首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraoperative bradycardia is not an uncommon complication in anaesthetised horses and it has been recommended that severe bradycardia (defined as heart rate (HR) <25 beats/min) during general anaesthesia, when associated with hypotension (mean arterial pressure (MAP) <70 mmHg) and other signs of inadequate tissue perfusion, should be treated with anticholinergics. Muscarinic antagonists, such as atropine and glycopyrrolate, cause positive chronotropism and dromotropism (improved atrioventricular conduction) by competitively blocking the effects of acetylcholine at muscarinic receptors in the heart. However, in horses, prolonged intestinal hypomotility and colic have been associated with the use of atropine and glycopyrrolate which has led to the investigation of the use of hyoscine N-butylbromide (hyoscine NBB) to treat alpha 2 agonist-induced bradycardia in horses. This report describes the successful use of hyoscine NBB to treat symptomatic intraoperative bradycardia in three isoflurane-anaesthetised horses.  相似文献   

2.
ObjectivesTo investigate the influence of two inspired oxygen fractions (FIO2) on the arterial oxygenation in horses anaesthetized with isoflurane.Study DesignRetrospective, case-control clinical study.AnimalsTwo hundred equine patients undergoing non-abdominal surgery (ASA class 1–2), using a standardized anaesthetic protocol and selected from anaesthetic records of a period of three years, based on pre-defined inclusion criteria.MethodsIn group O (n = 100), medical oxygen acted as carrier gas, while in group M (n = 100), a medical mixture of oxygen and air (FIO2 0.60) was used. Demographic data, FIO2, arterial oxygen tension (PaO2) and routinely monitored physiologic data were recorded. The alveolar-arterial oxygen tension difference [P(A-a)O2] and PaO2/FIO2 ratio were calculated. The area under the curve, standardized to the anaesthetic duration, was calculated and statistically compared between groups using t-tests or Mann–Whitney tests as appropriate. Categorical data were compared using Chi-square tests.ResultsNo significant differences in age, body weight, sex, breed, surgical procedure, position, anaesthetic duration or arterial carbon dioxide tension were found. Mean FIO2 was 0.78 in group O and 0.60 in group M. Compared to group O, significantly lower values for PaO2 and for P(A-a)O2 were found in group M. In contrast, the PaO2/FIO2 ratio and the percentage of horses with a PaO2 <100 mmHg (13.33 kPa) were comparable in both groups.ConclusionsAlthough a reduction of the inspired oxygen fraction resulted in a lower PaO2, the P(A-a)O2 was also lower and the number of horses with PaO2 values <100 mmHg was comparable.Clinical relevanceIn healthy isoflurane anaesthetized horses, the use of a mixture of oxygen and air as carrier gas seems acceptable, but further, prospective studies are needed to confirm whether it results in a lower degree of ventilation/perfusion mismatching.  相似文献   

3.
4.
Dobutamine is routinely used to improve cardiovascular function in anaesthetized horses. However, dobutamine in conscious horses is insufficiently investigated. Ten research horses that were already instrumented for a preceding trial were included into the study. Cardiovascular variables were recorded and blood samples taken after instrumentation (Baseline), before starting dobutamine and after 10 min of dobutamine infusion (2 µg kg−1 min−1). A significant increase in systemic blood pressure, mean pulmonary artery pressure and right atrial pressure, and a decrease in heart rate were observed with dobutamine compared with baseline measurements. Arterial and mixed venous haemoglobin and oxygen content, as well as mixed venous partial pressure of oxygen increased. No significant changes in cardiac output, stroke volume, systemic vascular resistance, arterial partial pressure of oxygen, or oxygen consumption, delivery and extraction ratio were detected. Concluding, dobutamine increased systemic blood pressure without detectable changes in stroke volume, cardiac output or systemic vascular resistance in conscious horses.  相似文献   

