首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AIM To observe the effect of retinoid X receptor α (RXRα) agonist bexarotene (Bex) on the proliferation of transforming growth factor β1 (TGF-β1)-induced vascular smooth muscle cells (VSMCs) and atherosclerosis in apolipoprotein E knockout (ApoE-/-) mice, and to explore the underlying mechanism. METHODS Ten C57BL/6 mice were selected as normal control group, and 30 ApoE-/- mice were randomly divided into 3 groups: ApoE-/- group, ApoE-/-+Bex5 (5 mg·kg-1·d-1 Bex) group and ApoE-/-+Bex10 (10 mg·kg-1·d-1 Bex) group. Bex was intragastrically given once a day for 8 weeks. The levels of triglyceride (TG) and total cholesterol (TC) were determined by oxidase method, and select masking method was used to determine serum levels of low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). The protein levels of TGF-β1, p-Smad2 and Smad2 were determined by Western blot. HE staining was used to observe the intima of the thoracic aorta. The VSMCs were cultured with tissue patch method, and the proliferation of VSMCs was measured by BrdU incorporation method. RESULTS The serum levels of TG, TC and LDL-C, and the expression of TGF-β1 and p-Smad2 in thoracic aorta in ApoE-/- group were significantly higher than those in C57BL/6 group (P<0.01). Bex increased p-Smad2 protein level in thoracic aorta in a dose-dependent manner, inhibited the intimal plaque formation and vascular medial proliferation, and decreased the plaque area in ApoE-/- mice (P<0.01). No significant difference in serum levels of TG, TC, HDL-C and LDL-C, and TGF-β1 and Smad2 expression in thoracic aorta among ApoE-/- group, ApoE-/-+Bex5 group and ApoE-/-+Bex10 group was observed. TGF-β1 (0.1~10 μg/L) promoted the proliferation of VSMCs, while Bex (10-9~10-7 mol/L) inhibited TGF-β1 (5 μg/L)-induced proliferation of VSMCs in a concentration-dependent manner. Bex (10-7 mol/L) synergistically promoted the protein level of p-Smad2 in VSMCs induced by TGF-β1 (P<0.01), but inhibited TGF-β1-induced nuclear translocation of p-Smad2. CONCLUSION RXRα agonist Bex inhibits the formation of atherosclerosis in ApoE-/- mice, and its mechanism may be related to the regulation of TGF-β1/Smad2 pathway.  相似文献   

2.
AIM To explore the anti-atherosclerotic mechanism of Wendan decoction based on formation of foam cells. METHODS The optimal concentrations of Wendan decoction without cytotoxity to cells were selected by MTT assay. After Wendan decoction treatment, the formation of foam cells was examined by oil red O staining. The cholesterol efflux, cholesterol level, free cholesterol level and cholesterol esterification rate were analyzed using cholesterol efflux assay, total cholesterol assay and free cholesterol assay. The expression levels of macrophage membrane proteins, including CD36, scavenger receptor class A (SR-A), ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI), were quantified by Western blot. RESULTS The optimal concentrations of Wendan decoction without cytotoxity to the cells were 0~6 g/L. Wendan decoction at the concentrations of 1.5, 3 and 6 g/L were selected for the experiments. Wendan decoction at these concentrations inhibited the formation of foam cells induced by oxidized low-density lipoprotein (ox-LDL), and reduced the accumulation of intracellular lipids in a concentration-dependent manner (P<0.05 or P<0.01). Wendan decoction also reduced intracellular total cholesterol level, cholesterol ester level and cholesterol esterification rate (P<0.05 or P<0.01), promoted efflux of intracellular cholesterol (P<0.01), and decreased the protein level of CD36 in THP-1 cell-derived macrophages (P<0.01) in a concentration-dependent manner. Wendan decoction at the concentration of 6 g/L significantly reduced the protein level of SR-A in THP-1 cell-derived macrophages (P<0.05). At the concentrations of 3 and 6 g/L, Wendan decoction significantly increased the protein levels of ABCA1 and SR-BI in THP-1 cell-derived macrophages (P<0.05 or P<0.01). CONCLUSION Wendan decoction significantly inhibits ox-LDL-induced formation of foam cells by reducing cholesterol deposition and promoting cholesterol efflux, and its mechanism may be related to the down-regulation of CD36 and SR-A and the up-regulation of ABCA1 and SR-BI.  相似文献   

