首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hydroxytyrosol-rich olive mill wastewater (HROMW) (29.3% weight:dry weight) and a hydroxytyrosol-rich extract (HRE) (52.7% weight:dry weight) were prepared from the fresh olive mill wastewater (OMW) using hydrolysis and post-hydrolysis purification processes. The minimal bactericidal concentrations of HROMW and HRE against Pectobacterium carotovorum subsp. carotovorum were 72 and 40 g L−1, respectively. According to the European standard method (EN 1276: 1997), HROMW and HRE showed powerful disinfectant properties and reduced the viability of P. carotovorum by more than 5 log units after a contact time of 5 min at 2% dry weight:volume. Curative and preventive controls of potato soft rot were obtained by treatment of tubers with HROMW or HRE 3 days before or 3 days after their infection with P. carotovorum, respectively. The soft rot development during potato tuber storage was significantly reduced by treatment with HRE. This extract could be used in eco-friendly strategies of post-harvest disease control and could substitute for chemical pesticides.  相似文献   

2.
Olive mill wastewater (OMW) is a problematic by-product in Mediterranean countries. Despite this, it is a raw material that is an unfailing source of bioactive molecules. A hydroxytyrosol-rich preparation (HRP) (49.6% weight:dry weight) was extracted from fresh OMW using a hydrolysis and post-hydrolysis purification process. The field efficacy of HRP as a spray treatment (2500 l ha−1) against olive psyllid, Euphyllura olivina (Hemiptera: Psyllidae), was evaluated in 2008 and 2009 in a drip-irrigated olive orchard.The HRP showed strong insecticidal activity against E. olivina at a concentration of 2 g l−1 hydroxytyrosol. Application of HRP resulted in 41.1 and 72.1% control of nymphs and adults, respectively. However, HRP application did not reduce egg hatch. Neither phytotoxicity nor toxicity to auxiliary-fauna was recorded with concentrations of 1.25 g l−1 or 2 g l−1 HRP. But, the 2.5 g l−1 concentration was slightly phytotoxic, especially at the E and F floral phenological stages of the grapes. HRP offers a natural and effective extract for control of olive psyllid and opens a new opportunity for the reuse of OMW.  相似文献   

3.
Verticillium wilt caused by a highly virulent, defoliating (D) pathotype of Verticillium dahliae is threatening olive production in Spain and other Mediterranean countries. This disease must be managed by an integrated strategy, in which biocontrol agents can play an important role. We have investigated the potential of Trichoderma asperellum strains for antagonism against V. dahliae and suppression of Verticillium wilt of olive caused by the D pathotype. First, we tested the antagonistic potential of T. asperellum strains Bt2, Bt3 and T25 against six V. dahliae isolates, four of the D and two of the nondefoliating (ND) pathotypes, in different in vitro assays. All T. asperellum strains overgrew the colonies of all V. dahliae isolates to a similar extent. However, extracellular compounds from strains Bt3 and T25 showed higher anti-V. dahliae activities than those of Bt2 in membrane assays. Also, growth of Bt2 was reduced by ND V. dahliae whereas that of Bt3 and T25 was not affected by V. dahliae-secreted compounds. In planta assays using strains Bt3 and T25, and ’Picual’ olive plants, showed that the two T. asperellum strains significantly reduced the severity of symptoms and the standardized area under the disease progress curve caused by highly virulent D V. dahliae, but not the final disease incidence. Strain T25 significantly increased growth of ‘Picual’ plants and displayed higher ability for colonizing the olive rhizosphere and establishing endophytic infection in olive roots than Bt3.  相似文献   