5.
OBJECTIVE: To investigate the effects of peri-operative morphine on the quality and duration of recovery from halothane anaesthesia in horses. STUDY DESIGN: Prospective randomized study. ANIMALS: Twenty-two client owned horses, ASA category I or II. METHODS: Horses undergoing elective surgical procedures were divided into two groups and paired according to procedure, body position during surgery, body mass and breed. Group M+ received morphine by intravenous injection (0.15 mg kg(-1)) before induction of anaesthesia and then by infusion (0.1 mg kg(-1) hour(-1)) during anaesthesia. Group M- received the same anaesthetic agents except that morphine was excluded. At the end of surgery, the horses were placed in a recovery box and allowed to recover without assistance. Recoveries were recorded on videotape, beginning when the anaesthetist left the recovery box, and ending when the horse stood up. Recoveries were assessed from digital video recordings by three observers, unaware of treatment. The time to first movement, attempting and attaining sternal recumbency and standing were recorded. The quality of various aspects of the recovery was assessed to produce a total recovery score; high numerical values indicate poor recoveries. The duration of anaesthesia and the total dose of morphine administered were recorded. RESULTS: The mean morphine dose (95% CI) was 147 (135-160) mg [equivalent to 0.27 (0.25-0.29) mg kg(-1)]. The recovery scores (median, 95% CI) for the M- and M+ groups were 25, 19-41 and 20, 14-26, respectively. Total score increased as duration of anaesthesia increased, independent of treatment. Untreated (M-) horses made more attempts to achieve sternal recumbency: mean number of attempts (95% CI) for M- was 4.5 (2.7-6.2) compared with 2.0 (1.4-2.6) (M+). Untreated horses made more attempts to stand (2.1, 1.6-2.6) compared with the morphine recipients (1.3, 1.1-1.5). Time to standing (in minutes) was significantly (p = 0.0146) longer for the untreated (31.3, 24.3-38.3) compared with treated animals (26.6, 20.9-32.3). The interval between the first movement in recovery to the time at standing was significantly (p < 0.001) longer for M- (14.5, 12.1-16.9 minutes) compared with M+ animals (7.4, 5.0-9.8 minutes). CONCLUSIONS AND CLINICAL RELEVANCE: Recoveries from anaesthesia in the morphine recipients were characterized by fewer attempts to attain sternal recumbency and standing, and a shorter time from the first recovery movement to the time of standing.  相似文献   

6.
Reasons for performing study: Bradycardia may be implicated as a cause of cardiovascular instability during anaesthesia. Hypothesis: Hyoscine would induce positive chronotropism of shorter duration than atropine, without adversely impairing intestinal motility in detomidine sedated horses. Methods: Ten minutes after detomidine (0.02 mg/kg bwt, i.v.), physiological saline (control), atropine (0.02 mg/kg bwt) or hyoscine (0.2 mg/kg bwt) were randomly administered i.v. to 6 horses, allowing one week intervals between treatments. Investigators blinded to the treatments monitored cardiopulmonary data and intestinal auscultation for 90 min and 24 h after detomidine, respectively. Gastrointestinal transit was assessed for 96 h via chromium detection in dry faeces. Results: Detomidine significantly decreased heart rate (HR) and cardiac index (CI) from baseline for 30 and 60 min, respectively (control). Mean ± s.d. HR increased significantly 5 min after atropine (79 ± 5 beats/min) and hyoscine (75 ± 8 beats/min). After this time, HR was significantly higher after atropine in comparison to other treatments, while hyoscine resulted in intermediate values (lower than atropine but higher than controls). Hyoscine and atropine resulted in significantly higher CI than controls for 5 and 20 min, respectively; but this effect coincided with significant hypertension (mean arterial pressures >180 mmHg). Auscultation scores decreased from baseline in all treatments. Time to return to auscultation scores ≥12 (medians) did not differ between hyoscine (4 h) and controls (4 h) but atropine resulted in significantly longer time (10 h). Atropine induced colic in one horse. Gastrointestinal transit times did not differ between treatments. Conclusion: Hyoscine is a shorter acting positive chronotropic agent than atropine, but does not potentiate the impairment in intestinal motility induced by detomidine. Because of severe hypertension, routine use of anticholinergics combined with detomidine is not recommended. Potencial relevance: Hyoscine may represent an alternative to atropine for treating bradycardia.  相似文献   