3.
AIM To observe effects of emotional stimulation on expression of stromal cell-derived factor-1(SDF-1) and CXC chemokine receptor 4 (CXCR4) in plasma, platelets, aortas, hippocampus and bone marrow of apolipoprotein E gene knockout (ApoE-/-) mice, and to reveal the possible mechanism of the aggravated atherosclerotic plaque vulnerability by emotional stimulation. METHODS Thirty 8-week-old male ApoE-/- mice were randomly divided into normal control group, high fat group, and emotional stimulation group. Ten 8-week-old inbred C57BL/6J mice served as blank control group. After 12 weeks of intervention, the serum levels of SDF-1 and CXCR4 were investigated by ELISA. The protein levels of SDF-1 and CXCR4 in platelets, aortas, hippocampus and bone marrow were determined by Western blot. The pathological damage of aortas was observed by oil red O staining. RESULTS Compared with blank control group, normal control group and high fat group, the mice subjected to emotional stimulation showed more serious atherosclerosis in aortas detected by oil red O staining, and increased levels of SDF-1 and CXCR4 in the plasma and aortas were also observed (P<0.05). The results of Western blot showed that the protein levels of SDF-1 and CXCR4 in platelets, aortas and hippocampus were increased in the mice subjected emotional stimulation, but the expression of SDF-1 and CXCR4 in the bone marrow was decreased (P<0.05). CONCLUSION Imbalance of SDF-1/CXCR4 may be the key target by which emotional stimulation accelerates the progression of atherosclerosis.  相似文献   

4.
AIM To observe the effect of tanshinone ⅡA on liver lipid deposition and ferroptosis-related protein expression in ApoE-/- mice. METHODS Thirty-two ApoE-/- mice were randomly divided into model group, high-dose (60 mg/kg) tanshinone ⅡA group, low-dose (30 mg/kg) tanshinone ⅡA group and simvastatin group, and C57BL/6J mice (n=8) were used as normal control group. The mice in normal control group were given the basic feeding, while the others were given high-fat diet. The mice in tanshinone ⅡA groups and simvastatin group were given corresponding drugs. The mice in normal control group and model group were intraperitoneally injected with equal volume of saline. Eight weeks later, the serum levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were tested by automatic biochemistry analyzer. The liver tissues were stained with HE and oil red O. The contents of reactive oxygen species (ROS) and glutathione (GSH) in liver tissues of the mice were measured by commercially available kits. The liver glutathione peroxidase 4 (GPX4) and p53 were detected by immunohistochemical method. The protein and mRNA expression levels of ferroptosis-related factors GPX4, xCT/SLC7A11, p53 and ferritin heavy chain 1 (FTH1) were determined by Wes automatic Western blot quantitative analysis system and RT-qPCR. RESULTS Compared with normal control group, the serum levels of TC, TG and LDL-C in model group were increased significantly (P<0.05 or P<0.01), and HDL-C did not change significantly. The fat vacuoles were clearly visible in liver tissue. The content of ROS in liver tissue was increased significantly,and GSH was decreased significantly (P<0.01). The mRNA and protein expression levels of p53 were increased significantly, and GPX4, xCT/SLC7A11 and FTH1 were decreased significantly (P<0.05 or P<0.01). Compared with model group, tanshinone ⅡA significantly decreased the serum levels of TC, TG and LDL-C (P<0.05 or P<0.01), and HDL-C did not change significantly. High-dose and low-dose tanshinoneⅡA also significantly decreased the degree of steatosis, and the size of lipid droplets. The content of ROS in liver tissues was decreased significantly, and GSH was increased significantly (P<0.01). The mRNA and protein expression levels of GPX4, xCT/SLC7A11 and FTH1 were increased significantly, and p53 were decreased significantly (P<0.05 or P<0.01). CONCLUSION Tanshinone ⅡA reduces liver lipid deposition and lipid peroxidation damage in ApoE-/- mice, which may be related to the intervention of ferroptosis-related proteins in the liver cells.  相似文献   

5.
AIM To explore the effects of Anhua dark tea on the prevention and treatment of non-alcoholic fatty liver induced by high-fat diet in apolipoprotein E knockout (ApoE-/-) mice and the relevant mechanisms. METHODS Male ApoE-/- mice (n=50, 8 weeks old) were randomly divided into model group, atorvastatin group, and high-, medium- and low-dose Anhua dark tea groups, with 10 mice in each group. In addition, 10 homologous wild-type male C57BL/6J mice were selected as normal control group. The ApoE-/- and wild-type mice were fed with the same amount of high-fat feed and common feed for 17 weeks, respectively, and intervened by the corresponding drugs and normal saline. At the end of the experiment, HE staining was used to observe the histopathological changes of the liver. The levels of alanine aminotransfease (ALT), aspartate aminotransfease (AST), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in the liver tissues were detected. The mRNA expression levels of hydroxymethyl glutaryl coenzyme A reductase (HMGCR), peroxisome proliferator-activated receptor-γ (PPAR-γ) and steroyl coenzyme A desaturase-1 (SCD-1) were detected by RT-qPCR to observe the lipid synthesis. RESULTS In model group, increased volume, smooth surface, tight membrane and dull edge of the liver were observed, and microscopic images with HE staining showed the formation of vacuoles with varying sizes, indicating the success of establishing the model. Compared with the model group, the degree of liver steatosis, the levels of ALT, AST and MDA, and the mRNA expression of HMGCR, SCD-1 and PPAR-γ in different doses of Anhua dark tea groups were significantly decreased, while the activity of SOD and GSH-Px was increased (P<0.05). The effect of Anhua dark tea in high- and medium-dose groups was better than that in low-dose group (P<0.05). CONCLUSION Anhua dark tea prevents high-fat diet-induced non-alcoholic fatty liver in ApoE-/- mice. The mechanism may be related to reducing lipid synthesis by inhibition of HMGCR, SCD-1 and PPAR-γ expression, and protecting liver cells through anti-oxidative activity.  相似文献   

