首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 714 毫秒
1.
Fusarium basal rot (FBR) caused by Fusarium oxysporum f. sp. cepae (Foc) is one of the most significant production constraint to shallot. Field experiment was conducted in a naturally Foc infested soil at Debre Zeit Agricultural Research Center during 2006 and 2007 cropping seasons to evaluate the level of resistance of sixteen shallot genotypes against FBR disease. Treatments were arranged in randomized complete block design with four replications. The genotypes significantly varied in their susceptibility to FBR and yield. They were grouped into tolerant, moderately and highly susceptible types. Five genotypes (DZ-Sht-168-1A, DZ-Sht-157-1B, Huruta, Negelle and DZ-Sht-169-1b) were identified to be tolerant as they had reduced disease severity levels from 26.8 to 32.5% and increased mean yield by more than 5 t ha−1 compared to highly susceptible genotypes (DZ-Sht-076-4, DZ-Sht-201-1C and DZ-Sht-054-3A). Among the tolerant genotypes, DZ-Sht-169-1b had greatly reduced bulb rot incidence by 48% in ground storage and 30% in wire mesh shelf as compared to highly susceptible genotype DZ-Sht-201-1C. The tolerant genotypes have high yielding characteristic, and farmers could adopt them for cultivation where FBR is a problem.  相似文献   

2.
Rhizoctonia solani Kühn is an important pathogen of sugar beet (Beta vulgaris L.) that can cause damping-off and crown and root rot. Commercial cultivars which are highly resistant to the pathogen are not as high yielding as susceptible cultivars under low or absent disease pressure. These resistant cultivars often do not have resistance to other common pathogens such as Aphanomyces cochlioides, Cercospora beticola, and Fusarium oxysporum. Fungicides, such as azoxystrobin which belongs to the quinone outside inhibitors (QoI) class, are necessary for controlling Rhizoctonia solani, but there are concerns about the buildup of fungicide-resistant strains in the targeted pathogen population. There is a need to find effective fungicides from different chemical groups so they can be rotated with the current widely-used azoxystrobin to manage R. solani. The objective of this greenhouse study was to evaluate the efficacy of penthiopyrad, a succinate dehydrogenase inhibitor (SDHI), in managing R. solani on sugar beet using three different application methodologies. Penthiopyrad effectively controlled R. solani on sugar beet when applied at 210, 280, 420, or 550 g a.i./ha in-furrow at planting and as a soil drench at the 4-leaf stage. However, foliar application of penthiopyrad failed to provide disease control. These trials indicated that penthiopyrad needs to be in close proximity or direct contact with R. solani in the soil to provide effective control. Penthiopyrad has the potential to be used as an effective alternate partner with azoxystrobin for controlling R. solani and to help in mitigating the development of fungicide resistant isolates of R. solani.  相似文献   

3.
The characteristically clustered occurrence and low level of mobility of Heterodera schachtii and Rhizoctonia solani in the soil and the induction of stress symptoms in the sugar beet canopy make them ideal targets for site-specific arrangements with precision agriculture tools. A field site infested with H. schachtii and R. solani was investigated in 2009 with near-range and aerial hyperspectral sensors during the growing season. At 31 sample points ground truth data for incidence and severity of the two organisms were collected and geo-referenced. Spectral vegetation indices computed from reflectance measurements obtained from two flight campaigns (AISA, 17th of June; HyMap, 28th of August) and the near-range spectroradiometers were significantly correlated (P < 0.01) with symptoms caused by the nematode or Rhizoctonia crown and root rot. A supervised classification with Spectral Angle Mapper of leaf symptoms induced by the organisms resulted in a classification accuracy of 72 and 64% for the AISA and HyMap data, respectively. The results demonstrated that remote sensing in combination with geographic information system technologies can be used effectively for the detection and mapping of symptoms caused by beet cyst nematode and Rhizoctonia crown and root rot.  相似文献   

