wetting (30% and 90% of the total soil area resp.) with the same amounts of irrigation water. The effect of salinity on yield over the six years of the experiment was relatively small and occurred only after some years. But, in the last three years salinity significantly reduced average yields to 74.6, 67.1, and 64.2 Mg ha–1 for the three levels of salinity, respectively.These results suggest that saline waters of up to 13 mol Cl m–3 primarily influence the tree water uptake and growth response of Shamouti orange trees, whereas yield was only slightly reduced during six years.  相似文献   

3.
A relationship between crop yield and irrigation water salinity is developed. The relationship can be used as a production function to quantify the economic ramifications of practices which increase irrigation water salinity, such as disposal of surface and sub-surface saline drainage waters into the irrigation water supply system. Guidelines for the acceptable level of irrigation water salinity in a region can then be established. The model can also be used to determine crop suitability for an irrigation region, if irrigation water salinity is high. Where experimental work is required to determine crop yield response to irrigation water salinity, the model can be used as a first estimate of the response function. The most appropriate experimental treatments can then be allocated. The model adequately predicted crop response to water salinity, when compared with experimental data.Abbreviations A Crop threshold rootzone salinity in Equation of Maas and Hoffman (dS/m) - B Fractional yield reduction per unit rootzone salinity increase (dS/m)–1 - Ci Average salinity of applied water (dS/m) - Cr Average salinity of rainfall (dS/m) - Cs Linearly averaged soil solution salinity in the rootzone (dS/m) - Cse Linearly averaged soil saturation extract salinity in the rootzone (dS/m) - Cw Average salinity of irrigation supply water (dS/m) - Cz Soil solution salinity at the base of the crop rootzone (dS/m) - C Mean root water uptake weighted soil salinity in equation of Bernstein and François (1973) (dS/m) - Ep Depth of class A pan evaporation during the growing season (m) - ETa Actual crop evapotranspiration during the growing season (m) - ETm Maximum crop evapotranspiration during the growing season (m) - I The total depth of water applied during the growing season (including irrigation water and rainfall) (m) - K Empirical coefficient in leaching equation of Rhoades (1974) - Kc Crop coefficient for equation of Doorenbos and Pruit (1977) to estimate crop water use - Ky Yield response factor in equation of Doorenbos and Kassam (1974) - LF The leaching fraction - Ro Depth of rainfall runoff during the growing season (m) - R Depth of rainfall during the growing season (m) - W Depth of irrigation water applied during the growing season (m) - Y Relative crop yield - Ya Actual crop yield (kg) - Ym Maximum crop yield (kg) - /z Dimensionless depth for equation of Raats (1974), and empirical coefficient for the leaching equation of Hoffman and van Genutchen (1983)  相似文献   

4.
The physiological behavior and yield response of maize under irrigation with saline water was studied in the laboratory and in the field. In the laboratory, the germination rate decreased only when the electrical conductivity (EC) of the substrate solution was above 17 dS/m. The osmotic potential of germinating maize seedlings decreased in proportion to the decrease in osmotic potential of the substrate.In the field, two maize cultivars (a field maize and a sweet maize) were irrigated alternately with saline (11 days from sowing), fresh (21 days from emergence), and saline (from day 33 to harvest) water and compared with maize irrigated with saline water continuously throughout the season. Four levels of irrigation water salinity were used (ECi = 1.2, 4.5, 7.0 and 10.5 dS/m).In the field no osmotic adjustment by the leaf sheaths of plants in response to salinity was observed. The osmotic potential of corn leaf sheaths (π) decreased with ontogeny in all treatments. The midday leaf water potential (ψL) in maize irrigated with 10.5 dS/m water was 0.75 MPa lower than in plants irrigated with 1.2 dS/m water.In the continuous treatment grain yield was reduced significantly with each increase in salt concentration, and the relationship between relative yield (y) and ECi could be expressed as y = 100?8.7 (ECi-0.84). With alternating irrigation and 7.0 dS/m treatment the grain yield was the same as in the low EC treatment (6.98 kg/m2).  相似文献   

