首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diamond-back moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) is a destructive cosmopolitan pest of cruciferous crops. The pest is present wherever its host plants exist and is considered to be one of the most widely distributed of all the Lepidoptera. We investigated the effect of various host plants on the fitness of P. xylostella and tested the hypothesis by studying development time, growth, fecundity and survival on cabbage (Brassica oleracea capitata), cauliflower (Brassica oleracea botrytis), radish (Raphanus sativus), turnip (Brassica rapa), mustard (Brassica compestris) and canola (Brassica napus var. canola). The developmental time from eggs to adult eclosion was the shortest (10 days) on canola and the longest (13 days) on turnip. Fecundity was greatest on canola (350) followed by cauliflower (268 eggs) by females eclosed from the pupae reared on canola and cauliflower, respectively, while the minimum numbers of eggs (184) were observed on cabbage. The number of eggs hatched was the highest (80%) when larvae fed on cauliflower. Survival to the adult stage was the highest (94%) on mustard followed by cauliflower and lowest (64%) on turnip. The net replacement rate was lowest for populations reared on cabbage (32.3), which was also reflected by the lowest intrinsic rate of population increase (0.20). The correlation between the intrinsic rate of population increase (rm) and the mean relative growth rate was significant (t = 20.02 d.f. = 4, P < 0.05). Canola and mustard proved to be the most suitable hosts for P. xylostella because of shorter developmental period, higher percentage of survival and higher number of eggs. The data point to the role of host plants in increasing local P. xylostella populations.  相似文献   

2.
The brown planthopper Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) is a classical resurgent rice pest induced by insecticides. The past focus on resurgence mechanisms has been on the stimulation of the reproduction of adult females induced by insecticides. To date, the role that males play as a resurgence of N. lugens has not been investigated. The present study examined changes in protein levels in both male accessory glands and female ovaries induced by the insecticides triazophos and deltamethrin as well as the stimulating effect of treated males on the fecundity of adult females via mating following foliar sprays of the insecticides. For adults that had been exposed as nymphs to treated rice plants, the protein content in both the male accessory glands and in the female ovaries of N. lugens were significantly affected by male mating status, insecticide and insecticide concentration. There was a higher protein content in male accessory glands when males were exposed to triazophos as third instars compared to fifth instars, and there was a higher protein content before mating compared to after mating. In addition, the protein levels in male accessory glands after mating for individuals exposed to high doses of the two insecticides as 3rd and 5th instars were significantly lower than untreated control except for exposed to triazophos as 3rd instar, indicating that treated males transferred more male accessory gland protein to adult females via mating. The protein content was also affected by different combinations of treated mating pairs. Adult males (♂t) developed from third instar nymphs treated with triazophos stimulated the fecundity of the female significantly via mating (♂t × ♀ck) with untreated females (♀ck) (control females), increasing the reproductive rate by 43.5% as compared to the mating (♂ck × ♀ck) of untreated males and females. Also, the fecundity of the females after the mating (♂t × ♀t) of treated males and females was significantly higher than that after the mating (♂ck × ♀t) of untreated males with treated females. These findings indicated that the reproductive effects of insecticide on males can be transferred to females via mating. The present findings provide valuable information for understanding the potential role that males play in the pesticide-induced resurgence of N. lugens.  相似文献   

3.
Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae) is a major pest both in field crops and forests because the larvae could eat the roots of most crops in the field, and the adults damage the leaves of trees and field crops. In this study, we focused on the effects of temperature on H. oblita reproductive parameters. The results indicated H. oblita female adults at 25°C could lay more eggs (84.0 eggs per female) and have the shortest preoviposition period (19.1 d), the greatest oviposition rate (2.8 eggs per female per 3 d), and largest percentage of life span spent in oviposition (59.5%). The longevity and the time to 50% egg laying decreased with increasing temperature, and female longevity was always longer than male longevity. The preoviposition and postoviposition period decreased with increasing temperature from 15 to 25°C and then increased when the temperature increased from 25 to 30°C. These results show that 25°C is the optimal temperature for reproduction of H. oblita.  相似文献   