4.
Summary The effects of cropping frequency on the yield of potato and on the development of soil-borne diseases was studied from 1979 to 1985 in a crop rotation experiment on a marine clay soil. Tuber yield decreased markedly with increasing cropping frequency. The yield of cv. Hertha was reduced by 27% in continuous cropping and by 15% in a wheat/potato or sugar beet/potato rotation, when compared with the rotation wheat/sugar beet/oats/potato. However, a pot experiment showed that yield depression in continuous cropping depended on the cultivar used. Crop growth declined in the second part of the growing season, and senescence accelerated as the cropping frequency increased.Verticillium dahliae was the most important yield-reducing factor. Root infection by this fungus was stimulated by the root-lesion nematodePratylenchus neglectus.  相似文献   

5.
Economic viability of a sugar beet crop largely depends on its successful protection against rhizomania, a most devastating disease that causes severe losses in root yield, sucrose content and quality. Rhizomania disease is caused by Beet necrotic yellow vein virus (BNYVV), a virus present in most sugar beet growing regions being vectored by the widely spread soil borne protoctist Polymyxa betae Keskin. The only practical means to control the disease is the use of genetically resistant varieties and, to date, such resistance is mainly based on a dominant gene (Rz1) that when present confers a sufficiently high level of protection against BNYVV. However, the emergence of virus strains capable of compromising the resistance employed in commercial varieties as well as a possible spread of more pathogenic isolates threatens crop's protection efficiency in the future. All these point to the necessity for exploiting new and more effective genetic sources of rhizomania resistance, both by classical and molecular breeding approaches, a practice that is being pursued by the relevant breeding firms. This article critically reviews the various issues related to the disease and its management and particularly to the ones pertaining to pathogen genetic diversity, types of genetic resistance currently employed, as well as to novel biotechnological approaches aiming at the development of better resisting cultivars.  相似文献   

6.
Crop yield has to increase to meet the expanding demand for food, feed and bio-energy, caused by world population growth and increasing wealth. Raising sugar yield is also the key to sustaining the profitability of the sugar beet crop. This paper describes the factors that impacted on yield differences between 26 ‘top’ and 26 ‘average’ growers based on four years yield data (2000-2004). In 2006 and 2007, the top growers had 20% higher sugar yields compared to their neighbouring average growers. Heterodera schachtii and Beet necrotic yellow vein virus (BNYVV) were mainly found on clay soils. Top growers on clay soil had significantly lower infestation levels of H. schachtii (4.4x lower, P = 0.008), BNYVV (2.7x lower, P = 0.016) and other foliar symptoms (Pseudomonas, Phoma betae and Verticillium spp. combined) (1.5x lower, P < 0.001), than the average growers, respectively. On sandy soils, infestation levels of Meloidogyne spp. (P = 0.016), Cercospora beticola (P = 0.005) and Erysiphe betae (P = 0.027) were significantly lower (5x, 1.4x and 1.8x, respectively) for the top growers. The top growers on clay or sand sowed 5 and 6 days earlier respectively, and made more fungicide applications and thus used more fungicides than the average growers. Insect pests were not observed at levels damaging for sugar yield: Insecticidal seed treatments provided sufficient control of insect pests. In multiple regression, 35% of the variance in sugar yield on clay soils was explained by H. schachtii and BNYVV infestation levels and by sowing date. On sandy soils, the infestation levels of Heterodera betae and Aphanomyces cochlioides, number of fungicide applications and sowing date explained 71% of the variance in sugar yield. Despite crop protection measures, the calculated yield losses due to pests and diseases for the top growers were 30.2 and 13.1% and for average growers were 37.1 and 16.7% on sandy and clay soils, respectively. Therefore, pest and disease infestation levels partly explained the differences in sugar yield between top and average growers analysed. The skills and knowledge of the grower are important to reducing damage by pests and diseases. Communication of knowledge, obtained by research, towards growers is vital for the long-term raising of yield and increasing of productivity in sugar beet, as well as in other crops.  相似文献   