7.
Objective To identify changes in the amplitude spectrum of the electroencephalogram (EEG) during a standardized surgical model of nociception in horses. Animals Thirteen entire male horses and ponies referred to Division of Clinical Veterinary Science, Bristol (n = 9) and Department of Clinical Veterinary Medicine (n = 4) for castration. Materials and methods Following pre‐anaesthetic medication with acepromazine, anaesthesia was induced with guaiphenesin and thiopental and maintained with halothane in oxygen. The EEG was recorded continuously using subcutaneous needle electrodes. Additional monitoring comprised ECG, arterial blood pressure, blood gas analysis, airway gases, and body temperature. All animals were castrated using a closed technique. The raw EEG was analysed after completion of each investigation and the EEG variables median frequency (F50), spectral edge frequency (SEF) 95% and total amplitude were derived from the spectra using standard techniques. The mean values of EEG variables recorded during a baseline time period (recorded before the start of surgery) and castration of each testicle were compared using analysis of variance for repeated measures. Results Total amplitude (Atot) decreased and F50 increased during castration of each testicle compared to the baseline time period [(89.0 ± 7.8% testicle 1, 87.0 ± 7.8% testicle 2) and (110.0 ± 15.0% testicle 1, 109.0 ± 15.0% testicle 2), respectively]. Changes in SEF 95% were not significant. Conclusions De‐synchronization was identified in the EEG during the nociceptive stimulus of castration. The results suggest that an increase in F50 may be a specific marker for nociception in the horse. Clinical relevance Studies investigating the efficacy of analgesic agents in horses are limited by difficulties in peri‐operative pain assessment. This model, using EEG changes associated with nociceptive stimulation, can be used to investigate the anti‐nociceptive efficacy of different anaesthetic agents in the horse.  相似文献   

8.
OBJECTIVES: To compare pulmonary function and gas exchange in anaesthetized horses during and after breathing either O2-rich gas mixtures or air. ANIMALS: Six healthy standard bred trotters (age range 3-12 years; mass range 423-520 kg), four geldings and two mares. Study design Randomized, cross-over experimental study. METHODS: Horses were anaesthetized on two occasions with tiletamine-zolazepam after pre-anaesthetic medication with acepromazine, romifidine and butorphanol. After endotracheal intubation and positioning in left lateral recumbency, animals were allowed to breathe spontaneously. One of two, randomly allocated inspired gas treatments was provided: either i) room air (fractional concentration of inspired O2 [FIO2] = 0.21) provided throughout anaesthesia; or ii) an O2-rich gas mixture (FIO2 = >0.95) for 15 minutes, followed by room air. The alternative treatment was delivered at the second anaesthetic. Respiratory and haemodynamic variables and the distribution of ventilation-perfusion (VA/Q) ratios (using the multiple inert gas elimination technique) were determined in the standing conscious horse (baseline) after sedation and during anaesthesia. RESULTS: Breathing O2-rich gas was associated with a decreased respiratory rate (p = 0.015) increased PaCO2 (p < 0.001) and increased PaO2 (p = 0.004) compared with breathing air. All horses developed intrapulmonary shunt during anaesthesia, but shunt was significantly greater (13 +/- 5%) when O2-rich gas was delivered compared with air breathing (5 +/- 2%; p = 0.013). Ten minutes after O2-rich gas was replaced by air, shunt remained larger in horses that had initially received oxygen compared with those breathing air (p = 0.042). Mixed venous oxygen tensions were significantly lower during sedation than at baseline (p < 0.001) and during anaesthesia (p < 0.001). CONCLUSIONS: During dissociative anaesthesia, arterial oxygenation was greater when horses breathed gas containing more than 95% oxygen, compared with when they breathed air. However, breathing O2-rich gas increased intrapulmonary shunt and caused hypoventilation. The intrapulmonary shunt created during anaesthesia by high inspired O2 concentrations remained larger when FIO2 was reduced to 0.21, indicating that absorption atelectasis produced during O2-rich gas breathing persisted throughout anaesthesia. CLINICAL RELEVANCE: In healthy horses undergoing short-term dissociative anaesthesia, air breathing ensures a level of oxygen delivery that meets tissue demand. There is no benefit to horses in breathing O2-rich gas after the gas supply is discontinued. On the contrary, the degree of shunt induced by breathing O2-rich gas persists. The clinical relevance of this during recovery requires investigation.  相似文献   

