首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among extracts of 33 plant species screened against Mycosphaerella eumusae, the causal agent of Eumusae leaf spot disease of banana, water extract of Cassia senna, Zimmu (Interspecific hybrid between Allium cepa × Allium sativum) and Rhincanthus nasutus provided 100% inhibition of spore germination and 1.7–2.0 cm zone of inhibition of mycelial growth under in vitro conditions. The maximum efficacy of mycelial inhibition was observed with Zimmu leaf extract. When Zimmu leaf extract was tested at different concentrations (5, 10, 25, 50 and 100% w/v), all tested concentrations provided complete inhibition of mycelial growth of the pathogen. The field evaluation of Zimmu leaf extract at different concentrations in cv. Grand Naine showed that the application of the water extract of Zimmu leaf at 50% concentration (w/v) provided 55% reduction of disease severity compared to the unsprayed control. Besides, the application of Zimmu leaf extract increased the value of youngest leaf spotted-0 (up to 60.5%) as well as increased the yield of banana (up to 46.8%) as compared to control. The effect of Zimmu in increasing the value of YLS-0 and the bunch yield was comparable with the chemical fungicide Propiconazole 25% EC (0.1%). Thin layer chromatography (TLC) analysis showed that among different major compounds, two lipid compounds (LP-B1 and LP-B2) extracted using methanol had the ability to inhibit M. eumusae growth (0.7–1.5 cm zone of inhibition). The gas chromatography–mass spectrometry (GC–MS) analysis of lipid bands revealed the presence of six different lipid compounds, which may be responsible for the growth inhibition of the pathogen. Since the application of water extract of Zimmu was found to be not only effective in controlling the leaf spot disease severity but also increased the number of green leaves and yield of banana fruits, the Zimmu extract can be used effectively in integrated disease management of Eumusae leaf spot disease for enhancing banana production in an ecologically sustainable manner.  相似文献   

2.
The nematicidal effect of Pseudomonas fluorescens, Paecilomyces lilacinus, Pichia guilliermondii and Calothrix parietina singly or in combination was tested against root-knot nematode, Meloidogyne incognita. Treatments with P. fluorescens and P. lilacinus caused mortality of M. incognita as 45% and 30% of juveniles after 48 h of exposures, respectively compared to water control in vitro. Under greenhouse conditions, all treatments reduced the disease severity and enhanced plant growth compared to untreated control. Application of P. fluorescens, P. lilacinus and P. guilliermondii Moh 10 was more effective compared to C. parietina. There was a negative interaction between C. parietina and either P. lilacinus or P. guilliermondii. Fresh and dry weight of shoots and roots of plants were significantly reduced as a result of infection with M. incognita, however application of biocontrol agents singly or in mix recovered this reduction. Moreover, they enhanced the growth parameters compared with the control. Our results proved that application of different biocontrol agents (P. fluorescens, P. lilacinus and P. guilliermondii) not only has a lethal effect on nematode, but also enhances the plant growth, supplying many nutritional elements and induction the systemic resistance in plants. Presence of C. parietina as a soil inhabitant cyanobacterium could antagonize biocontrol agents leading to the reduction of their practical efficiency in soil.  相似文献   

3.
In vitro experiments were carried out to test the efficacy of plant activator Acibenzolar-S-methyl (ASM, a benzothiadiazole derivative; trade name Bion 50WG) against rhizome rot disease of turmeric (Curcuma longa L.) caused by Pythium aphanidermatum. The plant activator was applied as a liquid rhizome pre-treatment followed by inoculation with P. aphanidermatum. Cell death, activities of pathogenesis related (PR) proteins such as cysteine protease (EC 3.4.22), peroxidases (EC 1.11.1.7) both soluble and ionically bound (IB), trypsin inhibitor (EC 3.4.21.1) and chymotrypsin inhibitor (EC 3.4.21.4) were monitored. Rhizome pre-treatment was effective in controlling P. aphanidermatum infection. Anatomical observation of turmeric rhizomes indicated the presence of calcium oxalate deposits in infected tissue and an accumulation of starch grains in response to infection by P. aphanidermatum. Pathogen infection also induced new basic polypeptides corresponding to 18.0 and 41.0 kDa. Induction of protease, protease inhibitors, soluble and ionically bound peroxidase activity was observed after ASM pre-treatment and P. aphanidermatum infection. ASM treatment also enhanced activities of proteases and peroxidase in rhizomes already infected with P. aphanidermatum. Increases in enzyme activities and protease inhibitors occurred much more rapidly and were enhanced in P. aphanidermatum infected rhizomes that were previously treated with ASM suggesting that increased activities of peroxidases and protease inhibitors may play a key role in restricting the development of disease symptoms on the rhizomes infected with P. aphanidermatum as evidenced by a reduction in cell death. Hence, pretreatment with ASM suppress the P. aphanidermatum induced oxidative damage through higher accumulation of peroxidases and induced defense through activities of protease inhibitors thereby, protected turmeric rhizomes from rhizome rot disease.  相似文献   