7.
The aims of this study were to develop new bioformulations using Trichoderma harzianum, Trichoderma asperellum, and Talaromyces flavus and some organic and inorganic carriers and evaluate their effects against Rhizoctonia solani, the fungal causal agent of sugar beet seedling damping-off disease. Selected fungal isolates were first re-cultured and maintained on potato dextrose agar (PDA) culture medium. Antagonistic effects of eight isolates of the above-mentioned antagonistic fungi were then evaluated against R. solani, through volatile metabolites and non-volatile metabolites production mechanisms under laboratory conditions. In volatile and non-volatile metabolite experiments, five and seven isolates caused significant reduction in R. solani growth respectively. Based on the results of laboratory experiments, the most effective antagonistic isolates (one isolate from each species) were selected for development of nine bioformulations using peat, rice bran and talc as carriers. The effectiveness of developed bioformulations was then evaluated in controlling sugar beet damping-off disease in a greenhouse experiment where sugar beet seeds were coated with bioformulations and were sown in pasteurized field soil pre-inoculated with R. solani. Results of the greenhouse experiment 60 days after sowing showed that all bioformulations increased the number of healthy seedlings significantly (compared to the untreated control) with different rates. According to the results, the most effective bioformulation was Talc-T. harzianum followed by Peat-T. flavus, Talc-T. flavus and Rice bran-T. harzianum. In general, in both laboratory and greenhouse experiments, T. flavus was the most effective fungal antagonist followed by T. harzianum and T. asperellum. Based on the results of this study it is concluded that Trichoderma and Talaromyces employing different mechanisms might be potential biocontrol agents for controlling R. solani-induced sugar beet damping-off disease.  相似文献   

8.
Reduced lignin concentration in brown mid-rib mutants in both maize and sorghum have resulted in improved dry matter digestibility, increased milk yield and higher energy in lactating cows. However, the mutations were not widely deployed due to concern that reduced lignin concentration might increase vulnerability to lodging and stalk rot incidence. The objective of this study was to determine the effects of the mutations on stalk strength and stalk rot resistance in both sorghum and maize. Six brown midrib (bmr) sorghum, four brown midrib (bm) maize, and their normal isolines were evaluated for stalk strength and stalk rot disease reaction at two locations in four replications. Three randomly selected plants in each plot were inoculated with Macrophomina phaseolina at 14 d after flowering by using the toothpick inoculation technique. On 28 d after inoculation, the plants were rated for disease severity by measuring the length of necrotic lesions in the stalks. Stalk strength was determined from another three random plants in each plot by using a rind penetrometer. The mutations had no effect on stalk rot disease severity in either sorghum or maize though stalks strength was markedly affected by the mutations in both species. While maize bm entries broke easily in response to mild mechanical stress, bmr sorghums did not exhibit sign of stalk collapse in all backgrounds. The result suggests that the bmr genes in both maize and sorghum can be deployed without incurring losses to stalk rot disease.  相似文献   

9.
Harvesting products from plants for conversion into renewable resources is increasing in importance. Determination of nutrition requirements for the applicable crops is necessary, especially in regions where the biofuel feedstock crops have not been historically grown. Sunflower (Helianthus annuus L.), two hybrids and one variety; sweet and grain (milo) sorghums (both Sorghum bicolor L.), one variety each, and sweet corn (Zea mays var. rugosa Bonaf.), four cultivars, were provided the recommended and twice the recommended rate of fertilizer. Biomass, expressed liquid volumes and sugar contents of sweet sorghum and sweet corn were determined. Grain yields of milo and sunflower and oil content of sunflower were determined. Sweet corn stalk sugar levels were below what is expected from field corn (maize), and were not affected by fertilizer rate. Sweet sorghum biomass and sugar content were within expected ranges and not affected by fertilizer rate. Milo grain yields were higher with increased fertilizer. Seed yield in Sunflower, which was below expected levels, was inconsistently affected by fertilizer rate, years or varieties. Overall crops year and cultivar/variety had more effect on results than did fertilizer. There does not appear to be a reason to provide fertilizer above recommended rates in production of these crops.  相似文献   

