首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Farmers are interested to produce sweet maize under organic production systems and propane flaming could be a potential alternative tool for weed control in organic sweet maize production. Therefore, the objective of this study was to investigate the response of sweet maize to broadcast flaming as influenced by propane dose and crop growth stage. Field experiments were conducted at the Haskell Agricultural Laboratory of the University of Nebraska, Concord, NE in 2008 and 2009 using five propane doses applied at three different growth stages of V2 (2-leaf), V5 (5-leaf) and V7 (7-leaf). The propane doses were 0, 13, 24, 44 and 85 kg ha−1. The response of sweet maize to propane flaming was evaluated in terms of visual crop injury, effects on plant height, yield components (plants m−2, tillers plant−1, number of ears plant−1, cob length and number of seeds cob−1) and fresh marketable yield. The response of different growth stages of sweet maize to propane doses was described by log-logistic models. Based on most parameters tested, V7 was the most tolerant while V2 was the least tolerant stage for broadcast flaming. The maximum yield reductions with the highest propane dose of 85 kg ha−1 were 22%, 12% and 6% for V2, V5 and V7 stages, respectively. Furthermore, a 5% yield reduction was evident with 23, 25 and 36 kg ha−1 of propane for V2, V5 and V7 growth stages, respectively, suggesting that plants flamed at V7 stage can tolerate higher dose of propane for the same yield reduction compared to the other growth stages. We believe that flaming has a potential to be used effectively in organic sweet maize production if properly used.  相似文献   

2.
Organic wheat producers are interested in testing propane flaming as part of an integrated weed management program for organic wheat production. Therefore, the objective of this study was to collect baseline information on winter wheat tolerance to broadcast flaming as influenced by its growth stage at the time of flaming and dose of propane. Field experiments were conducted at the Haskell Agricultural Laboratory of the University of Nebraska, Concord, Nebraska in 2007–2008 and 2008–2009 utilizing six doses of propane applied at four growth stages including: four leaves-4L, three tillers-3 T, shoot elongation-SE and boot stage-BS. The propane doses were 0, 12, 31, 50, 68 and 87 kg ha−1 and were applied using a custom built flamer driven at a constant speed of around 6 km h−1. Crop response to propane doses was described by log-logistic models based on visual estimates of crop injury, various yield components (spikes m−2, kernels spike−1 and 1000-kernel weight) and grain yield. Overall response to flaming was influenced by the growth stage of wheat and propane dose. In general, wheat at 3 T was the most tolerant and at BS was the most susceptible stage to broadcast flaming. Flaming negatively affected all yield components of wheat. Reduction of grain yield increased with increase in propane dose at each growth stage. The maximum yield losses of about 21%, 32%, 63% and 74% were obtained with the highest propane dose of 87 kg ha−1 applied at 3 T, SE, 4L and BS growth stages, respectively. Due to unacceptable yield loss, the use of broadcast flaming in winter wheat at the tested growth stages is not recommended.  相似文献   

3.
Field experiments were conducted to study the impact of single and multiple flaming on crop injury, yield components, and yield of soybean. The goal of this experiment was to determine the number of the maximum flaming treatments which soybean could tolerate without any yield loss. The treatments consisted of a non-flamed control, and broadcast flaming conducted one time (at VC-unfolded cotyledon, V2-second trifoliate, and V5-fifth trifoliate), two times (each at VC and V2, VC and V5, and V2 and V5 stages), and three times (at VC, V2, and V5 stages) resulting in a total of eight treatments. All plots were kept weed-free for the entire growing season by hand hoeing. A propane dose of 50 kg ha−1 was applied with torches parallel to the crop row and at an operating speed of 4.8 km h−1 for all treatments. The response of soybean was measured as visual injury ratings (at 7 and 28 days after treatment – DAT) as well as effects on yield components and yield. Broadcast flaming conducted once (at VC or V5 stage), as well as twice (at VC and V5 stages) exhibited the lowest injury of about 8% at 28 DAT. Any treatment that contained flaming at V2 stage resulted in more than 70% injury at 28 DAT. The highest crop yields were obtained from the non-flamed control (3.45 t ha−1) and the plots flamed once at VC (3.35 t ha−1), V5 (3.32 t ha−1), and two times at VC and V5 (3.24 t ha−1), which were all statistically similar. Soybean flamed at V2 stage had lower yields (1.03 t ha−1 at V2, 0.46 t ha−1 at VC and V2, and 0.38 t ha−1 at V2 and V5). The lowest yields were in soybean flamed three times (VC, V2, and V5 stages), which yielded only 0.36 t ha−1. These results indicate that soybean could tolerate a maximum of two flaming treatments at VC and V5 growth stages per season without any yield reduction.  相似文献   