9.
10.
11.
ObjectiveTo assess accuracy of noninvasive blood pressure (NIBP) measured by oscillometric device Sentinel compared to invasive blood pressure (IBP) in anaesthetized horses undergoing surgery. To assess if differences between the NIBP measured by the Sentinel and IBP are associated with recumbency, cuff placement, weight of the horse or acepromazine premedication and to describe usefulness of the Sentinel.Study designProspective study examining replicates of simultaneous NIBP and IBP measurements.AnimalsTwenty-nine horses.MethodsInvasive blood pressure was measured via a catheter in the facial artery, transverse facial artery or metatarsal artery. NIBP was measured using appropriate size cuffs placed on one of two metacarpal or metatarsal bones or the tail in random order. With both techniques systolic (SAP), mean (MAP), and diastolic (DAP) arterial blood pressures and heart rates (HR) were recorded. A mixed effects model compared the IBP to the NIBP values and assessed potential effects of catheter placement, localisation of the cuffs in combination with recumbency, weight of the horse or acepromazine premedication.ResultsNoninvasive blood pressure yielded higher measurements than IBP. Agreement varied with recumbency and cuff position. Estimated mean differences between the two methods decreased from SAP (lateral recumbency: range -5.3 to -56.0 mmHg; dorsal recumbency: range 0.8 to -20.7 mmHg), to MAP (lateral recumbency: range -1.8 to -19.0 mmHg; dorsal recumbency: range 13.9 to -16.4 mmHg) to DAP (lateral recumbency: range 0.5 to -6.6 mmHg; dorsal recumbency: range 21.0 to -15.5 mmHg). NIBP measurement was approximately two times more variable than IBP measurement. No significant difference between IBP and NIBP due to horse's weight or acepromazine premedication was found. In 227 of 1047 (21.7%) measurements the Sentinel did not deliver a result.Conclusion and clinical relevanceAccording to the high variability of NIBP compared to IBP, NIBP measurements as measured by the Sentinel in the manner described here are not considered as an appropriate alternative to IBP to measure blood pressure in anaesthetized horses.  相似文献   

12.

Objective

To investigate the dose-dependent effects of isoflurane and dobutamine on haemodynamics in dogs with experimentally induced mitral valve insufficiency (MI).

Study design

Experimental, dose–response study.

Animals

Six healthy Beagle dogs.

Methods

Dogs with surgically induced MI were anaesthetized once. First, anaesthesia was maintained at an end-tidal isoflurane concentration (Fe′Iso) 1.0% (ISO1.0) for 20 minutes. Then, dobutamine was infused successively at 2, 4, 8 and 12 μg kg?1 minute?1 (DOB2–12) for 10 minutes at each dose rate. Measurements were recorded at each stage. Dobutamine was discontinued and Fe′Iso was increased to 1.5% (ISO1.5) for 20 minutes. Dobutamine was administered similarly to ISO1.0, and cardiovascular variables were recorded. The same sequence was repeated for Fe′Iso 2.0% (ISO2.0). Aortic pressure (AoP) and left atrial pressure (LAP) were recorded by radiotelemetry. The combination method of the pressure–volume loop analysis and transoesophageal echocardiography was used to measure cardiovascular variables: end-systolic elastance (Ees), effective arterial elastance (Ea), Ea/Ees, forward stroke volume (FSV), heart rate (HR), and cardiac output (CO).