10.
Sclerotinia rot caused by the fungus Sclerotinia sclerotiorum is one of the most serious and damaging diseases of oilseed rape and there is keen worldwide interest to identify Brassica genotypes with resistance to this pathogen. Complete resistance against this pathogen has not been reported in the field, with only partial resistance being observed in some Brassica genotypes. Introgression lines were developed following hybridization of three wild crucifers (viz. Erucastrum cardaminoides, Diplotaxis tenuisiliqua and E. abyssinicum) with B. napus or B. juncea. Their resistance responses were characterized by using a stem inoculation test. Seed of 54 lines of B. napus and B. juncea obtained from Australia, India and China through an Australian Centre for International Agricultural Research (ACIAR) collaboration programme were used as susceptible check comparisons. Introgression lines derived from E. cardaminoides, D. tenuisiliqua and E. abyssinicum had much higher levels (P < 0.001) of resistance compared with the ACIAR germplasm. Median values of stem lesion length of introgression lines derived from the wild species were 1.2, 1.7 and 2.0 cm, respectively, as compared with the ACIAR germplasm where the median value for stem lesion length was 8.7 cm. This is the first report of high levels of resistance against S. sclerotiorum in introgression lines derived from E. cardaminoides, D. tenuisiliqua and E. abyssinicum. The novel sources of resistance identified in this study are a highly valuable resource that can be used in oilseed Brassica breeding programmes to enhance resistance in future B. napus and B. juncea cultivars against Sclerotinia stem rot.  相似文献   

11.
The efficacy of agrochemical treatments, based on three different fungicides combined with an insecticide, was tested in southern Italy for two years on three maize hybrids to control Fusarium ear rot of maize and the accumulation in the maize kernels of the carcinogenic mycotoxins fumonisins. Insect damage incidence and severity, disease incidence and severity, identification of Fusarium species and levels of fumonisin contamination in kernels were determined. Field trials showed in both years that natural colonization of maize kernels by the fumonisin producing species Fusarium proliferatum and F. verticillioides (up to 81.5 and 26.5%, respectively) and total fumonisin contamination (up to 68.2 μg g−1) were highly severe. For all hybrids and in both years, the treatment with the insecticide applied alone reduced the insect damage severity consistently and the content of fumonisins in the kernel only in half of the cases, whereas fungicide treatments applied in combination with the insecticide showed a further significant reduction of fumonisin contamination in the three hybrids and in both years.  相似文献   

12.
The fungus Fusarium guttiforme (Syn. F. subglutinans f. sp. ananas) is responsible for fusariosis, one of the main phytosanitary threats to pineapple (Ananas comosus var. comosus). A structural study comparing epidermal differences in pineapple cultivars resistant and susceptible to fusariosis was performed, relating properties of the epidermis to known susceptibility to the disease. The basal, non-chlorophylled, portions of mature leaves of pineapple plants were analyzed by light and electron microscopy. All cultivars showed common morpho-anatomic aspects characteristic of Bromeliaceae, such as scutiform scales and unstratified epidermis. However, cultivar Vitoria (resistant) had less scales than cultivars Smooth Cayenne (susceptible, intermediate severity) and Perola (susceptible, with extreme severity of fusariosis symptoms). Inoculation of conidia suspension (105 conidia ml−1) of the fungus F. guttiforme to leaves and harvesting 24 h later yielded numbers of viable colonies related to the density of leaf scales. This suggests that scales can act as havens for fungal conidia and favour the epiphytic stage of the fungus on pineapple plants, and are involved in the interaction of plant and pathogen. A reduction in scale numbers was related to lower infection levels and is relevant to the future breeding programme for development of new pineapple cultivars resistant to fusariosis and their involvement in integrated control strategies.  相似文献   

13.
The systemic insecticides aldicarb 15G (15% granules) at 2·6 kg active ingredient (a.i.)/ha and phorate 1OG (10% granules) at 1·7 kg a.i./ha, applied as side dressings about 1 month after planting in 1979 and 1980, significantly increased the severity of root rot, caused by Rhizoctonia solani Kühn, in sugar beet (Beta vulgaris L.). Carbofuran 10G (10% granules) at 2·2 kg a.i./ha also increased root rot, but not significantly. Numbers of harvestable roots were reduced by all treatments but significantly by phorate only. Both aldicarb and phorate were slightly fungistatic to R. solani when the pathogen was grown on potato-dextrose agar incorporating 0·5, 5·0, and 25 μg a.i./ml. Trichoderma sp., a potential antagonist of Rhizoctonia, was slightly inhibited by aldicarb and phorate initially, but soon overcame the effect. Thus, the increase in disease severity in the field may be attributable to some metabolic or physiological effect of the chemicals either on the host or on the infection process of the pathogen. Indiscriminate use of these insecticides should therefore be avoided in areas where root rot is prevalent but where insects are not a problem.  相似文献   