4.
Time of day has been observed to affect flaming efficacy. The basis for the differential plant response is not well understood; however, daily variation in leaf relative water content (RWC) is thought to contribute to the response. Leaf RWC is the ratio of the amount of water in the leaf tissue compared to when fully turgid. To determine the influence of leaf RWC in plant response to propane flaming, greenhouse experiments were conducted during April and repeated in September of 2009. Two crops [4-leaf maize (Zea mays) and second trifoliate soybean (Glycine max)] and two weed species [5-leaf velvetleaf (Abutilon theophrasti) and 6-leaf green foxtail (Setaria viridis)] were flamed with four propane doses of 0, 29, 43 and 87 kg ha−1 at 0, 4, 8 and 12 h after sunrise-HAS. Leaf RWC was measured before treatment application. Flaming treatment was conducted utilizing a hand flamer with one VT 2-23 C vapor phase burner positioned 20 cm above soil surface and angled horizontally at 30°. The propane pressure was 120 kPa and the application speeds were 1.6, 3.2 and 4.8 km h−1. The plant responses evaluated were plant injury and fresh weight at 7 days after treatment (DAT). All plant species were more susceptible to flaming during the afternoon when they had lower leaf RWC at 8 HAS; however, the response of these plants did not differ with the plants flamed at 12 HAS. Green foxtail flamed at 87 kg ha−1 at 0, 8 and 12 HAS had injury of 62, 76 and 82%, respectively. The same response was observed in velvetleaf which had 80% injury when flamed with 87 kg ha−1 at 0 HAS and 93% injury when flamed at 12 HAS with the same propane dose at 7 DAT. Similar trends occurred for maize and soybean suggesting that leaf RWC could be one of the factors affecting plant response to flaming. Practical implication is that flaming operation should be conducted in the afternoon in order to improve efficacy of weed control and reduce propane consumption rate.  相似文献   

5.
Saflufenacil is a new herbicide being developed for pre-plant burndown for non-selective removal of broadleaf weeds and pre-emergence (PRE) broadleaf weed control in field crops, including maize, soybean, sorghum and wheat. As part of studying the potential use pattern of this herbicide, four field studies were conducted in 2006 and 2007 at Concord, northeast Nebraska, to determine winter wheat tolerance to PRE and post-emergence (POST) applications of saflufenacil. The fall POST applications were conducted at the 2–3 leaf stage (5 cm height) whereas the spring POST and tank-mixes studies were sprayed at the 4th node stage (40 cm height) of crop. Dose-response curves based on log-logistic model were used to determine the ED (effective dose) values of saflufenacil for visual ratings of crop injury and relative yield. There was no crop injury or yield reduction with PRE applied saflufenacil dose of up to 400 g a.i. ha−1. However, there was significant crop injury in the POST applications in the fall (up to 95%) and in the spring (up to 67%). There was also yield reduction of as much as 66% in the fall and 58% in the spring POST applications. Addition of adjuvants also increased crop injury levels. For example, at 14 days after treatment in the fall applications, about 5% visual crop injury (ED5) was evident with 82, 67 and 10 g a.i. ha−1 of saflufenacil compared with 51, 30 and 11 g a.i. ha−1 in the spring, with no adjuvant, or non-ionic surfactant (NIS), or crop oil concentrate (COC), respectively. Saflufenacil at half the proposed used dose of 25 g a.i. ha−1 was safe to mix with the currently used POST herbicides of wheat with no visible crop injury and yield reduction. PRE applications of saflufenacil would be safe for use in winter wheat; however, the POST application of saflufenacil alone or with the adjuvant NIS or COC produces unacceptable injury and yield loss. These results are similar to the proposed PRE use pattern of saflufenacil. In addition, the proposed label does not suggest the POST use of saflufenacil in winter wheat, or any other cereal crops, which is similar to what we have concluded from this study.  相似文献   

