首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Congenital myasthenic syndromes (CMSs) are a group of inherited disorders of neuromuscular transmission characterized by fatigable muscle weakness. One major subgroup of patients shows a characteristic "limb girdle" pattern of muscle weakness, in which the muscles have small, simplified neuromuscular junctions but normal acetylcholine receptor and acetylcholinesterase function. We showed that recessive inheritance of mutations in Dok-7, which result in a defective structure of the neuromuscular junction, is a cause of CMS with proximal muscle weakness.  相似文献   

2.
Peptide neurotoxins from fish-hunting cone snails   总被引:39,自引:0,他引:39  
To paralyze their more agile prey, the venomous fish-hunting cone snails (Conus) have developed a potent biochemical strategy. They produce several classes of toxic peptides (conotoxins) that attack a series of successive physiological targets in the neuromuscular system of the fish. The peptides include presynaptic omega-conotoxins that prevent the voltage-activated entry of calcium into the nerve terminal and release of acetylcholine, postsynaptic alpha-conotoxins that inhibit the acetylcholine receptor, and muscle sodium channel inhibitors, the mu-conotoxins, which directly abolish muscle action potentials. These distinct peptide toxins share several common features: they are relatively small (13 to 29 amino acids), are highly cross-linked by disulfide bonds, and strongly basic. The fact that they inhibit sequential steps in neuromuscular transmission suggests that their action is synergistic rather than additive. Five new omega-conotoxins that block presynaptic calcium channels are described. They vary in their activity against different vertebrate classes, and also in their actions against different synapses from the same animal. There are susceptible forms of the target molecule in peripheral synapses of fish and amphibians, but those of mice are resistant. However, the mammalian central nervous system is clearly affected, and these toxins are thus of potential significance for investigating the presynaptic calcium channels.  相似文献   

3.
Neurotransmitter release is well known to occur at specialized synaptic regions that include presynaptic active zones and postsynaptic densities. At cholinergic synapses in the chick ciliary ganglion, however, membrane formations and physiological measurements suggest that release distant from postsynaptic densities can activate the predominantly extrasynaptic alpha7 nicotinic receptor subtype. We explored such ectopic neurotransmission with a novel model synapse that combines Monte Carlo simulations with high-resolution serial electron microscopic tomography. Simulated synaptic activity is consistent with experimental recordings of miniature excitatory postsynaptic currents only when ectopic transmission is included in the model, broadening the possibilities for mechanisms of neuronal communication.  相似文献   

4.
The molecular pathways involved in retrograde signal transduction at synapses and the function of retrograde communication are poorly understood. Here, we demonstrate that postsynaptic calcium 2+ ion (Ca2+) influx through glutamate receptors and subsequent postsynaptic vesicle fusion trigger a robust induction of presynaptic miniature release after high-frequency stimulation at Drosophila neuromuscular junctions. An isoform of the synaptotagmin family, synaptotagmin 4 (Syt 4), serves as a postsynaptic Ca2+ sensor to release retrograde signals that stimulate enhanced presynaptic function through activation of the cyclic adenosine monophosphate (cAMP)-cAMP-dependent protein kinase pathway. Postsynaptic Ca2+ influx also stimulates local synaptic differentiation and growth through Syt 4-mediated retrograde signals in a synapse-specific manner.  相似文献   

5.
Wan J  Poo M 《Science (New York, N.Y.)》1999,285(5434):1725-1728
Electrical activity plays a critical role in shaping the structure and function of synaptic connections in the nervous system. In Xenopus nerve-muscle cultures, a brief burst of action potentials in the presynaptic neuron induced a persistent potentiation of neuromuscular synapses that exhibit immature synaptic functions. Induction of potentiation required an elevation of postsynaptic Ca2+ and expression of potentiation appeared to involve an increased probability of transmitter secretion from the presynaptic nerve terminal. Thus, activity-dependent persistent synaptic enhancement may reflect properties characteristic of immature synaptic connections, and bursting activity in developing spinal neurons may promote functional maturation of the neuromuscular synapse.  相似文献   

6.
The normal function of neural networks depends on a delicate balance between excitatory and inhibitory synaptic inputs. Synapse formation is thought to be regulated by bidirectional signaling between pre- and postsynaptic cells. We demonstrate that members of the Neuroligin family promote postsynaptic differentiation in cultured rat hippocampal neurons. Down-regulation of neuroligin isoform expression by RNA interference results in a loss of excitatory and inhibitory synapses. Electrophysiological analysis revealed a predominant reduction of inhibitory synaptic function. Thus, neuroligins control the formation and functional balance of excitatory and inhibitory synapses in hippocampal neurons.  相似文献   