4.
Tan spot, caused by Pyrenophora tritici-repentis (Died.) Drechs., is an important constraint to wheat (Triticum aestivum L.) yield in many countries. Since the inheritance of field resistance to tan spot is poorly understood, this study was conducted to determine the genetic control of resistance in the field. Resistance was measured as disease severity caused by P. tritici-repentis race 1 in four crosses involving five wheat parents: parent 1 (P1) = catbird; parent 2 (P2) = Milan/Shanghai-7; parent 3 (P3) = Alondra/Coc//Ures; parent 4 (P4) = Bcb//Dundee/Gul/3/Gul); parent 5 (P5) = ND/VG9144//Kal/BB/3/Yaco/4/Chil. P1, P2 and P3 were resistant and P4 was moderately resistant, whereas P5 was susceptible to tan spot. The F2-derived F3 families and the parents were field evaluated at El Batán, Mexico, in 1996. When all the plants within a F3 family expressed low levels of disease severity similar to that of the resistant parent it was classified resistant (R), otherwise the progeny was classified as susceptible (S). The progeny of the three crosses of the susceptible parent with the resistant and moderately resistant parents P2, P3, and P4 segregated as 3R:13S whereas the progeny in the cross with P1 showed a segregation ratio of 1R:15S. This suggests that each resistant parent possessed two genes conditioning resistance to tan spot severity caused by P. tritici-repentis race 1. Information on the inheritance of resistance measured as disease severity on adult plants under field conditions is of practical importance for wheat breeding programs seeking improvement in tan spot resistance.  相似文献   

5.
More rapid progress in breeding peanut for reduced aflatoxin contamination should be achievable with a better understanding of the inheritance of, aflatoxin trait and physiological traits that are associated with reduced contamination. The objectives of this study were to estimate the heritability of aflatoxin traits and genotypic (rG) and phenotypic (rP) correlations between drought resistance traits and aflatoxin traits in peanut. One hundred-forty peanut lines in the F4:6 and F4:7 generations were generated from four crosses, and tested under well-watered and terminal drought conditions. Field experiments were conducted under the dry seasons 2006/2007 and 2007/2008. Data were recorded for biomass (BIO), pod yield (PY), drought tolerance traits [harvest index (HI), drought tolerance index (DTI) of BIO and PY, specific leaf area (SLA), and SPAD chlorophyll meter reading (SCMR)], and aflatoxin traits [seed infection and aflatoxin contamination]. Heritabilities of A. flavus infection and aflatoxin contamination in this study were low to moderate. The heritabilities for seed infection and aflatoxin contamination ranged from 0.48 to 0.58 and 0.24 to 0.68, respectively. Significant correlations between aflatoxin traits and DTI (PY), DTI (BIO), HI, biomass and pod yield under terminal drought conditions were found (rP = −0.25** to 0.32**, rG = −0.57** to 0.53**). Strong correlations between SLA and SCMR with A. flavus infection and aflatoxin contamination were also found. Positive correlations between SLA at 80, 90, and 100 DAP and aflatoxin traits were significant (rP = 0.13** to 0.46**, rG = 0.26** to 0.81**). SCMR was negatively correlated with aflatoxin traits (rP = −0.10** to −0.40**, rG = −0.11** to −0.66**). These results indicated that physiological-based selection approaches using SLA and SCMR might be effective for improving aflatoxin resistance in peanut.  相似文献   

6.
The genetic diversity within and among seven Tunisian natural populations of Hypericum humifusum L., from different geographic regions and bioclimates, was assessed using 11 isozymic polymorphic loci, and 166 RAPD markers amplified by 8 primers. The genetic diversity within populations based on allozymes was higher (P = 72.46%, Ap = 2.01 and He = 0.29), than that revealed by RAPDs (29.52 < P < 39.16% and 0.150 < H < 0.200). Both markers yielded high estimates of genetic differentiation and low gene flow (Nm = 0.257 and 0.508 for RAPD and allozymes, respectively) among populations at all space scales. However, the level of differentiation revealed by RAPDs (ΦST = 0.494; GST = 0.561) was higher than that based on allozymes (FST = 0.117). No correlation (Mantel test) among genetic (FST and ΦST matrices) and geographical distance matrices was observed indicating no isolation by distance. Cluster analyses from allozyme and RAPD loci did not completely agree. The dendrogram based on allozymes yielded higher separation among most populations, while that from RAPDs separated populations into three distinct subclusters. Groupings of populations, in both dendrograms, did not reflect spatial geographic or bioclimatic patterns, indicating specific adaptation of populations to local environments. The correlation between matrices of allozyme and RAPD band frequencies was not significant (Mantel test). The dendrogram obtained from combined data yielded similar population groupings to that probed by RAPDs suggesting higher accuracy of these markers. Given the high differentiation among all populations even at a low geographic distance, ex situ conservation should involve extensive seed collection from all populations from all bioclimatic zones. The populations from the upper semi-arid bioclimate exhibiting relatively high level of genetic diversity should be first protected.  相似文献   

