首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
小麦植株感染条锈病后叶片花青素含量会发生明显变化。为了在地块尺度上利用冬小麦花青素值实现条锈病害的直观、快速监测,通过监测叶片花青素含量评估小麦条锈病严重程度,2021年获取感染条锈病的小麦田块的无人机RGB影像和采集地面病害区域的花青素含量数据,利用影像提取采样点感兴趣区的光谱特征参数和基于灰度共生矩阵的纹理特征参数,采用连续投影算法(SPA)结合相关性分析优选特征参数,分别采用单一光谱特征参数和组合参数,结合主成分回归(PCR)、拉索回归(LR)、随机森林回归(RFR)、梯度提升回归(GBR)和误差反向传播神经网络(BPNN)等方法构建了小麦花青素含量估算模型,并利用最优模型反演了田块的花青素含量。结果表明,图像光谱特征结合纹理特征后,花青素估算模型的R2增大,RMSE减小,模型精度显著提升。基于组合特征参数构建的随机森林模型精度最高,验证集R2、RMSE和MAE分别为0.801、0.026、0.021。该模型具有良好的花青素含量估算能力,得到的花青素值分布图与条锈病的空间分布具有一致性,能够定量化、可视化地反映病害严重程度。  相似文献   

2.
郭涛  颜安  耿洪伟 《麦类作物学报》2020,40(9):1129-1140
为快速、准确地估测不同生育时期小麦品种(系)株高与叶面积指数(LAI)表型性状,基于各生育时期小麦品种(系)数字正射影像(digital orthophoto map,DOM)和数字表面模型(digital surface model,DSM),分别构建不同生育时期株高估测模型和光谱指数LAI估测模型。借助一元线性回归、多元逐步回归(SMLR)和偏最小二乘回归(PLSR)分析方法,并采用决定系数(r)、均方根误差(RMSE)和归一化均方根误差(nRMSE)综合性评价指标,筛选出小麦不同生育时期最优的株高和LAI估测模型。结果表明,(1)全生育期株高估测效果最好,模型预测值与实测值高度拟合(r、RMSE、nRMSE分别为0.87、5.90 cm、9.29%);在各生育时期中,灌浆期模型预测精度较好,成熟期预测精度最差,r分别为0.79和0.69。(2)所选的18种光谱指数与LAI相关性均较好,其中BGRI、RGBVI、NRI和NGRDI的相关系数达到极显著水平,且各时期三种回归估测模型均表现出较高的稳定性和拟合效果,其中SMLR回归模型对各生育时期LAI预测精度最好,其拔节期、孕穗期、扬花期、灌浆期和成熟期的预测集r分别为0.68、0.57、0.61、0.68和0.53。这说明,基于无人机获取的不同生育时期小麦DSM影像提取株高,并运用18种光谱指数构建LAI估测模型方法是可行的。  相似文献   

3.
为提高返青期-拔节期-开花期-灌浆期不同覆盖条件下小麦冠层含水量的遥感反演精度,综合分析基于Nir-Red和Nir-Swir光谱特征空间开展作物含水量监测的优势与局限,利用垂直干旱指数(perpendicular drought index,PDI)和短波红外垂直失水指数(shortwave infrared perpendicular water stress index,SPSI)的比值形式,构建了一种基于近红外-红波段-短波红外(Nir-Red-Swir)三波段光谱特征空间的垂直植被水分指数(three-band perpendicular vegetation water index,TPVWI)。结果表明,在不同生育时期,TPVWI与小麦冠层含水量(vegetation water content,VWC)均具有显著相关关系(P<0.01),且对植被含水量的敏感性优于PDI、作物水分监测指数(plant water index,PWI)、SPSI和NDVI 4种植被指数,且在反映小区域内小麦冠层含水量的时空趋势上有较好的表征能力。对比地面实测数据,利用TPVWI建立的作物含水量估测模型的预测精度较高,r与RMSE分别为0.763和2.296%,说明利用综合Nir-Red-Swir三波段光谱空间特征的植被水分指数在监测不同覆盖条件下的作物含水量具有一定的可行性,可丰富当前作物冠层含水量遥感监测的理论方法。  相似文献   