6.
7.
AIM To investigate the alleviating effect of exenatide (Exe), a glucagon-like peptide-1 (GLP-1) receptor agonist, on the ectopic lipid accumulation in skeletal muscle of ob/ob mice and its mechanism. METHODS Eight-week-old male ob/ob mice and their wild-type (WT) littermates were randomly divided into 3 groups, ob/ob group, ob/ob+Exe group and WT group, and treated with Exe at 24 nmol/kg or the same volume of saline intraperitoneally once daily for 4 weeks. The body weight, fasting blood glucose (FBG) and fat content were measured after the 4-week treatment. The oil red O staining and the quantification of triglyceride (TG) were performed on the skeletal muscle. The serum levels of TG, total cholesterol and free fatty acid (FFA) were also measured by ELISA. The expression levels of AMP-activated protein kinase (AMPK) and lipid metabolism-related proteins were determined by Western blot. Mouse myoblast C2C12 cells were used as an in vitro model to further investigate the effects of Exe. RESULTS As compared with the ob/ob mice treated with saline, 4-week Exe treatment did not reduce body weight, FBG, food intake and fat content in ob/ob mice (P>0.05). However, serum FFA was decreased (P<0.05). Oil red O staining and the quantification of TG showed that 4-week Exe treatment significantly attenuated the ectopic lipid accumulation in the skeletal muscle of ob/ob mice (P<0.05). The results of Western blot showed that the levels of phosphorylated AMPK (p-AMPK) and lipolysis-related proteins were up-regulated, while the lipid synthesis-related proteins were down-regulated by Exe (P<0.05). Treatment with Exe alleviated the lipid accumulation in the C2C12 cells induced by sodium palmate (P<0.05), and the effects of Exe on the levels of p-AMPK and lipid metabolism-related proteins in the C2C12 cells were consistent with those in the ob/ob mice (P<0.05). Treatment with Exe also up-regulated the protein expression of glucose transporter 4 and improved the ability of glucose uptake in the C2C12 cells (P<0.05). CONCLUSION Short-term Exe treatment attenuates the ectopic lipid accumulation in skeletal muscle of ob/ob mice by up-regulating lipolysis-related proteins and down-regulating lipid synthesis-related proteins, which is independent on body weight loss.  相似文献   

8.
9.
AIM To investigate the effects of curcumin (Cur) on the inflammatory response of human gingival fibroblasts (HGFs) induced by Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS) and the role of microRNA-124 (miR-124) in this process. METHODS The HGFs were divided into control group, LPS group (10 mg/L LPS) and LPS+Cur (20, 40 and 80 μmol/L) groups (10 mg/L LPS+corresponding dose of Cur). After treatment for 24 h, CCK-8 assay was used to measure the cell viability. ELISA was used to measure the levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the supernatant. The level of miR-124 in the cells was detected by RT-qPCR. The protein levels of nuclear factor kappa B (NF-κB) p-p65 in cytoplasm and nucleus were determined by Western blot, and the nuclear translocation of NF-κB p-p65 was evaluated by laser confocal microscopy. After transfection with mimic-NC or miR-124 mimic, the expression of miR-124 and NF-κB p-p65 protein in the cytoplasm and nucleus of the cells were also detected. RESULTS The cell viability, the level of miR-124 in the cells and NF-κB p-p65 protein level in cytoplasm of LPS group were lower than those in control group (P<0.05), while the levels of IL-1β and TNF-α in the supernatant and NF-κB p-p65 protein level in the nucleus were higher than those in control group (P<0.05). The cell viability, the level of miR-124 in cells and NF-κB p-p65 protein level in the cytoplasm of LPS+Cur (40 and 80 μmol/L) groups were higher than those in LPS group (P<0.05), while the level of TNF-α in the supernatant and NF-κB p-p65 protein level in the nucleus were lower than those in LPS group (P<0.05). The level of IL-1β in the supernatant of LPS+80 μmol/L Cur group was lower than that in LPS group (P<0.05). The levels of miR-124 and NF-κB p-p65 protein level in the cytoplasm of miR-124 mimic group were higher than those in LPS group and mimic-NC group (P<0.05), while the level of NF-κB p-p65 proteinlevel in the nucleus was lower than that in LPS group and mimic-NC group (P<0.05). CONCLUSION Curcumin inhibits the inflammatory response of HGFs induced by Pg LPS, which may be achieved by up-regulating miR-124 and then inhibiting the nuclear translocation of NF-κB p-p65.  相似文献   