7.
The sweetpotato whitefly, Bemisia tabaci (Gennadius), has become a major threat to agriculture worldwide. The development of insecticide resistance in B. tabaci has necessitated the exploration of new management tactics. The toxicity of imidacloprid and buprofezin to various life stages of B. tabaci was determined in the laboratory. Also, the sublethal effects of both insecticides were studied on demographic and biological parameters of B. tabaci. Both insecticides were very toxic against first stage larvae of the pest with LC50 values of 1.0 and 19.3 ppm for buprofezin and imidacloprid, respectively. Toxicities decreased between successive stages (LC50 values ranging from 1.0 to 2854.0 ppm). The LC50 values of imidacloprid for adult males, females and eggs were 11.8, 71.6 and 151.0 ppm, respectively. Buprofezin had no significant effect on adults and eggs. The sublethal concentration of imidacloprid had no significant effect on demographic and biological parameters of B. tabaci but the maximal value for the mean generation time (T) (18.8 day) was observed in imidacloprid treatment. Buprofezin significantly decreased stable population and biological parameters of B. tabaci except it did not decrease the rate of population increase or the sex ratio of offspring.  相似文献   

8.
Toxicities of the eight quinones were evaluated through leaf dip bioassays conducted against Tetranychus urticae, Myzus persicae, Myzocallis walshii, and Illinoia liriodendri. Based on LC50 values, plumbagin (LC50 = 0.001%) was the most active compound against T. urticae and ubiquinone Q0 (LC50 = 0.005%), plumbagin (LC50 = 0.010%), and dibromothymoquinone (LC50 = 0.012%) were the most active compounds against M. persicae. The most active compounds against M. walshii were juglone (LC50 = 0.011%) and ubiquinone Q0 (LC50 = 0.019%), whereas dibromothymoquinone (LC50 = 0.030%), plumbagin (LC50 = 0.033%) and ubiquinone Q0 (LC50 = 0.058%) were the most toxic to I. liriodendri. Ecotrol (positive control) was the least toxic compound (LC50 = 0.39%) against T. urticae and M. persicae (LC50 = 0.447%). Although the majority of the compounds tested were toxic to all four test species in residual bioassays, there was little overlap among the test species in terms of susceptibility to the compounds and interspecific differences were observed. Regarding structure-activity relationships for quinones, the addition of a hydroxyl group resulted in a significant increase in the toxicity of the 1,4-naphthoquinones, and those possessing a methyl group exhibited the highest levels of activity in T. urticae. The bromine atom at the 2- and 5-positions of the benzoquinone ring is crucial to the toxicity of the compounds against I. liriodendri. Toxicity was greatly affected not only by the number of hydroxyl groups, but also by their positions in the ring in the case of M. walshii. Juglone and plumbagin as residual toxins in the laboratory also reduced the population of two-spotted spider mites compared to EcoTrol™ (positive control) and the negative control in the greenhouse experiment. Some quinones tested may have potential as commercial insecticides and miticides, or alternatively, could serve as lead compounds for the development of more potent crop protection agents.  相似文献   