4.
Experiments were conducted in three different commercial greenhouses wherein cucumber (Cucumis sativus L.) cv. Kalunga F1 (Long English type) were grown in composted straw bales, heavily infested with Fusarium oxysporum Schlechtend.:Fr. f.sp. radicis-cucumerinum Vakalounakis (FORC), the causal agent of Fusarium root and stem rot of cucumber. FORC was isolated from roots and stem bases of symptomatic plants either in single infections or simultaneously with other root infecting pathogens, including species of Phytophthora and Pythium and Rhizoctonia solani Kühn AG-4. Verticillium dahliae Kleb. was obtained from individual cucumber plants showing wilt symptoms. Fungicide applications started at the beginning of fruiting time when the first symptomatic plants occurred and followed at 45-day intervals. Three fungicides, either alone or as tank-mixed combinations of 0.1% Topsin M 70WP (thiophanate-methyl 700 g kg−1) plus 0.15% Previcur 607SL (607 g L−1 propamocarb hydrochloride), or 0.1% Benomyl 50WP (benomyl 50 g kg−1) plus 0.15% Previcur 607SL, were applied to the crown and root area of cucumber plants through drip irrigation systems as drenches at a rate of 0.25 L/plant. Plant mortality was reduced by 11.1%–84.8% and 23.8%–77.7% when plants were drenched with Topsin M 70WP in combination with Previcur 607SL or Benomyl 50WP plus Previcur 607SL, respectively. In comparison, significantly lower levels of disease control were achieved when these fungicides were applied individually. Three fungicide applications during the crop season increased the inhibitory effect of the fungicide regime on the disease incidence compared to one or two treatment.  相似文献   

5.
In 1994 and 1995, the effect of Verticillium wilt, caused byVerticillium dahliae andV. albo-atrum, on tuber yields, number and weight of U.S. No. 1 and B size tubers, and specific gravity was studied in northern Maine, an area with a short growing season. Seven clones (four resistant and three susceptible) were evaluated in a split-plot design with three replications. Clones were the whole-plot factor, and seed pieces in sub-plots were either uninoculated or inoculated with 50 ml of 4 × 104 cfu/mlVerticillium spp. at planting. Individual plants were scored for Verticillium wilt symptoms before harvest on a 1= <3% wilt to 10= >97% wilt. Differences among clones for wilting and specific gravity were significant. The inoculation treatment had no effect on any of the tuber traits measured. However, there were significant clone x inoculation interactions for most tuber traits. Reductions in yield, weight and number of U.S. No. 1 potatoes, and specific gravity were greater in the Verticillium wilt susceptible clones than in the resistant clones. These results suggest that breeding clones with resistance toVerticillium spp. will reduce yield losses, while maintaining tuber size and specific gravity under disease pressure.  相似文献   

6.
This study aimed to identify new sources of resistance to Verticillium wilt in olive. We evaluated various types of genotypes: wild olive trees (Olea europaea subsp. europaea var. sylvestris), genotypes belonging to related subspecie (Olea europaea subsp. guanchica) and genotypes coming from crosses between Picual cultivar and wild olive trees. Fifty-six genotypes were inoculated by dipping roots and then screened under controlled conditions to test their resistance to a highly virulent Defoliating isolate of Verticillium dahliae. Picual (susceptible) and Frantoio (resistant) were control cultivars. Wide variability and significant differences were obtained in the evaluated disease parameters. The Relative Susceptibility Index (RSI), summarizing the disease parameters, was used for final classification of genotypes. Thirteen genotypes were categorized as resistant: eight wild olives from different locations, two genotypes belonging to subsp. guanchica populations from Canary Islands and three genotypes obtained from one of the crosses Picual x wild. The identification of high levels of resistance to V. dahliae among wild olive genotypes may be helpful for the management of this disease. The resistant genotypes could be used as rootstocks for susceptible olive cultivars or parents in future breeding programs.  相似文献   

7.
Verticillium wilt, caused by the soil-borne fungus Verticillium dahliae, is one of the most important diseases of potato in North America. Soil incorporation of alfalfa residues prior to planting potato could be a nonchemical Verticillium wilt management tactic by reducing the number of viable microsclerotia in field soil. Verticillium dahliae microsclerotia were quantified in field soils where organic material from alfalfa was incorporated, and numbers of microsclerotia were compared to fields where alfalfa residue was not incorporated. In addition, bacterial metagenomics was utilized to characterize soils where organic material from alfalfa was or was not incorporated to determine if alfalfa residue incorporation facilitates the formation of soils that suppress or kill V. dahliae microsclerotia. The number of V. dahliae microsclerotia in soil was greater (P = 0.0003) in fields where crop residue was incorporated than fields without incorporation when chloropicrin was used as a fumigant. Conversely, the number of V. dahliae microsclerotia observed in potato plants did not differ (P = 0.4020) between fields where residues were or were not incorporated if chloropicrin was used. Alfalfa residue incorporation did not significantly alter the soil bacterial metagenome compared to fields not subject to residue incorporation in both years of study. Despite these conclusions, the method can be employed to analyze the effect of grower practices with the intent of linking a field practice to increasing soil bacterial diversity and decreasing Verticillium wilt severity on potato.  相似文献   