4.
Root nodulating Sinorhizobium fredii KCC5 and Pseudomonas fluorescens LPK2 were isolated from nodules of Cajanus cajan and disease suppressive soil of tomato rhizosphere, respectively. Both strains produced IAA, siderophore, solubilized insoluble phosphate, showed chitinase and β-1,3-glucanase activities, and strongly inhibited the growth of Fusarium udum. It also caused degradation and digestion of cell wall components, resulting in hyphal perforations, empty cell (halo) formation, shrinking and lysis of fungal mycelia along with significant degeneration of conidia. LPK2 produced volatile cyanogen (HCN). Combinations of S. fredii KCC5 and P. fluorescens LPK2 with half dose of chemical fertilizers showed a significant increase in seed germination (94%) while seed germination with co-inoculated strains (KCC5 + LPK2), KCC5 and LPK2 alone was 90, 84 and 82% respectively as compared to control 77%. After 120 days of sowing, per plant number of pods, nodules, shoot length, root length, shoot weight and root weight were greater for the combination with half dose of chemical fertilizers compared to the control. Combinations of S. fredii KCC5 and P. fluorescens LPK2 with half dose of chemical fertilizers resulted in an 82% increase in grain yield per hectare compared to the control. Both strains KCC5 and LPK2 led to proto-cooperation as evidenced by synergism, aggressive colonization of the roots, and enhanced growth, suggesting potential biocontrol efficacy against Fusarium wilt in C. cajan.  相似文献   

5.
Potassium phosphite for control of downy mildew of soybean   总被引:1,自引:0,他引:1  
Downy mildew of soybean, caused by Peronospora manshurica, is widely spread throughout Brazil. The objective of this study was to evaluate the use of potassium phosphite to control this disease. Field experiments were conducted during the growing season of 2006/2007 and 2007/2008 in the state of Parana in southern Brazil. The experimental design consisted of completely randomized blocks in a factorial arrangement (4 × 2) with four replications. Four rates of potassium phosphite (0, 375, 750 and 1500 g P2O5 + K2O ha−1) were applied at two growth stages, V6 (fifth trifoliolate leaf) and R2 (full flowering), followed by one or two applications of pyraclostrobin and epoxiconazole (66.5 + 25 g a.i. ha−1) at R3 (pod development) or R2 and R5.1 (10% of pod filling), mainly for the control of Asian soybean rust (Phakopsora pachyrhizi) and powdery mildew (Microsphaera diffusa). Field experiments were conducted to quantify the severity of downy mildew on leaves, nutrient content in leaf tissue (N, P and K), leaf area index (LAI), yield and seed weight. The maximum severity of downy mildew was observed at a growth stage of R5.3 (50% of pods were ripe), with 14% and 46% of the leaf area affected in 2006/2007 and 2007/2008, respectively. Also it was detected some effect of phosphite on Asian rust control but it was mostly in the trial of 2007/08 when the epidemic was very low (9.7-21.8% of severity). There was a linear reduction in the severity of downy mildew and a significant improvement in the LAI with an increase in the rate of phosphite applied. During the 2006/2007 growing season, a significant yield improvement was observed due to the application of the highest rate of phosphite. Two fungicide applications following phosphite application significantly improved the control of Asian soybean rust and powdery mildew, yield and seed weight when compared to a single fungicide application.  相似文献   