9.
We estimated the effect of 5, 10, 15 and 20 mg l−1 of neemazal (1% EC azadirachtin) on life table parameters of Helicoverpa armigera (Hübner) developing on chickpea (Cicer arietinum L.). The effects were assessed on the survivals emerged from 6th instar larvae that had ingested neemazal-treated chickpea pods. Survivorship (I) and expectancy of life (ex) were highest with the commencement of age (egg) and decreased gradually with the advancement of age with all the concentrations of neemazal including unexposed cohort. All the eggs hatched in the unexposed group while highest numbers of unhatched eggs (10%) were recorded with 20 mg l−1. Mortality of 1st instars was higher at 20 and 15 mg l−1 than that of other concentration tested. Potential fecundity (pf) was reduced in concentration dependent manner and was lowest with 20 mg l−1 (418 eggs/female/generation) and highest in control (898 eggs/female/generation). Net reproductive rate (R0) was significantly reduced with the increase in concentration of neemazal. The intrinsic (rm) and finite rate of increase (λ) were significantly decreased at 20 mg l−1 than that of unexposed population. The mean generation time (Tc) was prolonged at 20 mg l−1 and significantly differed with non-treated individuals. Development of immature stages was prolonged to 38 days with 20 mg l−1 while reduced to 32 days with 15 mg l−1 of neemazal as compared to 37 days in untreated individuals. Doubling time (DT) was significantly extended to 5.02 days with 20 mg l−1 as compared to 3.84 days in the non exposed ones.  相似文献   

10.
The genetic control determining the days to flowering, defined as the number of days from emergence to the beginning of flowering is considered an important characteristic for breeding purpose. We investigated this factor in kenaf (Hibiscus cannabinus L.), as part of an agroindustrial project in northwest Argentina. A diallelic cross approach was considered in this study. Six highly inbred photosensitive cultivars were used in the cross, namely, Endora, Pandora, Tainung 1, Line 42, Line 21, and Line 29. Significant differences among F1 family means as well as among general combining ability (GCA) and specific combining ability (SCA) components were found based on the Griffing genetic-statistical method IV, Model 1. A predominant additive effect was detected for the days to flowering, giving high heritability estimates (H = DGD = 0.96; h2 = 0.69), and suggests the possibility of effective selection for earliness in these cultivars. Early flowering in Line 29 was highly heritable, and therefore, is important for breeding purposes. Line 42, despite being the earliest, did not transmit this characteristic to its progenies, possibly because of epistatic genetic effects. The regression of the covariances of F1 families on the non-recurrent parent (Wr) and the variance of the “n” families (Vr) revealed that some dominance effects also occurred in the form of a partial dominance for early flowering. These results support the evidences revealed by the analysis of means of combinations between early and late flowering lines.  相似文献   

11.
The effects of neemarin at 5, 10, 15 and 20 mg l−1 on the life table indices of Plutella xylostella (L.) were studied on cauliflower in the laboratory. Survivorship was increased with increasing concentrations. A total of 69% eggs hatched at 20 mg l−1 compared 85% in the control. Mortality (dx) of 1st instars was higher than the other instars in both exposed and unexposed individuals. Life expectancy (ex) was high in the untreated control and reduced at 20 mg l−1. Development times of immatures were prolonged to 32 days at 20 mg l−1 as compared to 18.6 days in the untreated control. Neemarin significantly reduced the emergence of adults. Potential fecundity (Pf) was 34 females/female/generation at 20 mg l−1 and 92 in the control. The net reproductive rate (R0) was significantly reduced with the increase in concentration. The intrinsic rate of increase (rm) and finite rate of increase (λ) were significantly decreased at 20 mg l−1 as compared to other concentrations tested and in the control. Mean generation time (Tc) and corrected generation time (τ) were prolonged at 20 mg l−1 and significantly differed to those of the untreated control. Doubling time (DT) was significantly extended to 28.4 days at 20 mg l−1 as compared to 6.1 days in the control.  相似文献   