14.
White rust (Albugo candida) is a highly destructive disease of oilseed Brassicas such as Brassica juncea and B. rapa, and has caused serious yield losses in Australia, China and India on both species. The first commercial B. juncea varieties are now being deployed in Australia, but their response to Australian strains of A. candida is yet to be defined under Australian field conditions. To identify useful sources of host resistance for Australia, China and India, in B. juncea, three field trials were undertaken in Western Australia. Forty-four B. juncea genotypes, viz. 22 from India, 12 from Australia and 10 from China, were tested. Varying levels of host resistance to Australian strains of A. candida (race 2) were identified among the genotypes from the three countries. Genotypes CBJ-001, CBJ-003 and CBJ-004 from China consistently showed high levels of resistance to A. candida on leaves across the three trials. Overall, the genotypes from China showed the best resistance, followed by the genotypes from Australia, with those from India being the most susceptible. The most susceptible genotypes were RL1359, RH30 and Seetha from India. It is noteworthy that both the incidence and severity of disease reflected varying levels of host resistance in the germplasm from the three countries, irrespective of whether screening was undertaken in the field using natural or artificial inoculation. Differentiation of resistance among these genotypes was similar to that we reported previously for artificially-inoculated seedlings or adult plants under glasshouse conditions, indicating that a choice of options is available to plant breeders to reliably differentiate host resistance among genotypes to white rust in B. juncea.  相似文献   

15.
Striga hermonthica (Delile) Benth., stemborers, and declining soil fertility are serious threats to sustainable food production in the Lake Victoria zone of Kenya. To address these constraints, promising integrated crop management technologies were evaluated, using a multi-locational design in four sub-locations in Siaya and Vihiga district (western Kenya) for six cropping seasons. Technologies evaluated consisted of the traditional maize (Zea mays L.) – bean (Phaseolus vulgaris L.) intercrop, maize – Desmodium (Desmodium uncinatum (Jacq.) DC.) push–pull intercrop, Crotalaria (Crotalaria ochroleuca G. Don) – maize rotation, and soybean (Glycine max (L.) Merr) – maize rotation. Within each of these systems, imazapyr-coated herbicide-resistant maize (IR-maize) and fertilizer were super-imposed as sub-plot factors. The push–pull system was observed to significantly reduce Striga emergence and stemborer damage from the second season onwards. IR-maize reduced and delayed Striga emergence from the first cropping season. Differences in Striga emergence and stemborer damage between the other systems were not significantly different. After five cropping seasons, the Striga seedbank was significantly higher in the maize-bean intercrop system than in the push–pull system under both maize varieties while the rotational systems had intermediate values not different from the day zero values. Under IR-maize, the Striga seedbank was significantly lower than under local maize for all cropping systems. Maize yields varied between seasons, districts, and cropping systems. Yields in the push–pull system were higher than in the maize-bean intercrop after two seasons and in the absence of mid-season drought stress. Both maize and soybean responded significantly to fertilizer application for both districts and for most seasons. The various interventions did not substantially affect various soil fertility-related parameters after five seasons. In the short term, IR-maize integrated in a push–pull system is the most promising option to reduce Striga while the rotational systems may need a longer timeframe to reduce the Striga seedbank. Finally, farmer-led evaluation of the various technologies will determine which of those is really most acceptable under the prevailing farming conditions.  相似文献   