6.
The efficacy of a new fungicide fluopicolide in suppression of Phytophthora blight caused by Phytophthora capsici was evaluated under laboratory and field conditions. Studies with 51 P. capsici isolates from vegetable crops in Georgia, USA, indicated that 5.9% of the isolates were resistant, 19.6% were intermediately sensitive, and 74.5% were sensitive to 100 μg ml−1 of mefenoxam based on in vitro mycelial growth. EC50 values of fluopicolide in inhibiting mycelial growth of 25 isolates, representing resistant, intermediately sensitive, and sensitive to mefenoxam, ranged from 0.05 to 0.35 μg ml−1 with an average of 0.2 μg ml−1 EC50 values of fluopicolide in suppressing zoospore germination and sporangium production of the 25 isolates ranged from 1.1 to 4.5 μg ml−1 and 0.3–9.0 μg ml−1, respectively. Evaluation of a collection of 150 P. capsici isolates from vegetables and irrigation ponds found none of the isolates were resistant to 10 μg ml−1 of fluopicolide. Field experiments were conducted to determine the efficacy and application methods of fluopicolide for control of P. capsici on squash in spring 2007 and 2009. Fluopicolide applied through drip irrigation or as a foliar spray at 86.6 or 115.4 g ha−1 consistently provided significant disease reduction and increased squash yield. Results with fluopicolide were similar or slightly superior to mefenoxam applied at recommended rate. Fluopicolide applied at 57.7 g ha−1 did not provide consistent satisfactory disease suppression. The results indicated that fluopicolide was effective in suppression of different stages of the life cycle of P. capsici and could be a viable alternative to mefenoxam for managing Phytophthora blight in squash production.  相似文献   

7.
Five bacterial strains (TR1 to TR5) isolated from root nodules of fenugreek (Trigonella foenum-graecum) were tested for their plant growth promotory traits and biocontrol potential against Fusarium oxysporum. On the basis of morphological, physiological, biochemical and molecular characteristics, strains TR1 and TR3 - TR5 were identified as Ensifer meliloti, and TR2 as Rhizobium leguminosarum. All bacterial isolates utilized phosphate in vitro. Except TR5, all isolates produced IAA and none of them showed volatile cyanogens production. Except TR3, all isolates produced in vitro siderophore. Isolate TR1 and TR4 showed chitinase production while only TR2 showed β-1,3-glucanase activity. Isolates TR1, TR2 and TR5 exhibited ACC deaminase activity. Isolates TR1, TR2 and TR4 inhibited the growth of F. oxysporum, causing loss of structural integrity of the mycelium, hyphal perforation, lysis, fragmentation and degradation. The potential for nodulation and nitrogen fixation of the strains were confirmed by amplification of 500 bp nodC and 781 bp nifH fragments. The application of the TR1 + TR2 combination resulted in increased grain yield by 35% and 36% of fenugreek in two consecutive field trials, respectively as compared to control. Maximum increments in vigour index, nodule number and root and shoot biomass were recorded with seed inoculated with consortium (TR1 + TR2) followed by single inoculation as compared to control. The antibiotic resistant marker strain of E. meliloti TR1strep+ and R. leguminosarum TR2tet+ confirmed the efficient colonization of fenugreek roots. This study showed that these rhizobial isolates have properties of biocontrol agents and may be applied to promote the growth of fenugreek.  相似文献   