10.
AIM To investigate the mechanism of long noncoding RNA (lncRNA) FEZF1-AS1 regulating microRNA-363-3p (miR-363-3p) on the viability and apoptosis of lipopolysaocharide (LPS)-induced vascular endothelial cells. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured in vitro. pcDNA-NC, pcDNA-FEZF1-AS1, anti-miR-NC, anti-miR-363-3p, miR-NC and miR-363-3p mimics were transfected into the HUVECs and LPS stimulation was applied for 24 h. RT-qPCR was used to detect the expression of FEZF1-AS1 and miR-363-3p. The cell viability was measured by MTT assay. The apoptotic rate was analyzed by flow cytometry. The dual-luciferase reporter experiment was used to verify the targeted regulation of FEZF1-AS1 and miR-363-3p. Western blot was used to determined the expression of cyclin D1, Ki67 and cleaved caspase-3. RESULTS Compared with control group, the expression level of FEZF1-AS1 in LPS group was significantly reduced (P<0.05), and the expression level of miR-363-3p was significantly increased (P<0.05). Compared with pcDNA-NC+LPS group, the cell viability in pcDNA-FEZF1-AS1+LPS group was significantly increased (P<0.05), the apoptotic rate was significantly reduced (P<0.05), the protein levels of cyclin D1 and Ki67 were significantly increased (P<0.05), and the protein level of cleaved caspase-3 was significantly reduced (P<0.05). Compared with anti-miR-NC+LPS group, the cell viability in anti-miR-363-3p+LPS group was significantly increased (P<0.05), the apoptotic rate was significantly reduced (P<0.05), the protein levels of cyclin D1 and Ki67 were significantly increased (P<0.05), and the protein level of cleaved caspase-3 was significantly reduced (P<0.05). Dual-luciferase reporter experiment confirmed that FEZF1-AS1 targeted miR-363-3p. Compared with miR-NC+pcDNA-FEZF1-AS1+LPS group, the cell viability in miR-363-3p+pcDNA-FEZF1-AS1+LPS group was significantly reduced (P<0.05), the apoptotic rate was significantly increased (P<0.05), the protein levels of cyclin D1 and Ki67 were significantly reduced (P<0.05), and the protein level of cleaved caspase-3 was significantly increased (P<0.05). CONCLUSION Over-expression of FEZF1-AS1 promotes the viability and inhibits apoptosis of LPS induced vascular endothelial cells by inhibiting the expression of miR-363-3p.  相似文献   

11.
AIM To study the effect of dihydroartemisinin (DHA) on the radiotherapy efficiency in hepatocellular carcinoma H22 cell tumor-bearing mice and the role of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in this process. METHODS A model of H22 cell tumor-bearing mice was established. The mice was divided into model group, single radiotherapy group, 5-fluorouracil (5-FU) group, and low-, medium- and high-dose DHA groups. The body weight and tumor volume in each group were measured every other day. At the end of administration, blood was collected from the tail of the mice and the animals were killed by neck removal immediately. The synergistic effect of DHA on radiotherapy was determined, and tumor growth inhibitory rate was calculated. The degree of lymphocyte transformation and natural killer (NK) cell activity were measured by MTT, the serum levels of interleukin-2 (IL-2) and IL-4 were measured by ELISA, and the protein levels of PI3K, AKT and p-AKT were determined by Western blot. RESULTS The H22 cell tumor-bearing mouse model was successfully constructed. Compared with model group, the TGT3 (tumor growth time to reach 3 times of volume) of single radiotherapy group was remarkably increased (P<0.05), while tumor weight, lymphocyte transformation degree, NK cell activity, IL-2 and IL-4 levels, PI3K protein level and AKT phosphorylation level were remarkably decreased (P<0.05). Compared with single radiotherapy group, TGT3, EF (enhancement factor), tumor inhibitory rate, lymphocyte transformation degree, NK cell activity, IL-2 level and IL-4 level were increased with the increase in DHA dose (P<0.05), and the PI3K protein level and AKT phosphorylation level were decreased (P<0.05). CONCLUSION DHA may enhance the immunity of tumor-bearing mice by inhibiting the activity of PI3K/AKT signaling pathway, thereby enhancing the efficacy of radiotherapy.  相似文献   