8.
Effect of nitrogen and phosphorus fertilization rates on the incidence of Verticillium wilt caused byVerticillium albo-atrum orV. dahliae and tuber yield in potato cv Yukon Gold was evaluated in field plots. In three years of study,V. albo-atrum caused a higher incidence of wilt symptoms (74%–100%) thanV. dahliae (5%–81%) resulting in lower marketable tuber yield. In plots infested withV. albo-atrum, tuber yield ranged from 12.3-22.8 T ha1 compared to 18.1– 31.5 T ha-1 in plots infested withV. dahliae. Application of nitrogen above (280 kg ha-1) or below (70 kg ha-1) the recommended rate of 140 kg ha-1 at planting did not suppress foliar symptoms or protect against yield loss caused by eitherV. albo-atrum orV. dahliae. Similarly, phosphorus rate adjustments did not consistently affect disease incidence regardless of the pathogen. Management of nitrogen or phosphorus fertility rates at planting does not appear to be a viable approach for suppressing Verticillium wilt in the determinant, wiltsusceptible cultivar Yukon Gold.  相似文献   

9.
In three years (1994, 1995, and 1996), a total of 100 commercial potato fields in southeastern Idaho were surveyed for soil variables, severity of Verticillium wilt, soil inoculum density ofVerticillium dahliae andColletotrichum coccodes, colonization of stems, root, and tubers byV. dahliae andC. coccodes, and tuber yield, size, and quality. As a generalization, factors related to soil integrity (organic matter, organic nitrogen, and increased nutrient availability) were most closely related to wilt suppression and higher tuber yields, whereas factors related to loss of soil integrity (sodium and reduced nutrient availability) were related to increased wilt and lower tuber yields. In a multiple regression analysis, three independent variables, feeder-root infections byV. dahliae, sodium content in soil, and soil organic content, were significant predictors of tuber yield. With these three factors, this model accounted for 49%, 53%, and 62% of the field variability related to total yield in 1994, 1995, and 1996, respectively. Throughout this investigation,V. dahliae root infections had the most direct effect on tuber yield, which emphasizes the importance of quantifying root infections in epidemiological studies of Verticillium wilt. Based on these results, organic matter may be one factor that can be manipulated for suppression of Verticillium wilt without reducing soil populations of the pathogen.  相似文献   

10.
A three-year field study was conducted during 1984–1986 to determine the interactive effects of nitrogen and phosphorus fertilization on Verticillium wilt, and yield and quality of continuously-cropped Russet Burbank potato. The experiment was conducted on a calcareous, silt loam soil with low initial levels of NO3-N (0.9 mg/kg), P (3.5 mg/kg), andVerticillium dahliae (9 cfu/g of soil). The experimental design consisted of a factorial combination of three N treatments (unfertilized check, preplant N or split N) and three P treatments (0,120, or 240 kg P/ha) applied to the same plots during the three-year study. Nitrogen was applied at 0 or 300 kg N/ha in 1984 and 0 or 240 kg N/ha in 1985 and 1986. By the spring of 1986, soil P concentrations for the 0,120, and 240 kg P/ha treatments had increased to 7, 25, and 50 mg/kg and no additional P was applied. In addition to suppressing Verticillium wilt by as much as 95%, N & P treatments also reduced the rate of increase of soilborne inoculum ofV. dahliae. After one season of cropping, the N treatment providing the most efficient N fertilization (300 kg N/ha, split-application) resulted in significantly (p=0.01) lowerV. dahliae counts in soil than the other N treatments. After two seasons of continuous cropping, applying 120 to 240 kg P/ha produced lower populations ofV. dahliae in soil compared to the treatment with no added P. Generally, as N and P treatments approached the highest levels, both wilt incidence andV. dahliae colonization values were reduced. There was a progressive reduction in total yield in nearly all treatments during each year of continuous cropping. Reduction of yield and increased Verticillium wilt incidence was generally greater with N or P deficient plants than with optimally fertilized plants. The highest total and U.S. No. 1 yields and least Verticillium wilt were obtained each year by applying split N and 240 kg P/ha. Results show that optimal N and P can minimize both Verticillium wilt and yield losses that normally occur with intensive potato cropping.  相似文献   