8.
Environmentally friendly control measures are needed for soilborne diseases of crops grown in organic and conventional production systems. We tested ethanol extracts from cultures of Serratia marcescens N4-5 and N2-4, Burkholderia cepacia BC-1 and BC-2, and Burkholderia ambifaria BC-F for control of damping-off of cucumber caused by the soilborne pathogens Pythium ultimum and Rhizoctonia solani; ethanol being an Organic Materials Review Institute (OMRI) -approved solvent for use in certain applications in organic crop production. Ethanol extracts from strains N4-5 and N2-4 inhibited mycelial growth and germination of sporangia of P. ultimum in vitro but those from strains BC-1, BC-2, BC-F, and the ethanol control did not. Ethanol extracts from strains BC-2 and BC-F inhibited mycelial growth of R. solani in vitro while ethanol extracts from strains BC-1, N2-4, N4-5, and the ethanol control did not. Thin-layer chromatography demonstrated that ethanol extracts from strain N4-5 contained prodigiosin while ethanol extracts from strains BC-2 and BC-F contained pyrrolnitrin; extracts from strains N2-4 and BC-1 did not contain either of these compounds. DNA sequencing confirmed the presence of a biosynthetic gene for prodigiosin in strain N4-5 and its absence in strain N2-4, while a biosynthetic gene for pyrrolnitrin was found in strains BC-2 and BC-F but not in strains N2-4, N4-5, and BC-1. Prodigiosin was previously implicated in inhibition of P. ultimum while pyrrolnitrin has been shown to inhibit R. solani. Certified-organic cucumber seed treated with an ethanol extract of strain N4-5 was the only extract treatment from any of these five microbial strains to effectively suppress damping-off caused by P. ultimum in growth chamber pot experiments. This ethanol extract provided suppression of P. ultimum on cucumber that was similar to that provided by a commercially available seed treatment pesticide and greater than that provided by a commercially available biocontrol agent for this pathogen. The inhibitory factor(s) in ethanol extracts of strain N4-5 was stable as a seed treatment for at least 14 weeks when incubated at 4 °C in the dark. No ethanol extracts applied as treatments of organic cucumber seed consistently suppressed damping-off caused by R. solani in growth chamber pot experiments. Experiments reported here suggest that certain natural products from microbial strains as seed treatments are promising alternatives for control of soilborne diseases in conventional or organic cucumber production systems.  相似文献   

9.
The inhibitory properties of middle-viscosity Chitosan on the growth of fungus Ramularia cercosporelloides were studied in vitro. The inhibitory concentration that delayed 50% of the radial growth (IC50) was 3.4 g l−1 for middle-viscosity Chitosans with molecular weights of about 133 and 187 kDa (middle molecular weight) dissolved in lactic and acetic acids, respectively. At 96 h of incubation and under the same growing conditions, inhibitions of 91.79% and 73.13% of the radial growth of the fungus were observed when 3.4 g l−1 of Chitosan was dissolved in 0.05 M acetic and 0.05 M lactic acid, respectively. The biomass production was significantly lower than that observed in the controls at 72 h. Based on these in vitro results; Chitosan could be a good alternative to control the disease caused by R. cercosporelloides on safflower.  相似文献   

10.
Trichoderma viride was proved as an effective biocontrol agent against two fungal pathogens, Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes, infecting soybean. During an in vitro biocontrol test, Trichoderma showed mycoparasitism and destructive control against the tested fungal pathogens. Both the pathogens significantly influence the germination and P. arrhenomanes had a severe effect (only 5% germination). The root system of the soybean plant was poorly developed due to the infection and it exerted a negative influence on the nodulation and further growth phases of the plant. During pot assay along with biocontrol activity, Trichoderma showed growth promoting action on the soybean plant. Trichoderma enhanced growth of shoot and root systems and fruit yield after 12 weeks of growth. Pythium and Fusarium infected plants treated with Trichoderma had ∼194% and 141% more height than pathogens alone. The fruit yield treated with Trichoderma was ∼66 per plant whereas the yield was only 41 for a control plant. The plants infected with Pythium and Fusarium and treated with Trichoderma had fruit yields of 43 and 53 respectively and those were 5 and 1.6 times higher than plants infected with pathogens.  相似文献   

11.
Ten strains of Pseudomonas aeruginosa (PN1 ˜ PN10) isolated from rhizosphere of chir-pine were tested for their plant growth promontory properties and antagonistic activities against Macrophomina phaseolina in vitro and in vivo. P. aeruginosa PN1 produced siderophore, IAA, cyanogen and solubilized phosphorus, besides producing chitinase and β-1,3-glucanase. In dual culture, P. aeruginosa PN1 caused 69% colony growth inhibition. However, cell free culture filtrate also posed inhibitory effect but to a lesser extent. After 90 days, P. aeruginosa PN1 increased plant growth and biomass in pots trial containing M. phaseolina-infested soil. PN1 showed the strong chemotaxis toward root exudates resulting in effective root colonization. Moreover, increased population in rhizosphere of these bacteria was also recorded after 90 days of treatment. Thus, chemotactic fluorescent P. aeruginosa PN1 exhibited strong antagonistic property against M. phaseolina, suppressed the disease and improved plant growth of the seedlings of chir-pine proving potential biocontrol agent.  相似文献   