12.
AIM To investigate the effect of cyanidin (Cyn) on pressure overload-induced cardiac remodeling and the underlying mechanism. METHODS Six-week-old male C57BL/6 mice (n=120) were divided into 4 groups: sham group (n=20), sham+Cyn group (n=20), transverse aortic constriction (TAC) group (n=40) and TAC+Cyn group (n=40). The model of cardiac chronic pressure overload was induced by TAC, and the first day of TAC was defined as day 0. The animals in sham+Cyn group and TAC+Cyn group were treated with Cyn dissolved in DMSO and normal saline (5 mg·kg-1·d-1) for 5 d before TAC, while the animals in sham group and TAC group were treated with the same amount of DMSO and normal saline. Four weeks after TAC, the survival rate of the animals in each group was analyzed, the heart function of the mice was measured by ultrasound echocardiography, and the heart weight/body weight and lung weight/body weight were calculated. The cross-sectional area of the cardiomyocytes was measured by wheat germ agglutinin staining and hematoxylin-eosin staining. The degree of cardiac oxidative stress was evaluated by dihydroethidium staining and measurement of superoxide dismutase (SOD) and malondialdehyde (MDA) levels. The cardiomyocyte apoptosis was detected by TUNEL method. The mRNA expression levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC) were detected by RT-qPCR, and the protein expression levels of Bax, Bcl-2, optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (Drp1) were determined by Western blot. The mitochondrial morphological changes were observed by transmission electron microscopy. RESULTS Compared with TAC group, the survival rate of the mice in TAC+Cyn group was significantly increased (P<0.05), the myocardial apoptosis, the cross-sectional area of myocardial cells, the heart weight/body weight, the lung weight/body weight, the level of reactive oxygen species and the MDA content were decreased (P<0.05), and the SOD was activated (P<0.05). M-mode ultrasound tests showed that Cyn treatment significantly increased left ventricular ejection fraction and left ventricular fractional shortening in the mice after TAC (P<0.05), while left ventricular end-diastolic diameter and left ventricular posterior wall thickness in diastole were reduced (P<0.05). Transmission electron microscopic observation showed that the number of myocardial mitochondria was increased and the mitochondrial area was decreased after TAC (P<0.05), while treatment with Cyn increased the area of myocardial mitochondria and decreased the mitochondrial number (P<0.05). Compared with sham group, the protein level of OPA1 in TAC group was significantly reduced (P<0.05), while treatment with Cyn significantly increased the protein level of OPA1. CONCLUSION Cyanidin significantly increases the survival rate, improves the cardiac function and attenuates the cardiac remodeling of the mice after TAC. The mechanism may be related to the inhibition of myocardial mitochondrial OPA1 cleavage and the promotion of mitochondrial fusion.  相似文献   

13.
AIM To investigate the effect of fecal microbiota transplantation (FMT) on the treatment of chronic hepatitis B (CHB) and the potential mechanism. METHODS Fifty C57BL/6J mice (6~8 weeks old) were divided into 5 groups: control group, CHB group, entecavir (ETV) group, comprehensive treatment (ETV+FMT, EFMT) group, and blocker (TAK-242+ETV+FMT, EFMT-TAK) group. The mice in each group were given corresponding treatment. The general condition of the mice was observed daily, and fecal specimens were kept every 10 d. The mice were sacrificed after 12 weeks, and the liver tissues and blood samples were collected. HE staining was used for histological scoring. Serum hepatitis B surface antigen (HBsAg) and interleukin-18 (IL-18) levels were measured by ELISA. Toll-like receptor 4 (TLR4) expression was detected by flow cytometry. Intestinal flora diversity was analyzed by high-throughput sequencing. RESULTS (1) Compared with control group, the body weight of the mice in CHB group was significantly reduced (P<0.05). The body weight loss of the mice in ETV group, EFMT group and EFMT-TAK group was reversed to some extent as compared with CHB group (P<0.05). (2) The histological score of the mice in CHB group was significantly higher than that in control group (P<0.05). The score in ETV group was lower than that in CHB group (P<0.05). The scores in EFMT group and EFMT-TAK group were lower than that in ETV group (P<0.05), and that in EFMT-TAK group had a further downward trend compared with EFMT group (P<0.05). (3) Compared with control group, the serum level of HBsAg in the CHB mice was significantly increased (P<0.05) and decreased after ETV treatment (P<0.05). The HBsAg level in both EFMT group and EFMT-TAK group was significantly lower than that in ETV group (P<0.05). (4) The IL-18 level in CHB group was significantly higher than that in control group (P<0.05). After ETV treatment, the IL-18 level was decreased (P<0.05), and that in both EFMT group and EFMT-TAK group was decreased more than that in ETV group (P<0.05). (5) TLR4 expression in CHB group was higher than that in control group (P<0.05), that in ETV group was lower than CHB group (P<0.05), and that in EFMT group was further decreased (P<0.05). (6) The heat map analysis at the class level showed that the abundances of Gammaproteobacteria, Deltaproteobacteria and Negativicutes in CHB group were significantly higher than those in control group, and those of Deltaproteobacteria and Negativicutes in EFMT group were close to those in control group. The heat map analysis at the family level indicated that the abundances of Burkholderiaceae, Desulfovibrionaceae and Veillonellaceae in CHB group were significantly higher than those in control group, while those in ETV group and EFMT group gradually approached normal levels. The α diversity index in CHB group was significantly decreased, while the diversity in ETV group was increased, that in EFMT group was further increased, and that in EFMT-TAK group was the highest. CONCLUSION FMT plays an active role in the treatment of CHB. The mechanism may be related to reducing the level of IL-18 and improving the structure and diversity of intestinal flora. The TLR4 signaling pathway is involved.  相似文献   