12.
The effects of four host plants (Agave sisalana, Ag. americana var. marginata, Ananas comosus Baili and Ancomosus Smooth Cayenne) on the biology of the mealybug Dysmicoccus neobrevipes Beardsley were studied in the laboratory at 26 ± 1 °C, 75-90% RH and 14:10 (L:D) photoperiod. The development, survivorship, longevity, reproduction and life table parameters of D. neobrevipes differed among the host plants. The shortest developmental period (from the first instar nymph to adult) was recorded on Ancomosus Smooth Cayenne (22.4 days for females and 21.3 days for males), whereas the longest was recorded on An. comosus Baili (25.6 days for females and 24.7 days for males). The highest survivorship was found on An. comosus Baili (98% for both females and males) and the lowest was on Ag. americana var. marginata (39.6% for females and 50% for males). Meanwhile the sex ratio and fecundity were highest and the pre-lay period was shortest on Ag. sisalana. The longest longevity of females was 62.5 days on Ancomosus Baili, whereas the other host plants did not differ significantly with grand mean longevities of 51.0 days for females, while the longest and shortest longevities of males were 4.6 days and 2.3 days on Ag. americana var. marginata and Ag. sisalana, respectively. Values for net reproductive rate, intrinsic rate of increase and finite rate of increase were highest on Ag. sisalana, whereas the mean generation time was shortest on An. comosus Smooth Cayenne. The results indicated that Ag. sisalana is the most suitable host for D. neobrevipes among the four tested plants. When reared on Ag. sisalana, D. neobrevipes had a short developmental period (females 22.7 days and males 23.8 days), high reproduction (418 nymphs/female) and a high intrinsic rate of increase (0.106). Results of this study indicated that host plant can largely influence the population dynamics of D. neobrevipes, and our findings are useful in understanding the roles of host plants in integrated management of this pest, including exploitation of these host plants in push-pull control.  相似文献   

13.
Starch is the major component of wheat (Triticum aestivum L.) grain and is composed of two large glucan molecules, amylose and amylopectin. The ratio between the two polymers types influences the water absorbing properties of starch upon heating, and thus affects the end-use of grain and purified starch. In this study, we evaluated the starch swelling power (SSP) values in seven wheat populations developed from crosses involving low-SSP lines. Analysis of starch produced by the F2 generation plants showed that the largest SSP variation (11.4–16.2) and lowest SSP mean (13.9) was obtained for a population derived from doubled haploid lines SM1028 (SSP = 14.5) and VK306 (SSP = 13.6). The population of 360 lines was advanced by single seed descent to the following generations for further studies. Starch analysis of grain produced by F4 generation lines in two field locations during 2006 and in a greenhouse environment during 2005 showed that SSP values were relatively stably inherited. The average broad-sense heritability was 73% and significant (P < 0.001) genotype × genotype and genotype × environment interactions were seen. Starches with the highest and lowest SSP values were inversely related to amylose concentration determined by high pressure liquid chromatography (HPLC)–size exclusion chromatography (SEC) of debranched starch. Developed lines with the lowest SSP values surpassed 40% in apparent amylose concentration. The study illustrates that screening for SSP in early generations can be used to develop wheat lines with desired starch swelling characteristics.  相似文献   

14.
The sterile insect technique has been explored in the laboratory to control populations of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a globally invasive pest. We studied the reproductive behavior of D. suzukii including mating frequency, time between matings, and mating duration among non-irradiated flies. Irradiation doses were tested at 0, 60, 90, 110, 120, 150, and 180 Gy to select the optimal dose for producing sterile males. In addition, we examined the effects of mating sequence on offspring production where females were presented with irradiated males first and then wild males, or the reverse. Female D. suzukii were found to mate twice on average through their lifespan, with 16.53 ± 12.05 d between matings. The first mating duration was 24.64 ± 1.52 min shorter than the second mating. A dose of 90 Gy was suitable where irradiated males lived as long as non-irradiated males, and few eggs hatched from matings. The mating sequence experiment revealed first-male parentage preference. Wild females that mated with a wild male and then irradiated male produced more offspring than females mated with an irradiated and then wild male. Overall, the influence of mating sequence should be taken into consideration when applying the sterile insect technique (SIT) to control D. suzukii populations.  相似文献   