16.
Two tillage practices, chisel plowing (30 cm) and deep moldboard plowing (22 cm), and five rotation crops (oats, lupine, buckwheat, broccoli and peas) were studied for their effects on the soil population ofRhizoctonia solani AG-3 and on Rhizoctonia disease on potato. All rotation crops were harvested except buckwheat, which was treated as a green manure crop. Chisel plowing significantly reduced (p = 0.05) the incidence and severity of stem lesions on potato caused byR. solani AG-3. In 1990, oats after moldboard plowing significantly increased disease when compared to other crops and broccoli after chisel plowing decreased disease severity. Soil populations ofR. solani AG-3 were significantly lower with chisel plowing. No interactions between tillage and rotation crops were observed. Rhizoctonia solani Kühn is a soil inhabiting plant pathogen found worldwide that affects many plant species including white potato (Solanum tuberosum L.).R. solani attacks potato at one or more stages in development resulting in distinct disease symptoms (25) often termed the Rhizoctonia disease complex of potato. In Maine, only strains AG-3 and AG-5 ofR. solani (4, 5) have been identified as attacking potato and causing four distinct types of symptoms: 1) black scurf (sclerotia) on tubers, 2) stem cankers, 3) aerial tubers and top rosetting, and 4) killing of sprouts. Crop rotation has been reported to reduce the incidence and severity ofR. solani on potato, but no single rotation method controls completely or to a high degree of reliability (11, 23, 24, 26). Deep moldboard plowing has been shown to reduce diseases caused byR. solani andSclerotium rolfsii Sacc. in crops other than potatoes (2, 7, 15, 19, 20). However, Gudmestadet al. (6) reported that deep moldboard plowing increased the severity ofR. solani on stems and stolons of potatoes. The reduction of diseases caused byR. solani andS. rolfsii by moldboard plowing is attributed to low inoculum densities in the upper soil layer by the burial of sclerotia to depths where germination and infection were prevented (14, 15, 19, 20). However, disking to a depth of 5–7 cm did not affect disease as the inoculum remained in the root zone (14, 15). Gurkin (7) states that the rationale for deep moldboard plowing is to promote decay of organic matter, remove organic matter from the infection court and to bury the sclerotia below the infection court. Cultural control techniques are largely preventive and are designed to reduce the quantity or the activity of inoculum by means of crop rotation, tillage practices, green manure crops, etc. (22). This study was conducted to determine individual effects and possible interactions of deep moldboard plowing versus chisel plowing in various rotation crops on the presence ofR. solani AG-3 in the soil and on the incidence of Rhizoctonia disease complex of potato.  相似文献   

17.
Root lodging is an important adversity affecting sunflower (Helianthus annuus L.) production in Argentina under current husbandry practices, and may limit progress towards the achievement of higher yields via increased plant population density. Although there are perceptions that lodging susceptibility varies across developmental stages, crop population densities, genotypes and soil types, these perceptions have not been tested for sunflower using a standardized experimental protocol. This study aimed at: (1) identifying the sources of the variation in root lodging susceptibility in response to variations in crop population density in two genotypes of reputedly different susceptibility; (2) detecting the crop developmental stages most susceptible to root lodging; and (3) examining the relationships between root failure moment, root plate diameter and soil shear strength. We mechanically induced lodging at three developmental stages in plants rooted in pre-wetted plots. The crops were grown at 5.6 plants m−2 over 3 years on either Typic Argiudoll or Typic Hapludoll soils and at 3, 5.6, 10 and 16 plants m−2 on a Typic Argiudoll. The force needed to induce root lodging (root failure moment) and root plate diameter varied across genotypes, plant densities and developmental stages. Root failure moment and root plate diameters were greater (p < 0.05 for both variables) in the resistant hybrid across the three development stages and almost all crop population densities. For both hybrids, the most susceptible development stage was R2, and root failure moment and root plate diameter diminished (p < 0.05) as crop population density increased. Although root failure moment did not differ between soil types, root plate diameter was greater (p < 0.0001) in the coarser soil. The relationship between root failure moment and the product of root plate diameter cubed by soil shear strength (a measure of plant anchorage strength) for both hybrids, both soil types, and all crop population densities could be described by a single linear relationship (y = 0.2382x; R2 = 0.812; p < 0.025).  相似文献   