Results

High isoflurane concentration resulted in reduced Ees and increased Ea/Ees, which indicated low arterial pressure. High-dose dobutamine administration resulted in increased Ees and FSV at all isoflurane concentrations. In ISO1.5 and ISO2.0, HR was lower at DOB4 than baseline (BL) but increased at DOB12 compared with DOB4. CO increased at ≥ DOB8 compared with BL. In ISO1.5 and ISO2.0, systolic and mean AoP increased at ≥ DOB4 and ≥ DOB8, respectively. LAP did not change under all conditions.

Conclusions and clinical relevance

The dose-dependent hypotensive effect of isoflurane in MI dogs was mainly derived from the decrease in contractility. Dobutamine increased AoP without increasing LAP by increasing the contractility attenuated by isoflurane. Our findings may improve the cardiovascular management of dogs with MI undergoing general anaesthesia with isoflurane.  相似文献   

13.

Objective

To determine agreement between invasive blood pressures measured in three peripheral arteries in anaesthetized horses undergoing elective surgery.

Study design

Prospective balanced incomplete block design.

Animals

A total of 18 client-owned horses.

Methods

Invasive blood pressure (IBP) was measured simultaneously in one of the following three combinations: 1) transverse facial and facial artery; 2) transverse facial and metatarsal artery; and 3) facial and metatarsal artery. The agreement in blood pressure measured for each combination was performed in six horses. At each sample time, systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures were measured concurrently in each artery, and the mean of three consecutive measurements was recorded. The position of horse, heart rate and use of dobutamine were also recorded. Bland–Altman analysis was used to assess agreement between sites.

Results

A total of 54 paired measurements were obtained, with 18 paired measurements from each combination. All paired measurements showed poor and haphazard (nonsystematic) agreement. The widest limit of agreement was 51 mmHg for SAP measured in the facial artery and metatarsal artery, with a bias of –11 mmHg. The smallest limit of agreement was 16 mmHg for MAP measured in the transverse facial and metatarsal artery, with a bias of 1 mmHg.

Conclusions and clinical relevance

There was poor and haphazard agreement for SAP, MAP and DAP measured in each pair of peripheral arteries in this study. These results show that blood pressure measured in different peripheral arteries cannot be used interchangeably. This has implications for studies that use IBP as an outcome variable and studies determining agreement between noninvasive blood pressure and IBP measurements in horses under general anaesthesia.  相似文献   

14.
Studies evaluating the effects of dobutamine in horses do not consistently report increases in cardiac output despite increases in arterial blood pressure. The concurrent administration of the α2 agonist clonidine, in people, inhibited the chronotropic effects of dobutamine and increased left ventricular stroke work ( Zimpfer et al. 1982 ). Our study was performed to determine if pre‐medication with an α2 agonist affects the response to dobutamine in anaesthetized horses. Eleven horses were anaesthetized on four separate occasions for one of four randomly assigned treatments; (I) no xylazine, no dobutamine (II) xylazine, no dobutamine (III) no xylazine, dobutamine, and (IV) xylazine, dobutamine. Horses received 0.02 mg kg?1 of butorphanol IV 10 minutes prior to anesthetic induction. Two minutes prior to induction, groups II and IV received 0.5 mg kg?1 of IV xylazine. Anaesthesia was induced with 6–7 mg kg?1 of thiopental and maintained with halothane. End‐tidal halothane concentrations were maintained between 1.1 and 1.2% in groups I and III, and 0.9–1.0% for groups II and IV. Heart rate, cardiac output, right atrial pressure, and systolic (SAP), diastolic (DAP) and mean (MAP) arterial pressure were recorded 30 minutes after beginning halothane anaesthesia (T10). Cardiac output was estimated using Lithium dilution ( Linton et al. 2000 ). Baseline measurements were repeated twice, at 5‐minute intervals (T5 and T0). At time 0 (T0), an IV infusion of either saline (100 mL hour?1) or dobutamine (0.001 mg kg?1 minute?1) was started and data recorded at 5‐minute intervals for 30 minutes (T5 – T30). Stroke volume and systemic vascular resistance (SVR) were calculated. Data were analysed using repeated measures anova (p < 0.01 significant) and Newman–Keuls for multiple comparisons. Cardiac output and stroke volume increased over time in groups III and IV. Cardiac index was higher in groups III and IV than in groups I and II from T10 until completion of the study. Estimates of cardiac index at T30 for groups I–IV were 45 ± 9, 46 ± 11, 71 ± 11, and 78 ± 19 mL kg?1 minute?1, respectively (mean ± SD). Stroke index was higher in groups III and IV than in groups I and II from T15 to T30. Values for stroke index at T30 for groups I–IV were 0.98 ± 0.19, 1.11 ± 0.18, 1.46 ± 0.21, 1.74 ± 0.33 mL kg?1. Heart rate decreased from T10–T30 in groups I and II. Heart rate was greater in groups I and III than in groups II and IV at T5 and T0. Values for heart rate at T0 for groups I–IV were 48 ± 5, 42 ± 5, 50 ± 4, 43 ± 4 beats minute?1. Systolic arterial pressure, DAP and MAP were higher in groups III and IV than in groups I and II from T5 to T30. There were no differences in SVR between groups. Dobutamine at 0.001 mg kg?1 minute?1 increased cardiac output, blood pressure, and stroke volume. Premedication with xylazine at 0.5 mg kg?1 did not appear to affect the response to dobutamine.  相似文献   