14.
AIM To investigate the relationship between the expression level of galectin-3 and the stability of plaque structure in human atherosclerotic plaques. METHODS The coronary specimens from autopsy cases (n=84) were collected. Among them, 22 cases had coronary atherosclerotic lesions without sudden death of coronary heart disease (A1 group), 20 cases were sudden death of coronary heart disease without secondary lesions (A2 group), 24 cases were sudden death of coronary heart disease with secondary lesions (A3 group), and 18 cases without heart disease were used as normal control group (control group). The intimal thickness, necrotic lesion thickness, fibrous cap thickness and the degree of lumen stenosis were measured by routine HE staining in all coronary arteries. The foam cells in the lesion were marked by CD68 and counted. The expression of galectin-3, CD68 and matrix metalloproteinase-2 (MMP-2) in coronary artery intima was detected by immunohistochemical staining, Western blot and RT-qPCR. The correlation between above factors and the structural stability of atherosclerotic plaques was also analyzed. RESULTS Compared with control group, the intima and necrotic lesions were thickened, the fiber cap was thinned, and the degree of lumen stenosis were increased in A1~3 groups (P<0.05). The number of foam cells in the atherosclerotic focus was increased (P<0.05). The protein and mRNA levels of galectin-3, CD68 and MMP-2 in the lesions showed an increasing trend from normal group to A1~3 groups (P<0.05). The expression of galectin-3, CD68 and MMP-2 in atherosclerotic lesions was positively correlated with intimal thickness and necrotic lesion thickness, and negatively correlated with fibrous cap thickness. CONCLUSION The expression of galectin-3 in human coronary atherosclerotic lesions is increased, which is related to the stability of atherosclerotic plaques.  相似文献   

15.
AIM To investigate the effect of sinomenine (SN) on the damage of human neuroblastoma SK-N-SH cells induced by 1-methyl-4-4 phenylpyridine (MPP+) and its mechanism for exploring the pathogenesis of Parkinson disease. METHODS SN was used to treat MPP+-induced SK-N-SH cells. The levels of malondialdehyde (MDA) and glutathione (GSH) in cell culture supernatants were measured by ELISA. The apoptosis was analyzed by flow cytometry. The protein expression levels of Bcl-2 and Bax were determined by Western blot. The expression levels of long noncoding RNA ANRIL and microRNA-626 (miR-626) were detected by RT-qPCR. Dual-luciferase reporter assay was used to evaluate the relationship between ANRIL and miR-626. After ANRIL small interfering RNA was transfected into SK-N-SH cells, the effects of ANRIL expression knock-down on MPP+-induced SK-N-SH cell apoptosis, the protein expression levels of Bcl-2 and Bax, and the levels of MDA and GSH in cell culture supernatants were examined. RESULTS After treatment with MPP+, the apoptotic rate, Bax protein level and ANRIL expression in SK-N-SH cells were increased (P<0.05), and the Bcl-2 protein level and miR-626 expression were decreased (P<0.05). The level of MDA in cell culture supernatants was increased (P<0.05), and the level of GSH was decreased (P<0.05). After SN treatment or ANRIL expression knock-down, decreased apoptotic rate, Bax protein level and ANRIL expression (P<0.05), and increased Bcl-2 protein level and miR-626 expression in MPP+-induced SK-N-SH cells were observed (P<0.05). The level of MDA in the cell culture supernatants was decreased (P<0.05), and the level of GSH was increased (P<0.05). CONCLUSION SN attenuates MPP+-induced damage in SK-N-SH cells by regulating ANRIL/miR-626 signaling pathway.  相似文献   

16.
AIM To observe the changes of lipophagy during foam cells formation, and to determine the effect of lipophagy on the lipid content and cholesterol outflow of foam cells. METHODS Human THP-1 monocytes were induced by phorbol-12-myristate-13-acetate for 48 h to differentiate into macrophages, and then were incubated with 50 mg/L oxidized low-density lipoprotein (oxLDL) to form foam cells. Lipids in foam cell were stained by oil red O, and the lipid content was determined. The total cholesterol (TC) and free cholesterol (FC) levels in foam cells were measured by cholesterol testing kit. Cholesteryl ester (CE) and CE/TC ratio were calculated. The cholesterol efflux rate was detected by cholesterol efflux assay kit. The expression of autophagy-related proteins, including autophagy-related protein 5 (Atg5), microtubule-associated protein 1 light chain 3 (LC3) and P62, were detected by Western blot. The colocalization of lipid droplets (LD) and LC3 was detected by immunofluorescence staining. The autophagy inducer rapamycin (Rap) or blocker 3-methyladenine (3MA) was used to intervene foam cells, and the expression of Atg5, LC3 and P62, the co-expression of LD and LC3, the cholesterol content and the cholesterol efflux rate were determined. RESULTS Formation of foam cells was observed at 24 h after stimulation with oxLDL at 50 mg/L, as indicated by intracellular CE/TC ratio exceeding 50%.Cholesterol efflux assay revealed that the cholesterol efflux rate increased within 24 h during foam cell formation but decreased after 48 h (P<0.05). Western blot results displayed that the expression of Atg5 and LC3-II/LC3-I ratio were increased within 24 h of foam cell formation, but was deceased after 48 h (P<0.05). The expression of P62 was decreased within 24 h but was increased at 48 h (P<0.05). The colocalization of LD and LC3 was increased at 24 h but was decreased at 48 h after oxLDL stimulation. Treatment with Rap up-regulated the expression of Atg5 and LC3-II/LC3-I ratio, reduced the level of P62, increased the colocalization of LD and LC3, promoted the cholesterol efflux, anf reduced cholesterol content in foam cells (P<0.05). On the contrary, 3MA inhibited the expression of Atg5, reduced LC3-II/LC3-I ratio, elevated the level of P62, decreased the colocalization of LD and LC3, reduced the outflow of cholesterol, increased the content of TC and CE, and elevated CE/TC ratio in foam cells (P<0.05). CONCLUSION Lipophagy is enhanced at 24 h but decreased at 48 h during foam cell formation. Lipophagy inhibited foam cell formation by reducing cholesterol content and increasing cholesterol efflux.  相似文献   