6.
Retention and/or reincorporation of plant residues increases soil organic nitrogen (N) levels over the long-term is associated with increased crop yields. There is still uncertainty, however, about the interaction between crop residue (straw) retention and N fertilizer rates and sources. The objective of the study was to assess the influence of straw management (straw removed [SRem] and straw retained [SRet]), N fertilizer rate (0, 25, 50 and 75 kg N ha−1) and N source (urea and polymer-coated urea [called ESN]) under conventional tillage on seed yield, straw yield, total N uptake in seed + straw and N balance sheet. Field experiments with barley monoculture (1983-1996), and wheat/barley-canola-triticale-pea rotation (1997-2009) were conducted on two contrasting soil types (Gray Luvisol [Typic Haplocryalf] loam soil at Breton; Black Chernozem [Albic Argicryoll] silty clay loam at Ellerslie) in north-central Alberta, Canada. On the average, SRet produced greater seed yield (by 205-220 kg ha−1), straw yield (by 154-160 kg ha−1) and total N uptake in seed + straw (by 5.2 kg N ha−1) than SRem in almost all cases in both periods at Ellerslie, and only in the 1997-2009 period at Breton (by 102 kg seed ha−1, 196 kg straw ha−1 and by 3.7 kg N ha−1) for both N sources. There was generally a considerable increase in seed yield, straw yield and total N uptake in seed + straw from applied N up to 75 kg N ha−1 rate for both N sources at both sites and more so at Breton, but the response to applied N decreased with increasing N rate. The ESN was superior to urea in increasing seed yield (by 109 kg ha−1), straw yield (by 80 kg ha−1) and total N uptake in seed + straw (by 2.4 kg N ha−1) in the 1983-1996 period at Breton (mainly at the 25 and 50 kg N ha−1 rates). But, urea produced greater straw yield (by 95 kg ha−1) and total N uptake in seed + straw (by 3.3 kg N ha−1) than ESN in the 1983-1996 period at Ellerslie. The N balance sheets over the 1983-2009 study duration indicated large amounts of applied N unaccounted for (ranged from 740 to 1518 kg N ha−1 at Breton and from 696 to 1334 kg N ha−1 at Ellerslie), suggesting a great potential for N loss from the soil-plant system through denitrification and/or nitrate leaching, and from the soil mineral N pool by N immobilization. In conclusion, the findings suggest that long-term retention of crop residue may gradually improve soil productivity. The effectiveness of N source varied with soil type.  相似文献   

7.
Wild oat (Avena fatua L.) is the most troublesome weed in cereal crops in Argentina. With the aim of studying the effects of different herbicides, doses, and wild oat growth stage at application on weed control and crop yield, field experiments were conducted in wheat and barley crops during three growing seasons in the south of Buenos Aires Province, Argentina. Treatments were post-emergence applications of new herbicide, pinoxaden + cloquintocet mexyl (5%-1.25%), at doses that ranged from 20 g to 60 g a.i. pinoxaden ha−1, applied at two to three leaves and the beginning of tillering of wild oat. In addition, standard treatments were included and applied at the same wild oat growth stages. Diclofop methyl at 511 g a.i. ha−1 and fenoxaprop-p-ethyl at 55 g a.i. ha−1 were applied in barley. In wheat, diclofop methyl was replaced by clodinafop-propargyl + cloquintocet mexyl (24%-6%) at 36 g a.i. clodinafop-propargyl + 9 g cloquintocet mexyl ha−1 and in 2008/09 wheat experiments, iodosulfuron plus metsulfuron methyl (5%-60%) at 3.75 g a.i. ha−1 + 3 g a.i. ha−1 also was included. In both crops, pinoxaden at 30 g a.i. ha−1 and at higher rates, fenoxaprop-p-ethyl and clodinafop-propargyl gave the best control of wild oat. In 2006/07 wheat crops, treatments applied at tiller initiation provided better control than the early timing averaged across herbicides. However, wheat yield generally was greater with early application. In barley, wild oat control and crop yield were similar regarding time of application. Variations in crop yield were correlated with grain number m−2 both in wheat and barley, but relationships between both grain number and spikes m−2 and with grains per spike were identified only in wheat.  相似文献   