5.
Summary The salt tolerance of mature Santa Rosa plum trees was assessed on 20-year-old trees grown in the San Joaquin Valley of California. The experimental design consisted of six levels of irrigation water salinity (electrical conductivities of 0.3 to 8 dS/m) replicated five times with each replication consisting of ten trees. Salinity treatments imposed in March 1984 did not influence tree yields harvested in June 1984. In 1985, the second year of treatments, yield from the highest salt treatment (electrical conductivity of irrigation water, EC i , of 8 dS/m) was reduced by half; the number of fruit harvested was reduced 40%, and fruit size was reduced significantly. Foliar damage was so severe by the end of 1985 that nonsaline water was applied to the two highest salt treatments (EC i = 6 and 8 dS/m) in an attempt to restore tree vigor. In 1986 salt effects had become progressively worse on the continuing saline treatments. A linear piece-wise salt tolerance curve is presented for soil salinity values, expressed as the electrical conductivity of saturated extracts (EC e ) integrated to a soil depth of 1.2 m over a 2-year period. The salt tolerance threshold for relative yield (Y r ) based on 3 years of data was 2.6 dS/m and yield reduction at salinity levels beyond the threshold was 31% per dS/m (Y ir=100 – 31 [EC e – 2.6]j). Significant foliar damage occurred when leaf chloride concentrations surpassed 200 mmol/kg of leaf dry weight (0.7%). Sodium concentrations in the leaves remained below 10 mmol/kg (0.02%) until foliar damage became severe. This suggests that chloride was the dominant ion causing foliar damage.  相似文献   

6.
Summary Experiments were conducted in lysimeters (1985) and field plots (1986) to evaluate changes in soil moisture and salinity status following irrigations with different blends of a saline water, SW (ECiw = 6.4 dS/m) and non-saline water, NSW (0.3 dS/m) and their effects on the growth and yield of Mungbean (Vigna radiata L. Wilczek). Normalised to the yield of the treatment receiving NSW (100%), relative seed yields (RY) declined to 73, 11 and 3%, respectively, for the treatments receiving SWNSW blends of 12 (2.5 dS/m), 21 (4.7 dS/m) and SW as such. RY increased to 64 and 74% when NSW was substituted for presowing irrigation and 21 SWNSW blend and SW, respectively were used for postsowing irrigations. Due to moderating effect of rainfall (9.8 cm) during the growing season of 1986, valus of RY obtained with 12 and 21 SWNSW blends were 81 and 42% and increased to 96 and 82% when these waters were applied after presowing irrigation with NSW. Irrigation at presowing with non-saline water leached the salts of shallow depths leading to better germination and initial growth. In addition, plants were able to extract greater amounts of water even from deeper soil layers. The RY of Mungbean was related to the weighted time averaged salinity of the 0–120 cm soil depth (ECe) by RY = 100-20.7 (ECe-1.8). The study indicated that applying NSW for presowing irrigation to Mungbean is more beneficial than using it after blending with saline water.  相似文献   

7.
In irrigated agriculture, the production of biomass and marketable yield depend largely on the quantity and salinity of the irrigation water. The sensitivity of field-grown muskmelon (Cucumis melo L. cv. Galia) to water deficit was compared, using non-saline (ECi= 1.2 dS m–1) and saline (ECi=6.3 dS m–1) water. Drip irrigation was applied at 2-day intervals at seven different water application rates for each water quality, including a late water-stress treatment. Neutron scattering measurements showed that the soil layers below the root zone remained dry throughout the experiment, indicating negligible deep percolation. Thus, the sum of the seasonal amount of applied water and the change in soil moisture approximated the cumulative evapotranspiration (ET). Gradual buildup of water and salt stresses resulted in small treatment effects on the size of the vegetative cover and large effects on leaf deterioration and fruit production. Crop responses to salinity may result from an osmotic component of the soil water potential or from other salt effects on the crop physiology. Relating plant data to cumulative ET allowed a distinction to be made between the effect on water availability and specific salinity effects. The relation between fruit fresh weight and ET was not sensitive to ECi. The slopes for fruit dry weights were also insensitive to ECi but the intercept was larger for saline treatments. At any given ET saline water increased fruit number, increased fruit dry matter content and decreased fruit netting, in comparison with non-saline water. The combination of salinity and soil-water deficit was detrimental to fruit quality. Saline soil-water deficit decreased the percentage of marketable (netted) fruit and caused an early end to the period of marketable fruit production. Non-saline soil-water deficit increased the percentage of marketable fruit and had no effect on the duration of the production period. Late non-saline water stress caused a pronounced increase in the percentage of marketable fruit.  相似文献   