15.

Objective

To compare two methods of Bohr–Enghoff physiological dead space to tidal volume ratio (Vd/VtBohr–Enghoff) determination using a mixing chamber and an E-CAiOVX metabolic monitor.

Study design

Prospective, clinical, method-comparison study.

Animals

Twenty horses anaesthetized for elective orthopaedic procedures.

Methods

Horses were anaesthetized with isoflurane in oxygen and the lungs were mechanically ventilated (Vt 15 ± 2 mL kg?1). Arterial blood was sampled to provide arterial partial pressure of carbon dioxide (PaCO2) for dead space calculation using a metabolic monitor. Mixed expired partial pressure of carbon dioxide (PēCO2) obtained from the custom-made mixing chamber was recorded at the time of arterial blood sampling. Dead space fraction was calculated using the Enghoff modification of the Bohr equation. Agreement between the methods was assessed by Bland–Altman test. A clinically acceptable error was defined to be ≤ 10%.

Results

Forty-nine simultaneous Vd/VtBohr–Enghoff results were obtained. There was no clinically significant bias between the mixing chamber and E-CAiOVX. The limits of agreement were within a priori defined error (bias ± 95% limits of agreement: ?0.022 ± 0.078).

Conclusions and clinical relevance

Acceptable agreement was found between the two methods. The E-CAiOVX metabolic monitor might be a suitable device for measuring Vd/VtBohr–Enghoff in anaesthetized horses.  相似文献   

16.

Objective

To determine the accuracy of high-definition oscillometry (HDO) for arterial pressure measurement during injectable or inhalation anesthesia in horses.

Study design

Prospective, clinical study.

Animals

Twenty-four horses anesthetized for procedures requiring lateral recumbency.

Methods

Horses were premedicated with xylazine, and anesthesia induced with diazepam–ketamine. Anesthesia was maintained with xylazine–ketamine–guaifenesin combination [TripleDrip (TD; n = 12) or isoflurane (ISO; n = 12)]. HDO was used to obtain systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures, and heart rate (HR) using an 8-cm-wide cuff around the proximal tail. Invasive blood pressure (IBP), SAP, MAP, DAP and HR were recorded during HDO cycling. Bland–Altman analysis for repeated measures was used to compare HDO and IBP for all measurements. The generalized additive model was used to determine if means in the differences between HDO and IBP were similar between anesthetic protocols for all measurements.