8.
Nitrogen rates and plant genotypes effects yield and quality of medicinal plants therefore, this experiment was conducted in order to determine the effects of nitrogen rates on fennel accessions quality and quantity. The experimental design was a split plot with nitrogen rate (0, 40, 80, 120 and 160 Kg N ha−1) as main and accession (Isfahan, Tehran, Yazd and EU11486) as sub plots and replicated four times. The experiment was conducted at the Isfahan University of Technology Experimental Station, Isfahan, Iran during 2008-2009. Plant height, number of umbel per plant, 1000seed weight, number of seeds per umbel, seed yield, seed essential oil yield, seed and foliage essential oil contents and seed ash, protein and fiber contents were measured. Nitrogen fertilization increased all measured traits, but reduced ash content. On average, the highest seed and foliage essential contents and seed essential yield were produced at 160 kg per N ha−1 and EU11486 was a superior cultivar for these traits. However, there was an interaction between N rate and accession on all traits. Isfahan (11.65 kg ha−1), EU11486 (38.26 kg ha−1), Tehran (15.32 kg ha−1) and Yazd (22.06 kg ha−1) produced the highest seed essential oil yield under application of 160, 80, 160 and 120 kg N ha−1, respectively. Foliage of the accessions contained 0.45-0.91% essential oil and seeds of accessions contained 17.6-18.2% protein and 8.9-9.4% ash suggesting that foliage of fennel also is a good source of essential oil and seeds of fennel are good sources of protein and minerals. The results showed that N fertilization and accession can affect yield and quality of fennel and accessions responded differently to N fertilization rates, thus selection among the accessions and N rates for better fennel production is possible.  相似文献   

9.
Artemisinin isolated from the aerial parts of Artemisia annua L. is a promising and potent antimalarial drug. It posses remarkable activity against both chloroquinine resistant as well as chloroquinine sensitive strains of Plasmodium falciparum. It is also useful in the treatment of cerebral malaria. The relatively low content of artemisinin in A. annua and unavailability of cost effective and viable synthetic protocol however, are major obstacles to the commercial production of the drug. The enhanced production of artemisinin is hence, highly desirable, which can be achieved by adequate and judicious supply of plant nutrients. The present experiment was therefore, designed to study the effect of organic manure (15 tonnes ha−1) and chemical fertilizers (N40+40, P40, K40, S15+15 kg ha−1; nitrogen, phosphorus, potassium and sulphur) on the accumulation of artemisinin and biomass in various plant parts through the developmental stages of A. annua L. Artemisinin yield (kg ha−1) was also determined through the developmental stages of A. annua L. Artemisinin content and artemisinin yield of dried leaves were increased significantly at pre-flowering stage in the plants treated with NPKS (27.3% and 53.6%) and NPK (18.2% and 33.5%), respectively, when compared with control. Maximum dry yield of leaf ranging from 2596 to 3141 kg ha−1 was observed at pre-flowering stage with various treatments.  相似文献   