17.
AIM To investigate the effects of Triptergium wilfordii multiglucoside (TWM) on intestinal flora and immune function in IgA nephropathy (IgAN) rats based on core 1 β1,3-galactosyltransferase (C1GALT1) and its chaperone protein Cosmc (C1GALT1/Cosmc pathway). METHODS The rat model of IgAN was established, and the animals were randomly divided into model group (IgAN group), dexamethasone (Dex) group and TWM group. Normal rats served as normal control (NC) group. The levels of serum creatinine (SCr) and blood urea nitrogen (BUN), 24-hour urinary total protein (24 h UTP) and the number of urinary red blood cells were measured by automatic biochemical analyzer. The levels of serum IgA1, and plasma tumor necrosis factor-α (TNF-α), B-cell activating factor (Baff) and interleukin-17 (IL-17) were detected by ELISA. The level of galactose-deficient IgA1 (Gd-IgA1) was detected by Vicia villosa lectin affinity ELISA. The intestinal colony was cultured in selective bacterial medium. The ratio of CD4+ CD25+ regulatory T cells (Treg) to CD4+ T cells (Treg proportion) in peripheral blood mononuclear cells (PBMC) was detected by flow cytometry.Western blot was used to determine the protein expression of C1GALT1 and Cosmc in intestinal mucosa. RESULTS Compared with NC group, 24 h UTP, the number of urinary red blood cells, SCr, BUN, serum IgA1 and Gd-IgA1, the numbers of Enterobacteriaceae, Enterococcus and Bacteroides, and the levels of TNF-α, Baff and IL-17 in plasma in IgAN group were significantly increased (P<0.05), while the numbers of Bifidobacteria and Lactobacilli, the Treg proportion in PBMC, and the protein expression levels of C1GALT1 and Cosmc in intestinal mucosa were significantly decreased (P<0.05). Compared with IgAN group, 24 h UTP, the number of urinary red blood cells, SCr, BUN, serum IgA1 and Gd-IgA1, the numbers of Enterobacteriaceae, Enterococcus and Bacteroides, and the levels of TNF-α, Baff and IL-17 in plasma in Dex group and TWM group were significantly reduced (P<0.05), and those in TWM group were lower than those in Dex group (P<0.05). Moreover, the numbers of Bifidobacteria and Lactobacilli, the Treg proportion in PBMC, and the protein expression levels of C1GALT1 and Cosmc in intestinal mucosa were significantly elevated (P<0.05), and those in TWM group were higher than those in Dex group (P<0.05). CONCLUSION TWM reduces the abnormal glycosylation level of IgA in IgAN rats by promoting the activation of C1GALT1/Cosmc pathway, and attenuates the intestinal flora disorder and immune dysfunction in IgAN rats, thus exerting the therapeutic effect.  相似文献   

18.
AIM To study whether C1q/tumor necrosis factor (TNF)-related protein 3 (CTRP3)protect vascular endothelium in rats with hyperuricemia and its potential mechanisms. METHODS An animal model of hyperuricemia was established by using male SD rats drinking 10% fructose water (n=10). The rats drinking normal water served as normal controls (n=10). After 12 weeks, the rats were given a single injection with Ad-CTRP3 or Ad-GFP. The experiment was ended at 14th day after transfection.The serum levels of uric acid and nitric oxide (NO) were evaluated. The serum contents of TNF-α and interleukin-6 (IL-6) were measured by ELISA. HE staining and TUNEL assay were used to assess the morphological changes of intima and apoptosis of endothelial cells in thoracic aorta, respectively. The mRNA levels of endothelial nitric oxide synthase (eNOS), TNF-α and IL-6 were detected by RT-qPCR. The protein levels of CTRP3 and Toll-like receptor 4 (TLR4) were determined by Western blot. RESULTS Compared with normal control group, the rats with hyperuricemia showed lower CTRP3 and higher TLR4 protein levels in the thoracic aorta (P<0.05). Hyperuricemic rats had higher serum contents of uric acid, TNF-α and IL-6 (P<0.05). Also, the intima structure disturbance of thoracic aorta, increased apoptotic rate, higher mRNA levels of TNF-α and IL-6 as well as lower mRNA levels of eNOS were observed (P<0.05). By contrast, CTRP3 over-expression decreased TLR4 protein levels, reduced inflammatory cytokines, and obviously improved the morphology and function of thoracic aorta in the rats with hyperuricemia. CONCLUSION CTRP3 protect vascular endothelium in rats with hyperuricemia maybe via down-regulation of TLR4- mediated inflammatory signaling pathway.  相似文献   