11.
Irrigation water disinfestation is an unexplored option for reducing Verticillium dahliae inoculum in water and consequently for more efficiently managing Verticillium wilts in Andalusia. We assessed Suppressive Efficacy (SE; water was infested and subsequently treated) and Preventive Efficacy (PE; previously treated water was subsequently inoculated) of OX-VIRIN®, OX-AGUA AL 25® and Deccoklor® in reducing water infestations by V. dahliae conidia. Five concentrations of each disinfestant, the lowest three being recommended by the manufacturer, were tested in vitro against six V. dahliae isolates. Validation assays were carried out in experiments under natural environmental conditions in spring. The four highest concentrations of OX-VIRIN® (0.8–51.2 mL L−1), the three highest of OX-AGUA AL 25® (46.4–417.5 μL L−1) and the two highest of Deccoklor® (0.375 and 3.75 mL L−1), showed an in vitro-efficacy (SE and PE) of 96.2, 80.0 and 100.0% after 30, 5 to 30 and 15 days respectively. Therefore, recommended concentrations for OX-VIRIN® and OX-AGUA AL 25® showed a greater in vitro-effectiveness than those recommended for Deccoklor®. Assays in natural environmental conditions proved that OX-VIRIN® at the recommended concentration of 3.2-mL L−1, applied every 28 days to water, was the most effective treatment (SE and PE), with a 100% reduction of the average relative viability after 56 days. Other chemical treatments showing high in vitro-efficacy, such as OX-VIRIN® at 0.8 mL L−1 and OX-AGUA AL 25® at 46.4 μL L−1 showed an SE of 99.9% after 14 and 28 days when applied every 28 and 14 days, respectively. However, PE of OX-AGUA AL 25® at 46.4 μL L−1 was only 59 and 38% after 28 and 14 days respectively, depending on the experiment.  相似文献   

12.
Summary The interaction betweenErwinia carotovora subsp.atroseptica (Eca) andVerticillium dahliae and its effect on symptom development in potato cultivars showing different degrees of resistance to them was examined over two seasons in irrigated fields in a hot, dry climate. Four cultivars were used: Cara, highly resistant to blackleg and tolerant to Verticillium wilt; Pentland Crown also resistant to blackleg but susceptible to Verticillium wilt; Désirée, moderately susceptible to blackleg but tolerant to Verticillium wilt; and Maris Bard, susceptible to both diseases. Seed tubers were inoculated with Eca immediately after harvest in Scotland, to simulate natural infection, and then planted in Israel in soil naturally infested byV. dahliae. In Verticillium tolerant cultivars, Eca infection increased the rate of colonization byV. dahliae and significantly enhanced symptom development, as assessed by suppression of plant height and wilt symptoms. This report is a portion of the Ph.D. thesis of the senior author in Ben-Gurion University of the Negev.  相似文献   

13.
Verticillium dahliae is the causal agent of strawberry wilt. A microencapsulated terpene product containing cineole, camphor and borneol, digestate from anaerobic digestion, and BioFence™ derived from a mustard-based defatted seedmeal were tested for their suppressive activity against V. dahliae. First, naturally infested soil was amended with microencapsulated terpene, lavender waste pellet and BioFence™ (pellet) in a laboratory test to assess the efficacy against V. dahliae. Next, mini-field-plot experiments were conducted to evaluate the efficacy of individual and combined use of terpene, BioFence™ (liquid) and digestate against V. dahliae; sterile distilled water treatment and untreated control were also included. In the laboratory test, all treatments significantly reduced V. dahliae densities, with the control efficacy ranging from 27% (BioFence™) to 69% (lavender waste pellet). Although the lowest (1×) rate of terpene treatment resulted in a much lower control efficacy (35%) than the other two higher rates (3× – 55%; 9× – 53%), these differences were not statistically significant. In the field mini-plot trials, all treatments led to significant reductions in the V. dahliae density, with the efficacy ranging from 50% (digestate) to 78% (combined three-product treatment), irrespective of the initial wilt level. There were no significant differences in all comparisons of pairwise treatments except between digestate and combined three-product treatment. For the combined two or three-product treatments, the observed efficacy was significantly less than the expected efficacy on the assumption of Bliss independence. Furthermore, there were no significant differences between the observed efficacy of combined treatments and the best single component product efficacy. Although the observed efficacy for the combined three-product treatment was consistently higher than the best single component across replicate plots, such a difference was not statistically significant. The results indicate the value of these alternative treatments in practice but these are not likely to reduce V. dahliae inoculum sufficiently to eliminate the risk of strawberry wilt and question the value of combined treatments.  相似文献   