12.
Banana anthracnose incited by Colletotrichum musae is a serious disease in post harvest marketing stage. It occurs in almost all the banana growing countries. In the current study, 5 isolates of C. musae infecting banana cv nendran were collected from various district of Tamil Nadu. C5 isolate collected from Tiruchirappalli showed maximum virulent with (66.60%) PDI. In vitro efficacy of six Pseudomonas fluorescens superior strains were tested for their inhibition on mycelial growth of C. musae. P. fluorescens (FP7) showed significantly higher inhibition of 41.12 per cent over control and with a mean mycelial growth of 52.10 mm. Water in oil emulsion was used in the present research for formulation of P. fluorescens (FP7). The emulsion contained the following ingredients (w/w), sterile deionized water (45.25%), glycerine (4.00%), water-soluble wax ((0.75%), Tween 20 (2.50%), and a mixture of 19.00% soybean oil + 28.50% castor oil. The application of water in oil emulsion formulation significantly increased the yield (68.12 t/ha) compared to control (66.49 t/ha), and also increase in the activity of defense related enzymes viz., phenyl alanine ammonia lyase, peroxidase, polyphenol oxidase, catalase and β-1, 3 glucanase was observed which was followed by talc based formulation of Pf1 and FP7.  相似文献   

13.
Carbendazim, iprodione, prochloraz-Mn, thiabendazole and thiophanate-methyl were tested in vitro and in vivo for their effect on Mycogone perniciosa, the mycoparasite that causes wet bubble disease of white button mushroom. In vitro experiments showed that prochloraz-Mn (ED50 = 0.006–0.064 μg ml−1) and carbendazim (ED50 = 0.031–0.097 μg ml−1) were the most effective fungicides for inhibiting the mycelial growth of M. perniciosa, while iprodione (ED50 = 1.90–3.80 μg ml−1) was the least effective. The resistance factors calculated for the five fungicides were between 1.4 and 2. The results obtained suggest that there is very little risk that M. perniciosa will develop resistance to the fungicides assayed. The in vivo efficacy of fungicides for control of wet bubble was studied in two mushroom cropping experiments, which were artificially infected with two doses of M. perniciosa, 106 and 107 spores m−2, respectively. There was, in the low dose inoculum experiment, a very high degree of effectiveness (96.5–100.0%) with all the fungicides assayed. However, iprodione performed poorly (20.5–24.4%) compared with the other fungicides (88.7–100.0%) in the high concentration inoculum experiment. The most effective treatments for controlling wet bubble did not improve the biological efficiency of Agaricus bisporus.  相似文献   

14.
This is the first report on the effect of light intensity and plant growth‐promoting rhizobacteria (PGPR) on the growth of a tropical forage grass, being a relevant study to improve pasture management in conventional farming and integrated crop‐livestock‐forestry systems. In this study, our aim was to evaluate the effects of light intensity and Burkholderia pyrrocinia and Pseudomonas fluorescens inoculation on Brachiaria brizantha cv. BRS Piatã growth, and phenotypic plasticity to shade. The experiment was conducted in a semi‐controlled environment. Seedlings of B. brizantha were allocated to full sun and shade. P. fluorescens and B. pyrrocinia were inoculated individually or co‐inoculated by soil drench, 14 days after seedling emergence. We evaluated morphogenesis, structural and growth parameters. Irrespective of the light regime, co‐inoculated plants had greater leaf area and SPAD index (chlorophyll content). Increase in total biomass production in co‐inoculated plants was over 100% and 300%, under full sun and shade respectively. Co‐inoculated P. fluorescens and B. pyrrocinia increased shade tolerance in B. brizantha, improving plant performance. Co‐inoculation promoted growth in B. brizantha under both sun and shade, indicating its potential as a bio‐fertilizer in conventional and integrated systems, especially in silvopastoral systems, where light availability to pasture growth may be limited.  相似文献   