Results

There were >110 paired samples for each variable. There was no effect of anesthetic choice on HDO performance, but more variability was present in TD compared with ISO. Skewed data required log-transformation for statistical comparison. Using raw data and standard Bland–Altman analysis, HDO overestimated SAP (TD, 3.8 ± 28.3 mmHg; ISO, 3.5 ± 13.6 mmHg), MAP (TD, 4.0 ± 23.3 mmHg; ISO, 6.3 ± 10.0 mmHg) and DAP (TD, 4.0 ± 21.2 mmHg; ISO, 7.8 ± 13.6 mmHg). In TD, 26–40% HDO measurements were within 10 mmHg of IBP, compared with 60–74% in ISO. Differences between HDO and IBP for all measurements were similar between anesthetic protocols. The numerical difference between IBP and HDO measurements for SAP, MAP and DAP significantly decreased as cuff width:tail girth ratio increased toward 40%.

Conclusion and clinical relevance

More variability in HDO occurred during TD. The cuff width:tail girth ratio is important for accuracy of HDO.  相似文献   

17.
OBJECTIVE: To assess the suitability of a human algorithm for calculation of continuous cardiac output from the arterial pulse waveform, in anaesthetized horses. STUDY DESIGN: Prospective clinical study. ANIMALS: Twenty-four clinical cases undergoing anaesthesia for various conditions. MATERIALS AND METHODS: Cardiac output (Qt), measured by lithium dilution (QtLiDCO), was compared with a preceding, calibrated Qt measured from the pulse waveform (QtPulse). These comparisons were repeated every 20-30 minutes. Positive inotropes or vasopressors were administered when clinically indicated. Cardiac indices from 30.7 to 114.9 mL kg(-1) minute(-1) were recorded. Unusually shaped QtLiDCO curves were rejected and the measurement was repeated immediately. RESULTS: Eighty-nine comparisons were made between QtLiDCO and QtPulse. The bias between the mean (+/-SD) of the two methods (QtLiDCO - QtPulse) was -0.07 L minute(-1)(+/-3.08) (0.24 +/- 6.48 mL kg(-1) minute(-1)). The limits of agreement were -12.72 and 13.2 mL kg(-1) minute(-1) (Bland & Altman 1986; Mantha et al. 2000). Linear regression analysis demonstrated a correlation coefficient (r2) of 0.89. Cardiac output in individual patients varied from 49.1 to 183% of the initial measurement at the time of calibration. Linear regression of log-transformed Qt variation for each method found a mean difference of 9% with limits of agreement of -4.1 to 22.1%. CONCLUSIONS AND CLINICAL RELEVANCE: This method of pulse contour analysis is a relatively noninvasive and reliable way of monitoring continuous Qt in the horse under anaesthesia. The ability to easily monitor Qt might decrease morbidity and mortality in the anaesthetized horse.  相似文献   

18.
Objective To measure the effects of dobutamine infusion on fetal oxygenation during isoflurane anaesthesia in pregnant ewes. Study design Prospective randomized experimental study. Animals Seven clinically normal adult pregnant Rambouillet‐Dorset cross ewes with fetuses of 117–122 days gestational age. Methods The ewes were anaesthetized with ketamine (2 mg kg?1) IM, and isoflurane (FE′ISO 2.0%) in oxygen. After instrumentation and stabilization, dobutamine was infused at 4 µg kg?1minute?1 for 60 minutes and 10 µg kg?1minute?1 for 60 minutes in random order, separated by a 20‐minute washout period. Catheters were placed in the maternal and fetal carotid arteries; these were used for continuous blood pressure measurement and intermittent blood sampling. Results Maternal mean systemic carotid arterial pressure was 60 mm Hg prior to dobutamine infusion. After 5 minutes of dobutamine infusion, fetal oxygen saturation increased (p < 0.05) from 0.62 (0.17–0.71, minimum–maximum) to 0.72 (0.28–0.78) at a dose of 4 µg kg?1minute?1 and to 0.70 (0.20–0.73) at a dose of 10 µg kg?1minute?1. These increases were maintained during the infusion and were not significantly different between doses. Maternal oxygen saturation remained constant at 1.0 before and during all infusions. Although maternal heart rate and blood pressure increased (p < 0.05) by 90% and 25%, respectively, with dobutamine, this stimulant effect was not evident in the corresponding fetal variables. Maternal haemoglobin concentration increased 30% (p < 0.05) with each infusion. Conclusions Dobutamine at 4 µg kg?1minute?1 increases fetal oxygenation that is not improved by a dose of 10 µg kg?1minute?1. This increase is largely due to an increase in maternal haemoglobin concentration that, in turn, increases oxygen delivery to the placenta. Clinical relevance The use of dobutamine to treat hypotension in pregnant sheep during isoflurane anaesthesia improves fetal oxygenation. This may be true in other species.  相似文献   