14.
Nine soils collected in New Jersey and Maryland were infested with microsclerotia ofVerticillium dahliae and planted with potato cv. Superior for five successive crops in the greenhouse to induce suppressiveness to Verticillium wilt. Potatoes were harvested 9–12 wk after planting and disease incidence was determined by recovery ofV. dahliae from stem segments on selective medium. Six of the nine soils had high disease incidence during the first cropping and remained conducive to Verticillium wilt throughout the experiment. Disease incidence increased in soils 3 and 9 over time, while disease incidence decreased nonlinearly in soil 1. Viability of microsclerotia buried in soil 9 for 4 wks was reduced compared to the viability of microsclerotia buried in soils 1, 3, and 6. Addition of 50 or 100 g hydrated lime/10 kg soil to soil 9 eliminated its suppressiveness to Verticillium wilt. Repeated cropping of the same soil can induce suppressiveness to Verticillium wilt. Soils exhibiting induced suppressiveness may be a source of new antagonists againstV. dahliae.  相似文献   

15.
Verticillium wilt, caused by Verticillium dahliae Kleb., is a primary component of the early dying complex of potato (Solanum tuberosum L.) in the United States. Although genetic resistance to V. dahliae exists and has been incorporated into several potato cultivars, the commercial potato industry is still dominated by cultivars susceptible to the pathogen. As a result, soil fumigation with metam sodium remains an important means by which Verticillium wilt is controlled, despite its expense and potentially negative environmental impact. Recent restrictions on metam sodium use by the Environmental Protection Agency directed at reducing exposure to vapor emissions have increased the need to improve shank injection of the soil fumigant. In studies reported here, the application of metam sodium reduced the severity of Verticillium wilt, however, soil temperature at the time of injection, metam sodium injection depth, and application rate had little overall effect. In 2011, temperature at the time of metam sodium injection did not result in significant differences in any parameter evaluated. However, in 2012, soil populations of V. dahliae, wilt severity and host colonization were significantly reduced when metam sodium was applied at 4 °C compared to 13 or 15 °C. No significant differences were observed between a single or two metam sodium injection depths in any parameter evaluated across the 2 years the study was conducted. While all rates of metam sodium significantly reduced soil populations of V. dahliae compared to the non-treated control, significant differences across rates were rarely observed. Improved control of Verticillium wilt and increased yield can be achieved as a result of these studies. The effective control of Verticillium wilt can be obtained by using metam sodium at a comparatively low rate of 373 l/ha, particularly when applied at a relatively cold soil temperature of 4 °C using a single injection depth of 25 cm. The potential impact of these application modifications of metam sodium in reducing emissions and non-target exposure is discussed.  相似文献   

16.
Potato breeding selections A66107-51 and A68113-4 (Solanum tuberosum gptuberosum) are being released as germplasm that is highly resistant to Verticillium wilt (Verticillium dahliae Kleb.) These selections have been extensively evaluated for resistance to Verticillium as measured by symptom severity and degree of colonization byV. dahliae. They combine outstanding wilt resistance with good tuber maturity characteristics, high yield, and french fry processing tuber type. A66107-51 has long-oblong, russeted tubers, with high yield and variable processing quality. A68113-4 has long-oblong, partially russeted tubers with high yield and good processing quality. Both selections are fertile as female parents, and A66107-51 is occasionally pollen fertile. The Verticillium resistance of these two clones has been transmitted to progeny. These selections were developed by USDA-ARS in cooperation with the Idaho Agricultural Experiment Station. Seed is available from USDA-ARS, Aberdeen, Idaho.  相似文献   

17.
Changes in potato production over the past 10 to 20 years, have resulted in increased emphasis being placed on breeding for resistance to Verticillium wilt, caused by Verticillium dahliae Kleb. While many russet-skinned cultivars recently have been released with reported resistance to Verticillium wilt, information is lacking on the level of pathogen colonization, and therefore, the level of true genetic resistance is not known. Eight russet-skinned cultivars were grown in field trials with low and high levels of V. dahliae in the soil, and evaluated for wilt, stem colonization, yield, and tuber vascular discoloration. A recently developed QPCR assay was validated, with strong relationships to culture plating assays over three stem sampling dates. Additionally, stem colonization levels, as determined by QPCR, were related to wilt and tuber vascular discoloration. However, total yield did not exhibit a strong relationship to any other parameter evaluated in this study. Results from these studies indicate that varying levels of true resistance are present in the russet-skinned cultivars evaluated, and that the QPCR assay can be reliable in rapidly evaluating resistance to V. dahliae under field conditions. Based on pathogen quantification using stem colonization derived from traditional plating assays and QPCR, the resistance level of several cultivars is more clearly defined and discussed.  相似文献   