8.
The effect of irrigation with water at salinity concentrations of 2.6 and 5.2 dS m–1 on the growth of pure swards of six cultivars of white clover (Trifolium repens L.) was examined over three irrigation seasons at Tatura, Victoria, Australia. After two irrigation seasons, soil EC e levels increased to 6 dS m–1 at 0–60 cm depth in the higher salinity treatment resulting in highly significant (p < 0.001) reductions in shoot dry matter production, flowering densities and petiole and stolon densities. These saline conditions also increased (p <0.001) concentrations of Cl and Na in the shoots and reduced (p < 0.001) leaf water potentials and canopy photosynthetic efficiency rates especially at high temperatures. In contrast, root growth increased at shallow depths (0–15 cm) under both saline irrigation treatments (p <0.001). Cultivars differed significantly in salt tolerance (p < 0.001), with cultivars Haifa and Irrigation exhibiting superior tolerance in terms of lower reductions in herbage yield (p <0.05) and petiole densities (p <0.001) during one irrigation season and lower concentrations of Na and Cl in the shoots (p <0.05) compared with the other four cultivars (Aran, Kopu, Pitau and Tamar). In addition, canopy photosynthetic efficiency rates (A *) in plots irrigated with water at 5.2 dS m–1 were higher in cultivar Haifa compared with cultivar Tamar (p <0.05). The salt tolerance ranking obtained for the six cultivars was in broad agreement with earlier greenhouse studies. Consequently, it appears that, while white clover is an extremely salt-sensitive species, it is possible to grow cultivars which display greater salt tolerance than other cultivars and which provide some scope to increase, or at least to maintain, pasture yields in areas where the soil salinity is low to moderate or where pumped saline groundwater is re-used for Irrigation.  相似文献   

9.
Eight-year-old Murcott orange trees grown in greenhouse lysimeters filled with sandy soil were subjected to irrigation with saline water to investigate the influence of salinity on daily evapotranspiration (ET). The study was conducted in Japan from 1 August to 15 September 2000. The study duration was divided into three periods of about 2 weeks each. In period I, all lysimeters planted with a tree were irrigated with 60 mm of non-saline water at the water content of 70% of field capacity (FC). Salinity treatments for period II started on 14 August. The treatments during period II were as follows: Lysimeter 1 (L1) had 32 mm non-saline water with an electrical conductivity (ECI) of 1.0 dS/m applied. At the same time Lysimeter 2 (L2) had 32 mm of saline water with an ECI of 8.6 dS/m applied when the water content decreased to 70% of FC. Lysimeter 3 (L3) had 16 mm saline water (ECI=8.6 dS/m) applied at 85% of FC. The irrigation amounts during period II were equal to those corresponding to 1.2 times of water required to reach FC. Treatments in period III were the same as in period I.Daily ET was similar for all weighing lysimeters during period I. The average relative ET for L2 and L3 with respect to L1 (L2/L1 and L3/L1) were similar during this period, with a mean value of 0.99. During period II, ET from L1 was consistently higher than that from L2 and L3. In addition, L3 with a higher irrigation frequency because of irrigation at higher soil water content resulted in higher ET than L2. The average relative ET of period II was 0.71 and 0.88 for both L2 and L3. During the last half of period III, reductions occurred in the ET differences between the saline treatments (L2 and L3) and non-saline control (L1).Evaporation rates from soil did not exceed 0.7 mm per day. Transpiration rates from L1, L2 and L3 during period II varied between 6.3 and 3.1 mm per day, 4.5 and 2.2 mm per day, and 5.8 and 3.0 mm per day, respectively. The results reflected a tangible difference of water extraction by roots from individual soil layers. Maximum water uptake by these trees was observed at layer of 30–60 cm. Nevertheless, no clear differences in water extraction pattern between trees were observed.Approximately, 95% of drainage occurred during the first 2 days following irrigation. The electrical conductivity of soil water (ECS) and the electrical conductivity of drainage water (ECD) for the saline water treatments (L2 and L3), compared to the control (L1) were significantly different during period II. ECS values were 2–5 times higher in saline treatments compared to the control treatment. After irrigating trees with saline water, ECS increased from 5 to 14 and 16 dS/m in L2 and L3, respectively. Similarly, in both saline treatments, ECD values were greatly increased after irrigation. During period III, ECD values increased from 5 to 8 dS/m in L2, and from 3 to 11 dS/m in L3. By contrast, ECS declined from 14 to 5 dS/m in L2, and from 16 to 3 dS/m in L3 over the same period.  相似文献   