15.
The aim of this study was to evaluate water and organic solvent of plant extracts for protection of lupine plants against damping-off and wilt diseases caused by Fusarium oxysporum f. sp. lupini, F. oxysporum f. sp. lupini Snyder & Hansen was isolated from diseased lupine roots collected from different locations of Minia, Assiut and New Valley governorates. Water leaf extracts of Calotropis procera, Nerium oleander, Eugenia jambolana, Citrullus colocynthis, Ambrosia maritime, Acacia nilotica and Ocimum basilicum and fruit extracts of C. colocynthis, C. procera and E. jambolana reduced damping-off and wilt diseases caused by F. oxysporum f. sp. lupini. Water extracts of E. jambolana leaves, C. colocynthis fruits and N. oleander leaves were the most effective ones for controlling such diseases. In contrast, A. nilotica and O. basilicum extracts were the least effective ones. Organic solvent extracts of tested plants reduced damping-off and wilt diseases than water extracts. Butanolic and ethereal extracts were highly effective in reduction of diseases than the other tested extracts. Under field conditions, during winter growing seasons 2008/09 and 2009/10, ethereal and butanolic extracts of N. oleander and E. jambolana leaves and C. colocynthis fruits significantly reduced the percentage of wilt severity as well as improved growth parameters (plant height, number of branches, pods and seeds per plant) and increased seed index, total seed yield/hectare compared with control treatment, while protein content in seeds was not effected. In conclusion, our study demonstrated that some plant extracts can be used for biocontrol of lupine damping-off and wilt diseases.  相似文献   

16.
This work determined the sensitivity of field populations of Sclerotinia sclerotiorum (Lib.) de Bary before exposure to the fungicide fludioxonil (= baseline sensitivity) and assessed the risk of fludioxonil resistance. The mean EC50 (Effective Concentration) and Minimum inhibitory concentration (MIC) values for fludioxonil based on inhibition of mycelial growth of 120 wild-type isolates were 0.015 ± 0.005 μg/ml and <0.05 μg/ml, respectively. Positive cross-resistance was not detected between fludioxonil and benzimidazole fungicides but was detected between fludioxonil and dicarboximide fungicides which are considered as high resistance risk fungicides by FRAC, even though these fungicides have different molecular structures. By growing wild-type isolates on potato dextrose agar (PDA) containing sublethal concentrations of the fungicide, we obtained four fludioxonil-resistant mutants with resistance factors (EC50 resistant/EC50 sensitive phenotypes) >2000. The laboratory fludioxonil mutants were less fitter than their parental isolates in terms of mycelial radial growth, pathogenicity and sclerotial production. Moreover, on PDA amended with NaCl, the laboratory fludioxonil mutants grew more slowly than their fludioxonil-sensitive parents, especially at lower concentrations of NaCl. According to the fitness of mutants and the cross-resistance between fludioxonil and dicarboximide fungicides, phenylpyrroles can be considered to pose a moderate resistance risk. In a field trial, fludioxonil provided greater control (over 90% disease control) of S. sclerotiorum than iprodione.  相似文献   

17.
A study was conducted to investigate the most common fungal and oomycete pathogens introduced into farms in Oman via potting mixtures and organic manures. A total of 37 commercial types of potting mixtures (2 local and 35 imported from overseas), 4 commercial types of organic manures and 11 non-commercial types of organic manures were included in the study. Identification of the isolated species was based on morphological characteristics, except for the most common species which were further identified using sequences of the internal transcribed spacer region of the ribosomal DNA (ITS rDNA). Fusarium spp. (14%), Pythium aphanidermatum (3%), Alternaria spp. (5%), Helminthosporium spp. (5%) and Cladosporium spp. (3%) were recovered at different frequencies from samples of potting mixtures. Fusarium solani (40%) and Fusarium equiseti (47%) were recovered at high frequencies from samples of organic manures. Isolations from organic manures also yielded Pythium periplocum (7%), Rhizoctonia solani (7%), Fusarium lichenicola (7%), Helminthosporium spp. (27%) and Alternaria spp. (27%). Trichoderma spp., Penicillium spp., Aspergillus spp. and Rhizopus spp. were found to be common in samples of potting mixtures and organic manures. Investigating sensitivity to hymexazol among 9 isolates of F. equiseti and 13 isolates of F. solani revealed variations among different isolates. The EC50 values ranged from 1 to over 1200 (avg. 192 μg ml−1) for F. equiseti isolates and from 135 to 789 (avg. 324 μg ml−1) for F. solani isolates, indicating presence of resistance to this important fungicide among some Fusarium isolates. This appears to be the first report of contamination with R. solani, P. periplocum, F. solani, F. equiseti and F. lichenicola of organic manures. This study appears to report for the first time F. lichenicola in Oman and appears to be the first report of occurrence of resistance to hymexazol among F. equiseti and F. solani isolates.  相似文献   