4.
为了实现基于无人机的小麦产量快速预测,通过不同种植密度、氮肥和品种的田间试验,应用无人机航拍获取小麦生育前期(越冬前期和拔节期)的RGB图像,通过图像处理获取小麦田间颜色和纹理特征指数,并在小麦收获后测定实际产量。通过分析不同颜色和纹理特征指数与小麦产量的关系,筛选出适合小麦产量预测的颜色和纹理特征指数,建立小麦产量预测模型并进行验证。结果表明,小麦生育前期图像颜色指数与产量的相关性较好,而纹理特征指数相关性较差。对越冬前期利用单一颜色指数NDI构建的产量预测模型验证时,R为0.541,RMSE为671.26 kg·hm-2;对拔节期用单一颜色指数VARI构建的产量预测模型验证时,R为0.603,RMSE为639.78 kg·hm-2,预测结果比较理想,但不是最优。对越冬前期颜色指数NDI和纹理特征指数ENT相结合构建的产量预测模型验证时,R和RMSE分别为0.629和611.82 kg·hm-2,比单一颜色指数模型分别提升16.27%和减小8.85%;对拔节期颜色指数VARI和纹理特征指数COR相结合构建的产量预测模型验证时,R和RMSE分别为0.746和510.29 kg·hm-2,较单一颜色指数模型分别提升23.71%和减小20.24%。上述结果说明,将无人机图像颜色和纹理特征指数相结合建立的估产模型精度较高,可在小麦生育前期对产量进行有效预测。  相似文献   

5.
基于无人机多时相遥感影像的冬小麦产量估算   总被引:1,自引:0,他引:1  
为高效准确地预测小麦产量,以浙江省冬小麦为研究对象,利用四旋翼无人机精灵4多光谱相机获取冬小麦5个关键生育时期(拔节期、孕穗期、抽穗期、灌浆期、成熟期)的冠层多光谱数据,选取多光谱相机的五个特征波段计算各生育时期的72个植被指数,分别通过逐步多元线性回归(SMLR)、偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机(SVM)、随机森林(RF)构建不同生育时期的产量估算模型,最后采用决定系数(R)、均方根误差(RMSE)和相对误差(RE)对估算模型进行评价,筛选出最优估算模型。结果表明,基于随机森林建立的模型估算效果最优,SMLR、PLSR和SVM三种方法建立的模型估算效果接近。利用随机森林算法所建拔节期、孕穗期、抽穗期、灌浆期、成熟期模型的R、RMSE和RE分别为0.92、0.35、11%;0.93、0.33、10%;0.94、0.32、9%;0.92、0.36、9%;0.77、0.67、33%。模型验证时,抽穗期估算效果最好(R、RMSE和RE分别为0.91、0.35和15%),拔节期、孕穗期、灌浆期估算效果接近且有很好的估算能力,成熟期估算精度最差(R、RMSE和RE分别为0.71、0.47和13%)。由此说明,结合机器学习算法和无人机多光谱提取的植被指数可以提高小麦产量估算效果。  相似文献   

6.
为提高小麦条锈病的遥感探测精度,依据日光诱导叶绿素荧光和冠层反射光谱数据在小麦条锈病遥感探测中的优势及其与病情严重度之间的映射关系,在运用独立分量分析法对光谱数据降维的基础上,利用核学习算法分别确定冠层光谱特征和日光诱导叶绿素荧光特征反映小麦条锈病病情严重度的最优核,同时针对冠层光谱与叶绿素荧光特征组,建立基于不同特征最优核映射的多核学习支持向量机模型,并与基于特征直接拼接的模型结果进行对比。结果表明,对于冠层光谱而言,采用高斯核构建的支持向量机模型可较好估测小麦条锈病病情指数,而日光诱导叶绿素荧光指数则是采用多项式核的效果更优;采用直接拼接法融合叶绿素荧光指数和冠层光谱特征能够在一定程度上改善小麦条锈病病情指数估测精度,决定系数(r~2)最高为0.847,而单独利用冠层光谱信息或者叶绿素荧光信息时,r~2最高仅为0.802;对日光诱导叶绿素荧光和反射光谱特征分别利用其最优核进行映射构建的多核学习支持向量机模型精度最高,r~2为0.915,RMSE为0.090,优于基于特征直接拼接构建的支持向量机模型精度。  相似文献   