10.
Long term use of saline water for irrigation   总被引:1,自引:0,他引:1  
Use of saline drainage water in irrigated agriculture, as a means of its disposal, was evaluated on a 60 ha site on the west side of the San Joaquin Valley. In the drip irrigation treatments, 50 to 59% of the irrigation water applied during the six-year rotation was saline with an ECw ranging from 7 to 8 dS/m, and containing 5 to 7 mg/L boron and 220 to 310 g/L total selenium. Low salinity water with an ECw of 0.4 to 0.5 dS/m and B 0.4 mg/1 was used to irrigate the furrow plots from 1982 to 1985 after which a blend of good quality water and saline drainage water was used. A six-year rotation of cotton, cotton, cotton, wheat, sugar beet and cotton was used. While the cotton and sugar beet yields were not affected during the initial six years, the levels of boron (B) in the soil became quite high and were accumulated in plant tissue to near toxic levels. During the six year period, for treatments surface irrigated with saline drainage water or a blend of saline and low salinity water, the B concentration in the soil increased throughout the 1.5 m soil profile while the electrical conductivity (ECe) increased primarily in the upper l m of the profile. Increaszs in soil ECe during the entire rotation occurred on plots where minimal leaching was practiced. Potential problems with germination and seedling establishment associated with increased surface soil salinity were avoided by leaching with rainfall and low-salinity pre-plant irrigations of 150 mm or more. Accumulation of boron and selenium poses a major threat to the sustainability of agriculture if drainage volumes are to be reduced by using drainage water for irrigation. This is particularly true in areas where toxic materials (salt, boron, other toxic minor elements) cannot be removed from the irrigated area. Continual storage within the root zone of the cropped soil is not sustainable.  相似文献   

11.
Leaf chemical composition, growth and water use of Eucalyptus camaldulensis (Lake Albacutya provenance) were measured in the 4th year of a split-plot salinity by nutrition trial. The main plot consisted of irrigating with five different water salinities: 0.5 dS/m (S0.5), 2 dS/m (S2), 5 dS/m (S5), 7.5 dS/m (S7.5) and 10 dS/m (S10). The subplot treatments consisted either of annual additions of 200 kg N and 100 kg P per hectare (+ N + P) or no addition of nutrients (– N – P). Irrigation with water from a drainage system (treatments S2, S5, S7.5 and S10) added about a further 100 kg N/ha annually. Leaf concentrations of N and P were higher in the + N + P treatments. In S0.5, nutrient addition stimulated growth. In + N + P treatments, raising the irrigation salinity from 0.5 to 2.0 dS/m increased leaf Na and decreased the growth rate, however, further increases in salinity affected neither leaf Na nor growth. In – N – P, growth rate depression due to inadequate nutrition was overcome in S2 and S5 by the 100 kg/ha of N in the drainage water. At higher salinities, the N added by drainage water did not overcome the effect of inadequate nutrition. On days when the reference crop evapotranspiration (ETo) was less than 3 mm/day, the correlations between water use of trees in litres per day and ETo and between water use of trees in litres per day and the basal area of the tree butt were highly significant. On days when the ETo was 3 mm/day or greater, the correlation between tree water use and basal area was highly significant, but that between tree water use and ETo was not significant. Received: 15 March 1996  相似文献   