7.
The food dye erythrosine (Erythrosin B; FD & C No. 3) was applied to isolated neuromuscular synapses in the frog, and its effects on the spontaneous quantal release of acetylcholine were examined with electrophysiological techniques. At concentrations of 10 muM or greater this anionic dye produced an irreversible, dose-dependent increase in neurotransmitter release. This increase did not depend on the presence of calcium ions in the bathing medium. These increase did not depend on the presence of calcium ions in the bathing medium. These results suggest that erythrosine might prove a useful pharmacological tool for studying the process of transmitter release, but that its use as a food additive should be reexamined.  相似文献   

8.
9.
Autoimmune response to acetylcholine receptor   总被引:73,自引:0,他引:73  
Injection of rabbits with acetylcholine receptor highly purified from the electric organ of Electrophorus electricus emulsified in complete Freund's adjuvant resulted in the production of precipitating antibody to acetylcholine receptor. After the second injection of antigen, the animals developed the flaccid paralysis and abnormal electromyographs characteristic of neuromuscular blockade. Treatment with the anticholinesterases edrophonium or neostigmine dramatically alleviated the paralysis and the fatigue seen in electromyography.  相似文献   

10.
Signal-processing machines at the postsynaptic density   总被引:1,自引:0,他引:1  
Dendrites of individual neurons in the vertebrate central nervous system are contacted by thousands of synaptic terminals relaying information about the environment. The postsynaptic membrane at each synaptic terminal is the first place where information is processed as it converges on the dendrite. At the postsynaptic membrane of excitatory synapses, neurotransmitter receptors are attached to large protein "signaling machines" that delicately regulate the strength of synaptic transmission. These machines are visible in the electron microscope and are called the postsynaptic density. By changing synaptic strength in response to neural activity, the postsynaptic density contributes to information processing and the formation of memories.  相似文献   

11.
The cholinergic synapse and the site of memory   总被引:19,自引:0,他引:19  
A simple hypothesis can explain the results obtained to date if we disregard those results when we wait 30 minutes after original learning to inject. The hypothesis is that, as a result of learning, the postsynaptic endings at a specific set of synapses become more sensitive to transmitter. This sensitivity increases with time after initial learning and then declines. The rate at which such sensitivity increases depends on the amount of initial learning. If the curve of transmission plotted against time is displaced upward with anticholinesterases then the very low portions will show facilitation, and the high portions will cause block (Fig. 8). The middle portions will appear unaffected (unless special experimental tests are made). If the curve of transmission is displaced down with anticholinergics, then the middle portion will appear unaffected and only the very early or late components will show block. The results are evidence that synaptic conductance is altered as a result of learning. So far it seems (i) that cholinergic synapses are modified as a result of learning and that it probably is the postsynaptic membrane that becomes increasingly more sensitive to acetylcholine with time after learning, up to a certain point. (ii) After this point, sensitivity declines, leading to the phenomenon of forgetting. (iii) There is also good evidence that there is an initial phase of declining sensitivity to cholinesterase or increasing sensitivity to anticholinergics. This could reflect the existence of a parallel set of synapses with fast decay that serve as a shortterm store. (iv) Increasing the amount of learning leads to an increase in conductance in each of a set of synapses without an increase in their number. (v) Both original learning and extinction are subserved by cholinergic synapses.  相似文献   

12.
Acetylcholine noise: analysis after chemical modification of receptor   总被引:1,自引:0,他引:1  
The elementary voltage pulses ("shot effects") produced by the action of acetylcholine molecules on the receptor were studied by analyzing the membrane voltage fluctuations ("noise") after acetylcholine application at the frog neuromuscular junction. The amplitude of these pulses was decreased after treatment with a disulfide-bond reducing agent. The shot effect may thus depend on the structure or conformation of the receptor molecule.  相似文献   