10.
Mesotrione has recently been registered for weed control in maize in Ontario, Canada; however, there is still little information on the doses required to provide 90% control for the complete spectrum of broadleaved weeds that the product controls. Our objective was to determine mesotrione doses that would provide at least 90% control of four economically important weeds, without impacting final maize yield by more than 5% in comparison to a weed-free control. Sixteen field trials were conducted at six Ontario locations in 1999–2001 to evaluate the effectiveness of mesotrione at doses ranging from 9 to 280 g ai ha−1. The doses required to reduce weed biomass by at least 90% (I90) varied with location and year, and for common lambsquarters and velvetleaf differed by application timing. For lambsquarters, the estimated doses required ranged from 10 to 1984 g ai ha−1 for preemergence applications and 15–38 g ai ha−1 for postemergence applications. Doses of 45 and 19–243 g ai ha−1 were required to effectively reduce the biomass of redroot pigweed. Velvetleaf was effectively controlled preemergence with 288 g ai ha−1 and postemergence with 31 g ai ha−1 of mesotrione. Final maize yield was only reduced by more than 5% of a weed-free control when a dose of less than 35 g ai ha−1 of mesotrione was applied. These results show that biologically effective weed control with reduced doses of mesotrione is possible depending on the spectrum of broadleaved weed species present in the field.  相似文献   

11.
Miscanthus × giganteus, a perennial rhizomatous grass commercially used as a biofuel crop was grown in a field experiment on a silty clay loam soil for 14 years. There were 3 rates of fertilizer nitrogen (N), none (control), 60 kg N ha−1 yr−1 and 120 kg N ha−1 yr−1 as cumulative applications. The crop was harvested in winter and dry matter yield measured. N did not influence yield. Yield, which increased for the first 6 years, decreased in years 7 and 8, but then increased again and was highest in the 10th year averaging 17.7 t ha−1 across all treatments. Differences in total production over the14 years were only 5% between the highest and lowest yielding treatments and averaged 178.9 t ha−1 equivalent to 12.8 t ha−1 yr−1. In the first 10 harvests, 92% of dry matter was stem. Although the study showed N fertilizer was not required, it is considered that an application of 7 kg P ha−1 yr−1 and 100 kg K ha−1 yr−1 would avoid soil reserve depletion. Pesticides were not required every year and the crop can be considered as low input with a high level of sustainability for at least 14 years.  相似文献   

12.
Artemisia annua L. is an annual aromatic antibacterial herb, with effective antimalarial properties due to the presence of artemisinin. The intention of the present study was to establish plant survival, growth attributes, yield attributes and artemisinin yield of A. annua cv CIM - Arogya with different transplanting months in two cropping seasons (March 2005-February 2006 and March 2006-February 2007) under temperate climatic conditions of Himalaya, India. Artemisinin yield in the dried leaves was found maximum amongst the plants that were transplanted in March (24.39 kg ha−1) and minimum in those transplanted in November (3.39 kg ha−1).  相似文献   

13.
Groundnut as a pre-rice crop is usually harvested 1–2 months before rice transplanting. During this lag phase much of N in groundnut residues could be lost due to rapid N mineralization. Mixing of abundantly available rice straw with groundnut residues may be a means for reducing N and improve subsequent crop yields. The objectives of this experiment were to investigate the effect of mixing groundnut residues and rice straw in different proportions on (a) growth and yield of succeeding rice, (b) groundnut residue N use efficiency and (c) N lost (15N balance) from the plant–soil system and fate of residue N in soil fractions. The experiment consisted of six treatments: (i) control (no residues), (ii) NPK (at recommended rate, 38 kg N ha−1), (iii) groundnut residues 5 Mg ha−1 (120 kg N ha−1), (iv) rice straw 5 Mg ha−1 (25 kg N ha−1), (v) 1:0.5 mixed (groundnut residues 5 Mg: rice straw 2.5 Mg ha−1), and (vi) 1:1 mixed (groundnut residues 5 Mg: rice straw 5 Mg ha−1). After rice transplanting, samples of the lowland rice cultivar KDML 105 were periodically collected to determine growth and nutrient uptake. At final harvest, dry weight, nutrient contents and 15N recovery of labeled groundnut residues were evaluated.  相似文献   