12.
The effect of irrigation with saline (0.1-7.6 dS m-1) water on the growth of six cultivars of lucerne was assessed over four irrigation seasons at Tatura, Victoria, Australia. Measurements made in the study included shoot dry matter production, shoot ion concentrations, flowering incidence, root distribution and soil salinity and sodicity levels. After four seasons, soil ECe levels had risen to 4.2 dS m-1 at the beginning of the irrigation season and this increased to around 6 dS m-1 at the end of the season for the highest salinity irrigation treatment (7.6 dS m-1). The soils in the two most saline irrigation treatments also became sodic (SAR1:5>3) by the third and fourth seasons. By the second season, cultivars differed significantly in salt tolerance as defined by the rate of decline in dry matter production. The cultivars CUF 101 and Validor were consistently the most salt-tolerant cultivars, although cv. Southern Special produced the greatest amount of dry matter over all salinity treatments. Root densities at depths from 0 to 60 cm were greater under saline (2.5 and 7.6 dS m-1) than under non-saline conditions (0.1 dS m-1). Flower production was increased by salinity. It was concluded that, despite the presence of intraspecific variation for salt tolerance, it is detrimental to irrigate lucerne with water at electrical conductivities greater than 2.5 dS m-1 on a red-brown earth in southern Australia.  相似文献   

13.
Summary The effect of N and K nutrition on the salt tolerance of lettuce (Lactuca saliva L. cv. Saunas) and Chinese cabbage (Brassica campestris L., Pekinensis cv. Kazumi) was evaluated in three greenhouse experiments under a controlled aero-hydroponic system of cultivation. Three levels of KNO3 (1, 5 and 10 mM) were tested in all the experiments with rapidly circulated saline and nonsaline nutrient solutions. Two experiments, carried out between January and March 1989, with lettuce (Exp. I) and Chinese cabbage plants (Exp. III), consisted of two salinity levels, EC = 1.75 and 6.0 dS m–1, the former representing a nonsaline nutrient solution. In the third experiment with lettuce (Exp. II., conducted between March and May 1989), three saline nutrient solutions having EC levels of 4.7, 7.75 and 10.75 dS m–1 were compared to the nonsaline solution. The nutrient solutions were salinized with NaCl and CaCl2, in a 4:1 molar ratio. The highest yields of fresh weight of both crops were obtained from the 5 mM KNO3 under both saline and non-saline conditions. The 10 mM treatment caused yield reduction in Chinese cabbage, probably due to a severe tipburn disorder. The relatively high fresh weight yield obtained at the lowest (1 mM) KNO3 level can be explained by the positive effect of circulation velocity on nutrient uptake. The threshold salinity damage value for the vegetative yield of lettuce plants fed by 5 or 10 mM KNO3 was approximately 5 dSm–1 and the yield decreased by 6.5% per unit dS m–1 above the threshold. No yield improvement due to the addition of KNO3 occurred under highly saline conditions (Exp. II). The fresh weight of Chinese cabbage obtained from the saline 1 and 5 mM KNO3 treatments was approximately 15% lower than the non-saline-treatment (Exp. III). Salinity increased tipburn and the effect was not altered by the addition of KNO3. No significant interaction between nutrition (KNO3 level) and salinity was found. The application of salts increased the concentration of Na and Cl in plant tissue and reduced the levels of N and K; the opposite occurred in plants fed by the medium and high levels of KNO3.Contribution from Institute of Soils and Water, ARO, Volcani Center, PO Box 6, Bet Dagan 50250, Israel. No. 3092-E 1990 series  相似文献   

14.
Saline water has been included as an important substitutable resource for fresh water in agricultural irrigation in many fresh water scarce regions. In order to make good use of saline water for agricultural irrigation in North China, a semi-humid area, a 3-year field experiment was carried out to study the possibility of using saline water for supplement irrigation of cucumber. Saline water was applied via mulched drip irrigation. The average electrical conductivity of irrigation water (ECiw) was 1.1, 2.2, 2.9, 3.5 and 4.2 dS/m in 2003 and 2004, and 1.1, 2.2, 3.5, 4.2 and 4.9 dS/m in 2005. Throughout cucumber-growing season, the soil matric potential at 0.2 m depth immediately under drip emitter was kept higher than −20 kPa and saline water was applied after cucumber seedling stage. The experimental results revealed that cucumber fruit number per plant and yield decreased by 5.7% per unit increase in ECiw. The maximum yield loss was around 25% for ECiw of 4.9 dS/m, compared with 1.1 dS/m. Cucumber seasonal accumulative water use decreased linearly over the range of 1.5-6.9% per unit increase in ECiw. As to the average root zone ECe (electrical conductivity of saturated paste extract), cucumber yield and water use decreased by 10.8 and 10.3% for each unit of ECe increase in the root zone (within 40 cm away from emitter and 40 cm depths), respectively. After 3 years irrigation with saline water, there was no obvious tendency for ECe to increase in the soil profile of 0-90 cm depths. So in North China, or similar semi-humid area, when there is no enough fresh water for irrigation, saline water up to 4.9 dS/m can be used to irrigate field culture cucumbers at the expense of some yield loss.  相似文献   