13.
The site of induction of long-term potentiation (LTP) at mossy fiber-CA3 synapses in the hippocampus is unresolved, with data supporting both pre- and postsynaptic mechanisms. Here we report that mossy fiber LTP was reduced by perfusion of postsynaptic neurons with peptides and antibodies that interfere with binding of EphB receptor tyrosine kinases (EphRs) to the PDZ protein GRIP. Mossy fiber LTP was also reduced by extracellular application of soluble forms of B-ephrins, which are normally membrane-anchored presynaptic ligands for the EphB receptors. The application of soluble ligands for presynaptic ephrins increased basal excitatory transmission and occluded both tetanus and forskolin-induced synaptic potentiation. These findings suggest that PDZ interactions in the postsynaptic neuron and trans-synaptic interactions between postsynaptic EphB receptors and presynaptic B-ephrins are necessary for the induction of mossy fiber LTP.  相似文献   

14.
Reelin is an extracellular protein that is crucial for layer formation in the embryonic brain. Here, we demonstrate that Reelin functions postnatally to regulate the development of the neuromuscular junction. Reelin is required for motor end-plate maturation and proper nerve-muscle connectivity, and it directly promotes synapse elimination. Unlike layer formation, neuromuscular junction development requires a function of Reelin that is not mediated by Disabled1 or very-low-density lipoprotein receptors and apolipoprotein E receptor 2 receptors but by a distinct mechanism involving its protease activity.  相似文献   

15.
Brief stimulation of cholinergic preganglionic nerve fibers resulted in an increase in guanosine 3',5'-monophosphate (cyclic GMP) in the bullfrog sympathetic ganglion. When the release of synaptic transmitter was prevented by a high-magnesium, low-calcium Ringer solution, stimulation of preganglionic nerve fibers did not increase cyclic GMP in the ganglion. The increase in cyclic GMP caused by preganglionic stimulation was also blocked by the muscarinic antagonist, atropine. The data indicate that the increase in cyclic GMP is associated with synaptic transmission and support the possibility that cyclic GMP may mediate the postsynaptic action of acetylcholine at muscarinic cholinergic synapses.  相似文献   

16.
Synapse formation and stabilization in the vertebrate central nervous system is a dynamic process, requiring bi-directional communication between pre- and postsynaptic partners. Numerous mechanisms coordinate where and when synapses are made in the developing brain. This review discusses cellular and activity-dependent mechanisms that control the development of synaptic connectivity.  相似文献   

17.
The tonic flexor muscles of the crayfish abdomen respond with a large depolarizing potential to acetylcholine iontophoresed onto a neuromuscular Junction, but not to glutamate. Excitatory junctional potentials are abolished by d-tubocurarine and enhanced by a cholinesterase inhibitor. The membrane is depolarized and the junctional potentials are desensitized by excess acetylcholine. Thus acetylcholine is thought to be the neuromuscular transmitter.  相似文献   

18.
Sensory stimuli reach the brain via the thalamocortical projection, a group of axons thought to be among the most powerful in the neocortex. Surprisingly, these axons account for only approximately 15% of synapses onto cortical neurons. The thalamocortical pathway might thus achieve its effectiveness via high-efficacy thalamocortical synapses or via amplification within cortical layer 4. In rat somatosensory cortex, we measured in vivo the excitatory postsynaptic potential evoked by a single synaptic connection and found that thalamocortical synapses have low efficacy. Convergent inputs, however, are both numerous and synchronous, and intracortical amplification is not required. Our results suggest a mechanism of cortical activation by which thalamic input alone can drive cortex.  相似文献   

19.
Pak DT  Sheng M 《Science (New York, N.Y.)》2003,302(5649):1368-1373
Synaptic plasticity involves the reorganization of synapses at the protein and the morphological levels. Here, we report activity-dependent remodeling of synapses by serum-inducible kinase (SNK). SNK was induced in hippocampal neurons by synaptic activity and was targeted to dendritic spines. SNK bound to and phosphorylated spine-associated Rap guanosine triphosphatase activating protein (SPAR), a postsynaptic actin regulatory protein, leading to degradation of SPAR. Induction of SNK in hippocampal neurons eliminated SPAR protein, depleted postsynaptic density-95 and Bassoon clusters, and caused loss of mature dendritic spines. These results implicate SNK as a mediator of activity-dependent change in the molecular composition and morphology of synapses.  相似文献   

20.
Neuromuscular junction in myasthenia gravis: decreased acetylcholine receptors   总被引:41,自引:0,他引:41  
The number of acetylcholine receptors was determined in the neuromuscular junctions of eight patients with typical myasthenia gravis and in five controls, by means of (125)1-labeled alpha-bungarotoxin binding. The junctional acetylcholine receptors were reduced in the myasthenic muscles as compared with the controls. This reduction in receptors may account for the defect in neuromuscular transmission in myasthenia gravis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号