14.
Poor yields of East African highland bananas (Musa spp., AAA-EAHB) on smallholder farms have often been attributed to problems of poor soil fertility. We measured the effects of mineral fertilizers on crop performance at two sites over two to three crop cycles; Kawanda in central Uganda and Ntungamo in southwest Uganda. Fertilizers were applied at rates of 0N–50P–600K, 150N–50P–600K, 400N–0P–600K, 400N–50P–0K, 400N–50P–250K and 400N–50P–600K kg ha−1 yr−1. In addition 60Mg–6Zn–0.5Mo–1B kg ha−1 yr−1 was applied to all treatments, with the exception of the control plots which received no fertilizer. Fresh bunch mass and yield increased with successive cycles. Yield increases above the control ranged from 3.1 to 6.2 kg bunch−1 (average bunch weight for all treatments 11.5 kg bunch−1) and 2.2–11.2 Mg ha−1 yr−1 (average yield for all treatments 15.8 Mg ha−1 yr−1) at Kawanda, compared with 12.4–16.0 kg bunch−1 (average bunch weight for all treatments 14.7 kg bunch−1) and 7.0–29.5 Mg ha−1 yr−1 (average yield for all treatments 17.9 Mg ha−1 yr−1) at Ntungamo. The limiting nutrients at both sites were in the order K > P > N. Potassium, N and P foliar nutrient mass fractions were below previously established Diagnosis and Recommendation Integrated System (DRIS) norms, with the smallest K mass fractions observed in the best yielding plots at Ntungamo. Total nutrient uptakes (K > N > P) were higher at Ntungamo as compared with Kawanda, probably due to better soil moisture availability and root exploration of the soil. Average N, P and K conversion efficiencies for two crop cycles at both sites amounted to 49.2 kg finger DM kg−1 N, 587 kg finger DM kg−1 P and 10.8 kg finger DM kg−1 K. Calibration results of the model QUEFTS using data from Ntungamo were reasonable (R2 = 0.57, RMSE = 648 kg ha−1). Using the measured soil chemical properties and yield data from an experiment at Mbarara in southwest Uganda, the calibrated QUEFTS model predicted yields well (R2 = 0.68, RMSE = 562 kg ha−1). We conclude that banana yields can be increased by use of mineral fertilizers, but fertilizer recovery efficiencies need to improve substantially before promoting wide-scale adoption.  相似文献   

15.
In the moderate climate of Poland it is recommended that milk thistle (Silybum marianum L. Gaertn.) be grown on fertile soils. The plant, however, develops a strong root system, so a working hypothesis has developed that cultivation can be extended to light soils with periodic water deficits. The aim of the present research was to determine the effects of sowing milk thistle on light soil at different dates and rates on the achene yield and flavonolignan content. This experiment was carried out during 2004-2006 at the Mochelek Experiment Station of the University of Technology and Life Sciences in Bydgoszcz (53°13′ N; 17°51′ E). The average fruit yields were 1.23 t ha−1; those of silymarin were 26.5 kg ha−1. The moisture and thermal conditions during the research years caused the fruit yields to range from 0.55 to 1.68 t ha−1 and silymarin yields from 13.3 to 35.4 kg ha−1. Delaying sowing from early to mid-April increased the plant density and decreased numbers of inflorescences and fruits per inflorescence; as a result, no effect of sowing date on fruit yield was found. Delaying the sowing date increased silymarin content by about 0.4% and its yield by 5.3 kg ha−1. Increasing the sowing rate from 12 to 24 kg ha−1 resulted in a slight (40 kg ha−1) but significant increase in achene yield; however, it did not affect the silymarin content. The average silymarin content in fruits was 2.18%. The ratio of silydianin to silychristin was 1:2.2, and the ratio of silydianin to the sum of silybinin and isosilybinin was 1:3.3.  相似文献   