15.
Supplemental irrigation of wheat with saline water   总被引:3,自引:0,他引:3  
In arid and semi-arid regions, both rainfall and surface irrigation water supplies are unreliable and inadequate to meet crop water requirement. Groundwater in these regions is mainly marginally saline (2-6 dS/m) to saline (>6 dS/m) and could be exploited to meet crop water requirement if no adverse effects on crops and land resource occur. The fear of adverse effects has often restricted the exploitation of naturally occurring saline water. The results reveal that substituting a part or all except pre-sowing irrigation with saline water having an electrical conductivity (ECiw) of 8 dS/m is possible for cultivation of wheat. Similarly, saline water with ECiw ranging between 8 and 12 dS/m could be used to supplement at least two irrigations to obtain 90% or more of the optimum yield. In low rainfall years, the use of such waters for all irrigations, except pre-sowing, produced more yield than skipping irrigations. Apparently, even at this level of osmotic salt stress, matric stress is more harmful. Thus, it would be interesting to use such waters for wheat production in monsoon climatic regions.  相似文献   

16.
The field experiments were carried out in 2007 and 2008 to study the effects and strategies of drip irrigation with saline water for oleic sunflower. Five treatments of irrigation water with average salinity levels of 1.6, 3.9, 6.3, 8.6, and 10.9 dS/m were designed. For each treatment, 7 mm water was applied when the soil matric potential (SMP) 0.2 m directly underneath the drip emitters was below −20 kPa, except during the seedling stage. To ensure the seedling survival, 28 mm water was applied after sowing during the seedling stage. Results indicate that amount of applied water decreases as salinity level of irrigation water increases. The emergence will be delayed when the salinity level of irrigation water is higher than 6.3 dS/m, but these differences will be alleviated if there is rainfall during emergence period. The final emergence percentage is not changed when salinity level of irrigation is less than 6.3 dS/m, and the percentage decreases by 2.0% for every 1 dS/m increase when the salinity level of irrigation water is above 6.3 dS/m, but the decreasing rate will be reduced if there is rainfall. The plant height and yield decrease with the increase of salinity of irrigation water. The height of plants decreases by 0.6-1.0% for every 1 dS/m increase in salinity level of irrigation water. The yield decreases by 1.8% for every 1 dS/m increase in salinity level of irrigation water, and irrigation water use efficiency (IWUE) increases with increase in salinity of irrigation water. The soil salinity increases as the salinity of irrigation water increasing after drip irrigation with saline water in the beginning, but the soil salinity in soil profile from 0 to 120 cm depths can be maintained in a stable level in subsequent year irrigation with saline water. From the view points of yield and soil salt balance, it can be recognized even as the salinity level of irrigation water is as high as 10.9 dS/m, saline water can be applied to irrigate oleic sunflower using drip irrigation when the soil matric potential 0.2 m directly under drip emitter is kept above −20 kPa and the beds are mulched in semi-humid area.  相似文献   