19.
Objective To determine, in mildly hypercapnic horses under isoflurane–medetomidine balanced anaesthesia, whether there is a difference in cardiovascular function between spontaneous ventilation (SV) and intermittent positive pressure ventilation (IPPV). Study design Prospective randomized clinical study. Animals Sixty horses, undergoing elective surgical procedures under general anaesthesia: ASA classification I or II. Methods Horses were sedated with medetomidine and anaesthesia was induced with ketamine and diazepam. Anaesthesia was maintained with isoflurane and a constant rate infusion of medetomidine. Horses were assigned to either SV or IPPV for the duration of anaesthesia. Horses in group IPPV were maintained mildly hypercapnic (arterial partial pressure of carbon dioxide (PaCO2) 50–60 mmHg, 6.7–8 kPa). Mean arterial blood pressure (MAP) was maintained above 70 mmHg by an infusion of dobutamine administered to effect. Heart rate (HR), respiratory rate (fR), arterial blood pressure and inspiratory and expiratory gases were monitored continuously. A bolus of ketamine was administered when horses showed nystagmus. Cardiac output was measured using lithium dilution. Arterial blood‐gas analysis was performed regularly. Recovery time was noted and recovery quality scored. Results There were no differences between groups concerning age, weight, body position during anaesthesia and anaesthetic duration. Respiratory rate was significantly higher in group IPPV. Significantly more horses in group IPPV received supplemental ketamine. There were no other significant differences between groups. All horses recovered from anaesthesia without complications. Conclusions There was no difference in cardiovascular function in horses undergoing elective surgery during isoflurane–medetomidine anaesthesia with SV in comparison with IPPV, provided the horses are maintained slightly hypercapnic. Clinical relevance In horses with health status ASA I and II, cardiovascular function under general anaesthesia is equal with or without IPPV if the PaCO2 is maintained at 50–60 mmHg.  相似文献   

20.
The effect of nitrous oxide (N2O) on arterial partial pressure of oxygen (PaO2) was evaluated in 20 adult horses anaesthetised with halothane. A fresh gas flow rate of 20ml/kg/min, comprising a 1:1 N2O/oxygen (O2) mixture, was supplied via the rotameter flowmeters of an anaesthetic machine to a large animal breathing system. The horses breathed spontaneously from the circuit immediately after endotracheal intubation. Ten horses were subsequently positioned in lateral recumbency and ten in dorsal recumbency. A further twenty adult horses were anaesthetised with halothane and acted as controls; halothane in 20mls/kg/min of O2 being supplied to the same breathing system. Fifty percent NO caused significant decreases in PaO2 for horses in lateral and dorsal recumbency. However when administered to horses in lateral recumbency it did not promote arterial hypoxaemia. There was a higher risk of intraopera- tive arterial hypoxaemia (PaO2 < 8.6kPa) associated with its use in spontaneously breathing horses in dorsal recumbency. Arterial hypoxaemia occurred in all horses during the first fifteen minutes of recovery but when N2O was discontinued, halothane in oxygen supplied to the breathing circuit for five minutes at a flow rate of 20ml/kg/minute was sufficient to ensure that diffusion hypoxia did not occur. The magnitude of the hypoxaemia was not signficantly different between the groups. The time taken to adopt sternal recumbency was significantly shorter in the horses that had received N2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号