16.
Forages could be used to diversify reduced and no-till dryland cropping systems from the traditional wheat (Triticum aestivum L.)-fallow system in the semiarid central Great Plains. Forages present an attractive alternative to grain and seed crops because of greater water use efficiency and less susceptibility to potentially devastating yield reductions due to severe water stress during critical growth stages. However, farmers need a simple tool to evaluate forage productivity under widely varying precipitation conditions. The objectives of this study were to (1) quantify the relationship between crop water use and dry matter (DM) yield for soybean (Glycine max L. Merrill), (2) evaluate changes in forage quality that occur as harvest date is delayed, and (3) determine the range and distribution of expected DM yields in the central Great Plains based on historical precipitation records. Forage soybean was grown under a line-source gradient irrigation system to impose a range of water availability conditions at Akron, CO. Dry matter production was linearly correlated with water use resulting in a production function slope of 21.2 kg ha−1 mm−1. The slope was much lower than previously reported for forage production functions for triticale (X Triticosecale Wittmack) and millet (Setaria italic L. Beauv.), and only slightly lower than slopes previously reported for corn (Zea mays L.) and pea (Pisum sativa L.) forage. Forage quality was relatively stable during the last four weeks of growth, with small declines in crude protein (CP) concentration. Values of CP concentration and relative feed value indicated that forage soybean was of sufficient quality to be used for dairy feed. A standard seed variety of maturity group VII was found to be similar (in both productivity and quality) to a variety designated as a forage type. The probability of obtaining a break-even yield of at least 4256 kg ha−1 was 90% as determined from long-term precipitation records used with the production function. The average estimated DM yield was 5890 kg ha−1 and ranged from 2437 to 9432 kg ha−1. Regional estimates of mean forage soybean DM yield ranged from 4770 kg ha−1 at Fort Morgan, CO to 6911 kg ha−1 at Colby, KS. Forage soybean should be considered a viable alternative crop for dryland cropping systems in the central Great Plains.  相似文献   

17.
The nitrogen (N) requirement of dedicated crops for bioenergy production is a particularly significant issue, since N fertilisers are energy-intensive to make and have environmental impacts on the local level (NO3 leaching) and global level (N2O gas emissions). Nitrogen nutrition of Miscanthus × giganteus aboveground organs is assumed to be dependent on N stocks in belowground organs, but the precise quantities involved are unknown. A kinetic study was carried out on the effect of harvest date (early harvest in October or late harvest in February) and nitrogen fertilisation (0 or 120 kg N ha−1) on aboveground and belowground biomass production and N accumulation in established crops. Apparent N fluxes within the crop and their variability were also studied.Aboveground biomass varied between 24 and 28 t DM ha−1 in early harvest treatments, and between 19 and 21 t DM ha−1 in late harvest treatments. Nitrogen fertilisation had no effect on crop yield in late harvest treatments, but enhanced crop yield in early harvest treatments due to lower belowground biomass nitrogen content. Spring remobilisation, i.e. nitrogen flux from belowground to aboveground biomass, varied between 36 and 175 kg N ha−1, due to the variability of initial belowground nitrogen stocks in the different treatments. Autumn remobilisation, i.e. nitrogen flux from aboveground to belowground organs, varied between 107 and 145 kg N ha−1 in late harvest treatments, and between 39 and 93 kg N ha−1 in early harvest treatments. Autumn remobilisation for a given harvest date was linked to aboveground nitrogen accumulation in the different treatments. Nitrogen accumulation in aboveground biomass was shown to be dependent firstly on initial belowground biomass nitrogen stocks and secondly on nitrogen uptake by the whole crop.The study demonstrated the key role of belowground nitrogen stocks on aboveground biomass nitrogen requirements. Early harvest depletes belowground nitrogen stocks and thus increases the need for nitrogen fertiliser.  相似文献   