15.
Five transgressive variants (advanced breeding lines from BC2F5 and BC2F6 generation) were derived from a cross between the wild relative, O. rufipogon Griff. and O. sativa L. subsp. indica cv. MR219, a popular high yielding Malaysian rice cultivar. The aim of the study was to evaluate the pericarp colour of the grains along with yield potential and to validate quantitative trait loci (QTLs) for agronomic traits. The variants were screened against blast disease. Background marker analysis was also done for the promising variants. The field trials were carried out at a single location (due to containment purposes) over two seasons using randomized complete block design (RCBD) with three replications. A trait-based marker analysis was used to identify QTLs for validation in BC2F5 generation. Analysis of variance (ANOVA) showed that the seasonal factors influenced different agronomic traits. Variant G33 produced significantly (p < 0.05) higher yield (5.20 t/ha) than the control, MR219 (4.53 t/ha). Eighteen QTLs for different agronomic traits were identified in BC2F2 population in a previous study. Among them 14 QTLs were found in BC2F5 population of the present study. The yield of variant G33 was influenced by several QTLs viz. qGPL-1, qSPL-1-2, qSPL-8 and qYLD-4, which were introgressed from the donor parent revealed by background marker analysis using BC2F7 generation. Percentage (99%) of red pericarp grain of G33 and G34 in BC2F5 and BC2F6 generations indicated the stability of pericarp colour which was transferred from the wild relative. Variant G33 showed resistance against two pathotype of blast disease (Magnaporthe oryzae). Among the evaluated variants, G33 could be considered for inclusion in the cultivar development program for red rice with high yield potential and resistance to blast disease. This study demonstrated that the alleles from wild relative could improve the yield and yield related traits through allelic interaction, even though the phenotypic traits were inferior to the recurrent parent.  相似文献   

16.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is a key insect pest of cotton in the Henan cotton growing region of China. In this region, cotton is grown on small acreages in rich agricultural landscapes, contrary to cropping systems in the United States or Australia. Under such cropping regimes, naturally occurring refuges (with non-Bt plants) may be sufficient to prevent H. armigera resistance development to Bt toxins. In order to gain a timely understanding of the evolution of resistance of H. armigera to Bt toxin after continuous cultivation of Bt cotton for c. 10 years, we assessed the frequency of alleles conferring resistance to Cry1Ac toxin in field populations of H. armigera sampled from Xinxiang County in Henan province during 2007-2009. Screening F1 and F2 generations from isofemale lines, derived from female moths trapped in the field, were used with a discriminating dose of Cry1Ac diet to estimate the frequency of resistance alleles. Totals of 625, 516 and 488 isofemale lines were screened for the F1 generation in 2007, 2008 and 2009, respectively. Resistance gene frequency in Xinxiang fluctuated between 0.0000 and 0.0005, and it did not increase significantly from 2007 to 2009. Based on the relative average development rates (RADR) of H. armigera larvae in F1 tests, no substantial increase in Cry1Ac tolerance was found in the Xinxiang region over the 3-yr period.  相似文献   

17.
Antifeedant, growth inhibitory and toxic effects of crude seed extracts of Annona squamosa and Annona atemoya from Fazenda Viveiro Bona, Parasisópolis – Minas Gerais, Brazil, were evaluated against the cabbage looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) using different bioassays. Crude methanolic seed extracts deterred feeding of third instar T. ni larvae in a leaf disc choice bioassay. A. squamosa was ∼10 times more active as a feeding deterrent than A. atemoya (DC50 = 2.3 mg/ml vs. 20.1 mg/ml). A. squamosa was ∼three times more active as a growth inhibitor than A. atemoya (EC50 = 38.0 ppm vs. 117.0 ppm). Methanolic seed extracts of A. squamosa and A. atemoya were toxic to third instar T. ni larvae both through topical and oral application. A. squamosa was more toxic through feeding (LC50 = 167.5 ppm vs. 382.4 ppm) whereas, A. atemoya exerted greater toxicity via topical application (LC50 = 301.3 μg/larva vs. 197.7 μg/larva). Both A. squamosa and A. atemoya extracts reduced leaf area consumption and larval growth in a greenhouse experiment. Our results indicate that both A. squamosa and A. atemoya have potential for development as botanical insecticides, especially for local use in Brazil.  相似文献   