18.
The efficacy of ten fungicides against Mycosphaerella nawae, the causal agent of circular leaf spot (CLS) of persimmon, was evaluated in vitro and in field experiments. Field trials were conducted in 2009 and 2010 to investigate the comparative efficacy of the fungicides alone or combined using alternating sequences in spray programmes based on two, three or four applications. Disease incidence was assessed by estimating the percentage of affected leaves, which included leaves showing at least one necrotic spot and defoliation. Fenpropimorph, pyraclostrobin, tebuconazole and thiophanate-methyl were the most effective fungicides in inhibiting mycelial growth of M. nawae isolates (EC50 < 2 ppm). In field experiments, the most effective fungicides using two spray applications were captan, chlorothalonil, mancozeb and pyraclostrobin which significantly reduced disease incidence compared with untreated plots. Regarding the number of spray applications, two applications of captan and mancozeb were less efficient than three to control the disease. However, the percentage of affected leaves provided by three applications of captan and mancozeb alone or combined with pyraclostrobin using alternating sequences in spray programmes, was not significantly different from that provided by four applications. Experimental results demonstrated that spray programmes based on three applications of these fungicides could effectively control CLS of persimmon. The advantages of spray programmes based on alternated use of strobilurins and protective fungicides are discussed.  相似文献   

19.
A local isolate of Trichoderma asperellum was tested for its antagonistic activity against Thielaviopsis paradoxa (telemorph = Ceratocyctis paradoxa). The highest antagonistic activity was achieved when the concentration of T. asperellum conidia was 1 × 107 conidia/mL. The highest biomass and number of colony forming unit/mL of the T. asperellum peaked at 144 h after incubation in yeast waste residue medium. The minimum inhibition concentration value of the formulation was observed as 1% on growth of Th. paradoxa incubated at 28 ± 2 °C for 10 d. In the soil fungicide-screening test, the effect of concentrations 100-1600 μg/mL on mycelia growth was not significant (P < 0.05). Complete mycelial growth inhibition occurred at concentration above 52,600 μg/mL. Results of the fruit application tests clearly showed that all treated fruits were free of disease at the end of the incubation period. No significant differences (P > 0.05) in pH, total soluble solids and titratable acidity were observed between fruits treated with formulation of T. asperellum and the control formulation treated pineapples.  相似文献   

20.
Bacillus amyloliquefaciens PPCB004 was selected as a potential antagonist to control Botrytis cinerea, Penicillium expansum and Rhizopus stolonifer on peach fruit. The HPLC data of PPCB004 indicated the lipopeptides iturin A, fengycin and surfactin as secondary metabolites. The GC/MS analysis of PPCB004 showed 3-hydroxy-2-butanone as the dominant compound (97.52% of relative peak area). Thyme (TO) and lemongrass (LO) oils showed over 50% and 25% inhibition of radial mycelial growth respectively with 8 μl oil per plate for all pathogens. Combination treatment with both oils failed to increase the percentage inhibition of radial mycelial growth of the pathogens. Combined application of PPCB004 with TO or LO was tested to assess the effectiveness in the control of these pathogens during postharvest storage. The biofilm formation of PPCB004 was significantly higher in LO than TO. LO (6 μl plate−1) and PPCB004 completely inhibited the mycelial growth of the pathogens. Fruit inoculation trials with PPCB004 + LO in NatureFlex™ modified atmosphere packaging (MAP), showed lower disease incidence and severity at 25 °C for 5 d than treatments with PPCB004 + MAP, PPCB004 + TO + MAP, LO + MAP, TO + MAP or stand-alone MAP. On naturally infected fruit, PPCB004 + LO + MAP and LO + MAP treatments retained the total soluble solids/titratable acidity ratio and flesh firmness but failed to stimulate the levels of total phenolic content, phenylalanine ammonia-lyase, β-1,3-glucanase and chitinase activities. Combination of PPCB004 (spray treatment) + LO (in pad delivery system) in NatureFlex™ MAP showed absence of disease and off-flavour development, retained the overall appearance and increased the overall acceptance at market shelf conditions (20 °C for 2 d) after cold storage at 4 °C for 14 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号