18.
Organic producers rank weeds as the most important pests that limit their crop production. In order to optimize the use of propane flaming as a weed control tool, the objective of this study was to test tolerance of selected weed species to broadcast flaming performed at different growth stages. Six annual species, including one grass [barnyardgrass (Echinochloa crus-galli)] and five broadleaves [field bindweed (Convolvulus arvensis), kochia (Kochia scoparia), ivyleaf morning glory (Ipomoea hederacea), velvetleaf (Abutilon theophrasti) and Venice mallow (Hibiscus trionum)] were flamed at three growth stages with six doses of propane. The propane doses applied were 0, 12, 31, 50, 68 and 87 kg/ha. Flaming treatments were applied utilizing a custom built flamer mounted on a four-wheeler moving at a constant speed of 6.4 km/h. Species response to propane were described by log-logistic models based on visual injury ratings and dry matter (DM) for each weed species. Overall response to flaming varied among species, growth stage and propane dose. Broadleaf weeds were more susceptible to flaming than the grass regardless of the growth stage. A dose of 76 kg/ha of propane was needed to obtain 90% DM reduction for 7-leaf (L) barnyardgrass compared to much lower doses of 40, 49, 55, 56 and 51 kg/ha propane for 8-L bindweed, 6-L kochia, 10-L morning glory, 7-L velvetleaf and 5-L Venice mallow, respectively. Moreover, the tolerance of both grassy and broadleaf weed species to broadcast flaming increased with increase in plant size. A 90% DM reduction in velvetleaf was obtained with 42, 56 and 102 kg/ha of propane for 5-L, 7-L and 16-L stages, respectively. The tested broadleaf weed species were effectively controlled (90% DM reduction) with propane dose of 30–60 kg/ha when flamed at early growth stages (3-L to 14-L), while the same dose of propane provided only 80% DM reduction in barnyardgrass when flamed at vegetative stages (4-L to 7-L). It was not possible to obtain 90% DM reduction in barnyardgrass when flamed at flowering stage with the propane doses tested in this experiment.  相似文献   

19.
A growing number of soybean producers have begun to incorporate below threshold fungicide and insecticide treatments into their management programs in attempts to increase yield. The objective of this study was to determine the influence of a fungicide and insecticide on soybean yield and growth when disease and insect pressure is minimal. Soybean was planted at three locations across Indiana, USA, in 2009 and 2010 and treated with various combinations of glyphosate, pyraclostrobin, and lambda-cyhalothrin. Yield was increased by 100 kg ha−1 and 150 kg ha−1 by a R4 application of pyraclostrobin alone and by lambda-cyhalothrin alone, respectively. Seed mass was increased 3% by pyraclostrobin, while seed number m−2 was increased 5% by lambda-cyhalothrin. No other yield component was influenced by the fungicide or insecticide. Economic analysis using Simulation and Econometrics to Analyze Risk (SIMETAR) demonstrated a single, post application of glyphosate to be the most efficient treatment option across a range of risk attitudes. This study indicates that yield increases are possible using below threshold applications of fungicides and insecticides. However, growers may not benefit from such applications if input costs are higher than the economic returns of the increased yield.  相似文献   

20.
Field experiments were conducted to evaluate the effects of multiple selective flame weeding treatments on onion (Allium cepa L.). Onions were flamed between one and six times over the course of the season with a high (72 kg propane ha−1) or low (45 kg propane ha−1) propane dose. In each treatment, one subplot was hand-weeded in addition to flame treatment to remove differential weed effects, while the other received only the prescribed flame weeding regimen as weed control. Overall, control of broadleaf weeds was better than that of grass species. Broadleaf weed density and shoot mass were reduced as propane dose and the number of flame treatments increased. Grass density was reduced by 50% in all flamed treatments compared to the non-treated control, but no differences between flamed treatments were observed. Effects of flame treatments on grass shoot mass were minimal. Among weed-free treatments, onion was able to tolerate up to six flame treatments at either dose without a loss of yield. Treatments that received only flame weeding as weed control had total onion yields 37 and 80% of the weed-free flamed treatments in 2006 and 2007, respectively. Flame weeding treatments had little effect on the time to reach maturity, onion pungency, or quercetin concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号