18.
Verticillium wilt (VW), caused by Verticillium dahliae Kleb., is a destructive disease of cotton (Gossypium hirsutum L.). The use of resistant cultivars has long been considered the most practical and effective mean of control. The aim of this work was to study the quantitative genetic basis of Verticillium wilt resistance in Upland cotton by using five genotypes and their possible crosses without reciprocals selecting simultaneously for resistance and desirable agronomic characteristics. Five cotton cultivars and 10 F1s from half-diallel crosses were analyzed for VW resistance. The seed cotton yield, the number of bolls/ plant, and boll weight were measured and Verticillium wilt index (VWI) was estimated during two crop seasons in two different sites each year always on plots with naturally infested soil. Genetic components of variance were analyzed using the Hayman model. Analysis of variance for all characters showed significant differences between genotypes, without genotype-site interaction in most cases. Both, additive genetic variance component (D) and dominance genetic variance components (H1 and H2) were presented in all characters, except for VWI. D was the most important component for boll weight and VWI. Boll weight was the most correlated character with seed cotton yield and VWI. Broad sense heritability was high for boll weight and VWI, moderate for seed cotton yield and low for bolls per plant. Narrow sense heritability was moderate for boll weight, and high for VWI.  相似文献   

19.
A procedure was developed and tested to evaluate potato germ plasm for relative rates of vascular colonization byVerticillium dahliae. The number of colony forming units (CFU) per ml of plant sap, extracted from stems and plated on a medium, was used to assess vascular colonization from plants grown for 100 days in a field plot infested withV. dahliae. Sap extracted from main stem tissue at the ground line gave more CFU ofV. dahliae than tissue at the mid and apical region of the main stem. Aliquots of 0.05, 0.1 and 0.2 ml of plant sap were equally efficient in measuring vascular colonization. Thirty-three clones were evaluated for amount of vascular colonization in field and greenhouse tests with the former giving the best results. Cultivars and clones resistant to Verticillium wilt in Idaho, Maine, Minnesota, North Dakota and New York each had a low index of wilt and a low number of CFU/ml ofV. dahliae in plant sap in these tests. Clones intermediate in both wilt index and vascular colonization as well as selections with a high wilt index and extensive vascular colonization were found using the fresh sap assay method. Correlation values of, r = 0.92, r = 0.91 and r = 0.86 were observed between CFU/ml and percentage of foliar wilt for 11 clones/cultivars in 1986, 1987 and 1988, respectively. The correlation between CFU/ml and both moisture and temperature for the cultivars Kennebec and Russet Burbank, during a 6-yr period was r = 0.83.  相似文献   

20.
Carbendazim, iprodione, prochloraz-Mn, thiabendazole and thiophanate-methyl were tested in vitro and in vivo for their effect on Mycogone perniciosa, the mycoparasite that causes wet bubble disease of white button mushroom. In vitro experiments showed that prochloraz-Mn (ED50 = 0.006–0.064 μg ml−1) and carbendazim (ED50 = 0.031–0.097 μg ml−1) were the most effective fungicides for inhibiting the mycelial growth of M. perniciosa, while iprodione (ED50 = 1.90–3.80 μg ml−1) was the least effective. The resistance factors calculated for the five fungicides were between 1.4 and 2. The results obtained suggest that there is very little risk that M. perniciosa will develop resistance to the fungicides assayed. The in vivo efficacy of fungicides for control of wet bubble was studied in two mushroom cropping experiments, which were artificially infected with two doses of M. perniciosa, 106 and 107 spores m−2, respectively. There was, in the low dose inoculum experiment, a very high degree of effectiveness (96.5–100.0%) with all the fungicides assayed. However, iprodione performed poorly (20.5–24.4%) compared with the other fungicides (88.7–100.0%) in the high concentration inoculum experiment. The most effective treatments for controlling wet bubble did not improve the biological efficiency of Agaricus bisporus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号