19.
AIM To investigate the effects of cytochrome P450 (CYP450) epoxygenase/epoxyeicosatrienoic acid (EET) pathway on insulin resistance in obese mice, and to explore the possible mechanisms. METHODS High-fat diet-induced obesity model was established in C57BL/6Cnc mice, and the obese mice were randomly divided into 3 groups, including obesity group (treated with saline; n=10), EET group (treated with 11,12-EET; n=10) and EET inhibitor 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE) group (n=10). Normal C57BL/6Cnc mice (n=10) treated with saline served as control. Protein expression of CYP2J2 (one of CYP450 epoxygenases) and hypoxia-inducible factor-1α (HIF-1α) was measured by Western blot. Vessel-like structure was detected by immunofluorescence staining. The serum levels of insulin, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and monocyte chemoattractant protein-1 (MCP-1) were measured by ELISA. RESULTS In obese mice, homeostasis model assessment of insulin resistance (HOMA-IR) values were increased, the protein level of CYP2J2 was reduced, and the protein level of HIF-1α was increased in adipose tissues as compared with the controls (P<0.05). The serum levels of MCP-1, IL-1β, IL-6 and TNF-α were also significantly increased in obese mice (P<0.05). After treatment with 11, 12-EET, the HOMA-IR values were decreased compared with vehicle-treated obese mice, HIF-1α expression levels were decreased in the adipose tissue, and the serum levels of MCP-1, IL-1β, IL-6 and TNF-α were reduced (P<0.05). Immunohistochemical results of adipose tissue from vehicle-treated obese mice showed a marked decrease in vessel-like structures (CD31-positive) compared with normal control mice (P<0.05). EET treatment significantly increased the newly formed vessel-like structures in the visceral adipose tissues of obese mice as compared with vehicle-treated obese mice (P<0.05). CONCLUSION High-fat diet-induced obesity and insulin resistance are closely related to the CYP450 pathway. Exogenous EETs effectively decrease obesity-induced insulin resistance possibly through pro-angiogenesis and attenuation of hypoxia and inflammation.  相似文献   

20.
AIMTo investigate the role of SUMO-specific protease 3 (SENP3) in macrophage polarization and calcium phosphate (CaPO4)-induced abdominal aortic aneurysm (AAA) formation in mice. METHODS(1) Bone marrow-derived monocytes (BMDMs) in Senp3flox/flox (wild-type, WT) mice and Senp3flox/flox; Lyz2-Cre (monocyte-specific SENP3 knockout, i.e. conditioned knockout, cKO) mice were isolated and induced for M1 and M2 polarization. The mRNA and protein expression level of SENP3 were detected by RT-qPCR, Western blot and immunocytofluorescence, and the differential distribution of M1/M2 BMDMs from WT and cKO mice was analyzed. (2) CaPO4 was administrated to induce AAA model in 8~12-week-old male WT and cKO mice. The AAA incidence, survival rate and maximal aortic diameter were analyzed between the 2 groups. Aortic aneurysm tissues were collected for pathological analysis, and the expression levels of SENP3, interleukin-1β (IL-1β), tumor necrosis factor-α (TNFα), IL-6 and matrix metalloproteinases-9 (MMP-9) were measured by RT-qPCR and Western blot. Dihydroethidium staining in situ in frozen sections was used to analyze the production of reactive oxygen species (ROS). (3) To explore the potential mechanisms, Western blot and co-immunoprecipitation were used to verify the de-SUMO modification of mitogen-activated protein kinase kinase 7 (MKK7) induced by SENP3. Besides, BMDMs were transfected with Flag-MKK7 wild type (Flag-MKK7 WT) and SUMO-modified site K18 mutant (Flag-MKK7 K18R mutant), and then M1 polarization of the cells was induced. The protein levels of p-JNK and MMP-9 in the 2 groups were determined by Western blot. RESULTS(1) SENP3 expression was up-regulated in M1 polarized macrophages (P<0.01), but was down-regulated in M2 polarized macrophages (P<0.01). The expression of SENP3 was decreased during the transformation of M1 to M2 in the macrophages (P<0.01), but was significantly up-regulated during the opposite process (P<0.01). Besides, more M1 macrophages and less M2 macrophages after induction were observed in the BMDMs from cKO mice than those from WT mice. (2) SENP3 expression was up-regulated in AAA tissues (P<0.05). The AAA incidence of cKO mice was significantly reduced after CaPO4 induction (P<0.01), the survival rate was significantly improved (P<0.05), and maximal aortic diameter was significantly reduced in cKO group (P<0.01). The levels of IL-1β, IL-6 and TNFα, and the production of ROS were significantly down-regulated (P<0.01), meanwhile MMP-9 expression was also down-regulated in cKO mice (P<0.05). (3) the SUMO2/3 modification of MKK7 was reduced during M1 polarization, and MKK7 interaction with SENP3 was enhanced. Significantly up-regulated protein level of p-JNK and MMP-9 were verified in the M1 macrophages transfected with Flag-MKK7 K18R mutant (P<0.05). CONCLUSION SENP3 activates the MAPK/JNK pathway via de-SUMOylation of MKK7, regulates the M1/M2 polarization of macrophages and promotes the protein level of MMP-9, thus aggravating AAA formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号