18.
Pieris brassicae (L.) is a destructive cosmopolitan pest of cruciferous crops. It is present wherever its host plants occur and it is considered to be one of the most widely distributed of all the Lepidoptera. We investigated the affect of various host plants on the fitness of P. brassicae to survive, develop and reproduce. We quantified development time, survival and mortality on cabbage (Brassica oleracea capitata), cauliflower (Brassica oleracea botrytis), radish (Raphanus sativus), broccoli (Brassica oleracea italica), and mustard (Brassica campestris) under laboratory conditions. The developmental time from eggs to adult eclosion was the shortest (30.3 days) on cabbage and the longest (38.0 days) on radish. However, adult longevity was significantly (P < 0.001) greatest on cabbage compared with the other host plants tested. Similarly, the developmental rate of P. brassicae was found to be faster on cabbage than other cole crops. Moreover, the lowest immature mortality was evident on cabbage and highest on mustard and radish. Differences in reproductive parameters of the P. brassicae among host plants were analyzed using pseudo-values, which were produced by jackknife re-sampling. The data showed that the higher intrinsic rate of natural increase (0.116 females/female/day) was found on cabbage. Cabbage was recognized as the most suitable host for P. brassicae because of shorter developmental period, higher percentage survival, lower doubling time (6.00), and higher number of adult emergence (29.7%).  相似文献   

19.
A survey of 24 wild Oryza accessions identified Oryza australiensis and Oryza rufipogon as potential sources of enhanced photosynthetic rate for introgression into cultivated rice. Photosynthetic capacity per unit leaf area (CER) was associated with leaf N content but not with leaf chlorophyll concentration, flag leaf area, or specific leaf area. Eight fertile, perennial F1 hybrids between O. sativa and O. rufipogon were grown in non-flooded soil, and CER was measured at flowering under saturating light. Two F1 hybrids had greater CER than the average of 26.1 μmol m2 s−1. The F2 progeny from these hybrids were screened for CER in the field, and segregants with even greater rates of photosynthesis were selected. The basis of high photosynthetic rate in the F2 populations was not leaf thickness or leaf chlorophyll content. One F2 line had exceptionally high CER and stomatal conductance. Broad-sense heritability on an individual plant basis for CER in two F2 populations was 0.44 and 0.37. A highly significant offspring-parent regression of 0.89 for CER was observed in a replicated field evaluation (four blocks, five plants per plot) of 20 vegetatively propagated F2 selections and their F3 seedling progeny. Broad-sense heritability for CER on a plot-mean basis was estimated as 0.74 for both selected F2:3 families and for the selected F2 clones. Genetic resources in the genus Oryza may represent a source of alleles to increase leaf photosynthetic rate in the cultivated species, which we have demonstrated to be a heritable, though environmentally variable, trait in an O. sativa/O. rufipogon population.  相似文献   

20.
Secondary plant compounds are recognised as important components of plant defence system against herbivores and pathogens. Five monoterpenoids, (R)-linalool, 1,8-cineole, (S)-2-heptyl acetate, (S)-2-heptanol and citral, which are natural components of the essential oils of Aframomum melegueta (K. Schum) and Zingiber officinale (Roscoe), were tested at the ratios in which they occur naturally for repellent activity against Tribolium castaneum (Herbst.) and Rhyzopertha dominica (F.) in a 4-way olfactometer. The results showed the repellent properties of the compounds as both beetles spent less time in the olfactometer arm containing the test stimuli. (R)-linalool and (S)-2-heptanol were stronger repellent compounds than the others. Linalool showed good repellent activity against T. castaneum (P = 0.001) as the insect spent 1.22 min in the test arm compared to the control arms (2.78 min), and R. dominica (P = 0.001) with 0.89 min in the test arm compared to 2.87 min in the control arms. With (S)-2-heptanol, T. castaneum spent 1.23 min in the test arm compared to 2.83 min in the control arms. R. dominica spent 1.61 min in the test arm and 2.69 min in the control arms. For the number of entries or visits made, while both insects were significantly repelled (P < 0.05) by the linalool-treated arm than the control, only R. dominica was repelled by the (S)-2-heptanol-treated arm (P = 0.038) compared to the control arms. The results indicate that A. melegueta and Z. officinale essential oils and their components could be suitable as safer repellents or fumigants against T. castaneum and R. dominica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号