17.
Salinity sensitivity of sorghum at three growth stages   总被引:1,自引:0,他引:1  
Summary The relative salt tolerance of two sorghum cultivars [Sorghum bicolor (L.) Moench., cvs. Northrup King 265 and Asgrow Double TX] at three different stages of growth was determined in a greenhouse experiment. Plants were grown in sand cultures irrigated four times daily with modified Hoagland's solution. A nonsaline solution and six solutions salinized with NaCl and CaCl2 (2: 1 molar ratio) provided treatments with osmotic potentials (s) ranging from –0.05 to –1.05 MPa. The saline treatments were imposed for 30 days beginning at either Stage 1, 4, or 7 as defined by Vanderlip and Reeves (Agron J. 64:13, 1972). The 30-day stages are referred to here as the vegetative, reproductive and maturation stages although the first stage may have included initial panicle differentiation. Both cultivars were most sensitive to salinity during the vegetative stage and least sensitive during maturation. Based on a nonlinear least-squares analysis, grain yield reductions of 50% were predicted at s=–0.68, –1.02, and –1.14 MPa for NK265 and at –0.62, –1.00, and –1.10 MPa for Double TX when salinized during the vegetative, reproductive, and maturation stages, respectively. Although salinity had no significant effect on mean kernel weights, significant growth stage effects and interaction indicated that kernels were heaviest for plants salinized during the vegetative stage. Stover yields were significantly reduced by salination during the vegetative stage but were unaffected when plants were salinized during the maturation stage. Salination during the reproductive stage also decreased stover yield of Double TX but the effect was smaller than that during the first stage. Stover yield of NK265 was unaffected by salinity at this stage.Mineral analysis of the first leaf below the flag leaf at harvest indicated that both cultivars tended to exclude Na from the upper leaves. Ca and Cl concentrations increased with increased salinity in plants salinized during the maturation stage but salination in earlier stages decreased Ca concentration of this upper leaf at harvest and had no effect on the final Cl concentration. Phosphate and K concentrations decreased when plants were salinized during the third stage but increased when plants were salinized during the vegetative and reproductive stages. Mg was unaffected by salinization during the first and last stage but decreased when plants were salinized,during the reproductive stage. An extensive data base now exists which describes the salt tolerances of many different crops (Maas and Hoffman 1977; Maas 1986). These data express yield responses as a function of the average salt concentration in the rootzone. Generally, these data apply only if salinity is fairly uniform from the seedling stage to maturity. Except for germination, little information exists on the tolerances of crops at different stages of growth. Such information could be invaluable to optimize the use of limited water resources. Knowledge that crops are more tolerant during some stages of growth will improve new strategies for utilizing saline drainage waters (Rhoades 1984).Several studies indicate that tolerances do change as the crop develops and matures, but none of these studies completely separated the effects of duration of treatment from the stage of growth that the crop was treated (Ayers et al. 1952; Kaddah and Ghowail 1964; Kovalskaia 1958; Lunin et al. 1961 a, 1961 b; Maas et al. 1983; Ogo and Sasai 1955; Piruzyan 1959; Verma and Bains 1974). Comparisons of sensitivity during specific phenological stages are confounded when treatment periods are of unequal duration.This study was initiated to determine the sensitivity of grain sorghum [Sorghum bicolor (L.) Moench] to salinity during three 30-day periods of growth. Francois et al. (1984) recently reported that sorghum is a moderately salt-tolerant crop. In field plot tests, grain yields of two cultivars decreased 16% per unit increase in salinity (electrical conductivity of saturated soil extracts from the rootzone) above 6.8 dS/m. They further reported that both cultivars were significantly more tolerant at germination than at later stages of growth. Soil water salinities above 8.2 dS/m delayed germination but full germination occurred within 10 days at salinities up to 22 dS/m. Treatments in the present study were designed to assess plant growth and yield responses to 30-day exposures to salinity beginning at either the 2-leaf stage, at the beginning of rapid culm elongation, or after anthesis.  相似文献   

18.
Summary Field studies were conducted for a period of ten years (1974 to 1984) on Typic Ustochrept to determine the sustained effects of saline irrigation water electrical conductivity (EC iw ) 3.2 dS/m, sodium adsorption ratio (SAR) 21 (mmol/1)1/2 and residual sodium carbonate (RSC) 4me/1, on the build up of salinity in the soil profile and yield of crops grown under fixed rice-wheat and maize/millet-wheat rotations. Saline waters were continuously used with and without the addition of gypsum (at the rate needed to reduce RSC to zero) applied at each irrigation. In maize/millet-wheat rotation, two additional treatments viz. (i) irrigation with 50% extra water over and above the normal 6 cm irrigation, and (ii) irrigation with good water and saline water alternately, were also kept. The results showed that salinity increased rapidly in the profile during the initial years but after five years (1979–1984) the average soluble salt concentration in 0–90 cm soil profile did not appreciably vary and the mean EC e values under saline water treatment remained almost similar to EC iw , under both the crop rotations.Saline water irrigation increased pH and Na saturation of the soil, reduced water infiltration rate and decreased yields of maize, rice and wheat. The differences in the build up of salinity and ESP of the soil under the two cropping sequences seemed to be related with the differences in leaching that occurred under rice-wheat and maize/millet-wheat rotations. Application of gypsum increased the removal of Na from the profile, appreciably decreased the pH and Na saturation and improved water infiltration rate and raised crop yields. Application of non-saline and saline waters alternately was found to be a useful practice but irrigation with 50% extra water to meet the leaching requirement did not control salinity and hence lowered crop yields.  相似文献   