18.
近年由青霉Penicillium spp.引起的穗腐病逐年加重。抗病玉米品种的选育和利用是控制穗腐病的经济、安全和有效措施。本研究开展玉米抗青霉穗腐病的接种鉴定,连续3年(2020-2022)在不同环境下比较分析花丝喷雾法、花丝通道注射法、子粒注射法、牙签法等接种方法对玉米青霉穗腐病抗性鉴定的效果。结果表明,子粒注射法、牙签法发病强度适中,能够使得不同品种在人工接种后表现出不同水平的抗性反应,较适合用于玉米抗青霉穗腐病鉴定接种,接种后发病稳定、抗感差异明显、鉴定结果准确。2021-2022年接种鉴定的玉米新品种中,对青霉穗腐病表现高抗、抗性、中抗、感病和高感的品种分别占7.8%、24.1%、28.6%、24.5%、15.0%。  相似文献   

19.
In a 2-year assessment carried out on tomato crops of Central and Southern Italy, a high incidence of Rhizoctonia solani and Sclerotium rolfsii was found. These fungal pathogens attack horticultural crops and are responsible for severe crown and stem rot. Because of technical, economical and environmental issues their chemical control is an arduous task. To find alternative and eco-compatible control methods, the effectiveness of two new antagonistic bacterial isolates (Burkholderia cepacia, T1A-2B, and Pseudomonas sp., T4B-2A), previously selected from suppressive organic amendments, were tested on tomato plants grown under both growth chamber and field conditions. The potential antagonists were compared with two commercial biofungicides, based on Bacillus subtilis (BSF4) and Trichoderma asperellum (TV1), and four synthetic fungicides (tolclofos-methyl, azoxystrobin, fosetyl-Al and fosetyl-Al + propamocarb). In 2-year field experiments carried out on tomato plants, the biocontrol bacteria as well as the other treatments were applied to the soil, proximal to the plant crowns and main roots, by means of an effective and specific system of drip irrigation. In all the experiments the novel selected biocontrol bacteria significantly reduced both incidence and severity of the diseases caused by S. rolfsii or R. solani, with results demonstrating effectiveness equal to TV1, better than BSF4 and comparable with the synthetic fungicides, except for tolclofos-methyl which was the most effective treatment. In field experiments, carried out for two consecutive years, isolate T1A-2B reduced up to 58.33% and up to 63.8% the severity of the diseases caused by S. rolfsii and R. solani respectively; whereas isolate T4B-2A gave reduction of S. rolfsii and R. solani diseases severity up to 73.2% and up to 62.7%, respectively.  相似文献   

20.
Phytophthora fruit rot of watermelon, caused by Phytophthora capsici, is an important and emerging disease in Southeastern U.S.A. The effects of two cultural practices (raised bare ground and raised plastic mulched beds) used for growing watermelon and different fungicide treatments on development of Phytophthora fruit rot were evaluated. The experiments were conducted over three years (2005-2008) at research stations in North Carolina and South Carolina, U.S.A. Fungicides were applied at weekly intervals on the diploid cv. Mickey Lee for an average of five applications. Fruit rot incidence was recorded at the end of each experiment. Fruit rot incidence in the non-treated plots was 66% across two states and six trials. Overall, the levels of fruit rot on the raised bare ground and raised plastic mulched beds were not significantly different. Based on percent disease reduction relative to the non-treated check plots, the fungicide Captan was the most effective across years and locations (range = 23-70%, mean = 57%), followed by mandipropamid (25-65%, mean = 50%), fluopicolide (24-65%, mean = 43%) and cyazofamid (0-48%, mean = 31%). Mefenoxam, the current standard treatment reduced fruit rot by 8-28% (mean = 18%). The addition of copper hydroxide to the spray mix did not significantly enhance effectiveness of Captan or mandipropamid. The variability in fungicide efficacy observed in these experiments across locations and years demonstrates the importance of environmental conditions in disease development and management. Even when the most effective fungicides are used, heavy losses may occur when conditions are highly favorable for disease development. Ultimately, effective control of Phytophthora fruit rot of watermelon will require an integrated management strategy that includes well-drained fields, water management and crop rotation in addition to fungicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号