19.
Summary Irrigated cultivation of pecans (Carya illinoensis K.) has increased dramatically in the Southwestern USA, yet their tolerance to salinity remains largely unknown. The first part of this study was conducted to assess if stunted tree growth reported in clayey soils is related to salinity, and the second part was to evaluate changes in soil salinity and the performance of 11 year old Western trees irrigated with water of 1.1 dSm–1 and 4.3 dSm–1 for 4 years. The first study, conducted at a commercial orchard (49 ha) in the El Paso valley (TX), showed a highly significant correlation between tree trunk size and salinity of the saturation extract (ECe) with r=–0.89. Soil salinity above which trunk size decreased in excess of the standard error was 2.0 dSm–1 in ECe from 0–30 cm depth, and 3.0 dSm–1 in 0 to 60 cm depth with corresponding Na concentrations of 14 and 21 mmol l–1. Excessive accumulation of salts and Na was found only in silty clay and silty clay loam soils. The second study, conducted at a small experimental field (1 ha), indicated that irrigation with waters of 1.1 and 4.3 dSm–1 increased ECe of the top 60 cm profile from 1.5 to 2.2 and 4.2 dSm–1 and Na concentration in the saturation extract to 17 and 33 mmol l–1, respectively. The leaching fractions were estimated at 13 and 37% when irrigated with waters of 1.1 and 4.3 dSm–1, respectively. Tree growth progressively slowed in the saline plots irrigated with water of 4.3 dSm–1, and became minimal during the 4th year. The cumulative shoot length over the 4 year period was reduced by 24% and trunk diameter by 18% in the saline plots relative to nonsaline plots. Irrigation with the saline water also reduced nut yields by 32%, nut size by 15% and leaflet area by 26% on the 4 year average, indicating that pecans are only moderately tolerant to salinity. The concentration of Na, Cl and Zn in the middle leaflet pair did not differ significantly between the two treatments. Soil salinity provided a more reliable measure for assessing salinity hazard than leaf analysis. However, soil salinity was found to be highly spatially variable following a normal distribution within a soil type. This high variability needs to be recognized in soil sampling as well as managing irrigation.Contribution from Texas Agricultural Experimental Station, Texas A & M University System. This program was supported in part by a grant from the Binational Agricultural Research and Development (BARD) fund  相似文献   

20.
Summary Corn production on the organic soils of the Sacramento-San Joaquin Delta of California was affected by the salinity of the irrigation water and the adequacy of salt leaching. Full production was achieved on soils that were saline the previous year, provided the electrical conductivity of the irrigation water (ECi) applied by sprinkling was less than about 2 dS/m and leaching was adequate from either winter rainfall or irrigation to reduce soil salinity (ECMSW) below the salt tolerance threshold for corn (3.7 dS/m). For subirrigation, an ECi up to 1.5 dS/m did not decrease yield if leaching had reduced ECMSW below the threshold. If leaching was not adequate, even nonsaline water did not permit full production. In agreement with previous results obtained in a greenhouse, surface irrigation with water of an electrical conductivity of up to 6 dS/m after mid-season (end of July) did not reduce yield below that of treatments where the salinity of the irrigation water was not increased at mid-season. Results also reconfirm the salt tolerance relationship established in the previous three years of the field trial. The earlier conclusion that the irrigation method (sprinkler or subirrigation) does not influence the salt tolerance relationship was also confirmed.This project was sponsored jointly by the California State Water Resource Control Board, the California Department of Water Resources, the University of California, and the Salinity Laboratory of the US Department of Agriculture  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号