7.
多光谱与热红外数据融合在冬小麦产量估测中的应用   总被引:1,自引:0,他引:1  
为了解多光谱与热红外数据融合对冬小麦产量估测精度的影响,以30个黄淮麦区冬小麦品种为材料,利用三种灌溉处理(处理1、处理2和处理3灌水量分别为240、190和145 mm)下冬小麦拔节期、挑旗期、抽穗期与灌浆期的无人机多光谱和热红外动态数据,构造了多个光谱指数,以支持向量机构建冬小麦产量估测模型,并验证其精度。结果表明,植被指数与籽粒产量的相关性受溉水量影响,处理1下植被指数与籽粒产量均呈正相关,处理2下植被指数除土壤调整植被指数(SAVI)和转化叶绿素吸收反射指数(TCARI)外均与籽粒产量呈正相关,处理3下植被指数与籽粒产量均呈负相关。通过多光谱和热红外数据融合构建的冬小麦产量估测模型的预测精度比仅使用多光谱数据构建的模型提高8%。不同灌溉条件下,通过多光谱与热红外数据融合构建的模型的预测精度存在差异,在处理1、处理2和处理3下拔节期、挑旗期、抽穗期和灌浆期验证决定系数(R)最高值分别为0.63、0.68和0.56,均方根误差(RMSE)最低值分别为0.60、0.24和0.41 t·hm-2,且在三种灌溉条件下灌浆期预测效果均最佳。因此,利用无人机光谱对小麦品种产量估测时应将多光谱与热红外数据融合,用支持向量机(SVM)算法构建产量估测模型,且模型在灌浆期具有较高预测  精度。  相似文献   

8.
基于高光谱的倒伏冬小麦产量预测模型研究   总被引:1,自引:0,他引:1  
为利用高光谱遥感技术对倒伏小麦产量进行准确、快速地估算,选取在乳熟期发生不同程度倒伏的两个春性冬小麦品种为材料,利用光谱仪测定了不同倒伏级别下小麦冠层光谱反射率,研究植被指数与产量及其构成因素间的相关性,最终建立快速、有效估测倒伏小麦产量的数学模型。结果表明,不同级别倒伏对小麦千粒重和产量的影响均达显著水平(P<0.05),随倒伏级别的增加,千粒重和产量均呈降低趋势,二者最高降幅分别为10.72%和17.69%。对倒伏小麦产量与冠层光谱反射率进行相关分析,在350~690 nm波段,相关系数随波长的增加总体呈下降趋势;在690~760 nm波段,相关系数呈上升趋势,在764 nm处,相关系数绝对值达最大,为0.734。千粒重与DVI570,670的相关系数值最高,产量与DVI764,407的相关性最好,且都通过了0.01水平检验。利用植被指数-千粒重-产量构建的反演模型,可提高模型预测精度,与单因子植被指数-产量模型、多因子植被指数-产量模型相比,能更好地反演不同倒伏程度的小麦产量。  相似文献   

9.
冬小麦叶面积指数的品种差异性与高光谱估算研究   总被引:2,自引:0,他引:2  
为给小麦叶面积指数(LAI)的高光谱估算提供技术支持,基于2年大田试验,以4个河南主推品种为材料,对小麦LAI和冠层光谱变化特点、估算模型及其品种间的差异等进行了系统分析。结果表明,在生育期内不同冬小麦品种冠层光谱反射率的变化与LAI变化有差异;在相同LAI下,不同冬小麦品种的光谱曲线存在差异。利用400~900 nm范围内冠层光谱反射率的任意两波段组合的比值光谱指数(RSI)、归一化差值光谱指数(NDSI)和差值光谱指数(DSI)所建立的单品种模型以及不同品种综合模型的决定系数(r)均达到0.84以上,单品种模型的r和调整r分别较综合模型高出3.1%~4.8%和2.0%~4.2%。利用独立于建模样本以外的数据对上述模型进行检验,单品种模型预测的r较综合模型提高了0.6%~11.0%,而均方根误差降低了10.0%~37.0%。因此,在利用高光谱遥感技术估算冬小麦LAI时,可以通过建立单品种模型来提高估算精度。  相似文献   

10.
以230份玉米自交系为样本,采用旋光法与一阶导数及去一条直线的光谱预处理法,构建玉米粉样淀粉含量的近红外分析(NIRS)模型。研究标明,该模型可显著提高子粒淀粉含量预测的准确性。该模型的定标标准偏差(RMSEE)、交叉验证标准偏差(RMSECV)、外部验证标准偏差(RMSEP)、定标相关系数(Rcal2)、交叉验证相关系数(Rcv2)、外部验证相关系数(Rcv2)分别为0.609、0.722、0.738、0.909、0.864和0.854。建立的玉米粉样NIRS模型可将预测值与化学值偏差控制在1.7%内,能够准确定量分析玉米子粒淀粉含量,应用于育种材料早期筛选及群体水平粗淀粉分析。  相似文献   

11.
为探究大范围小麦秸秆覆盖度(CRC)估测方法,以冬小麦秸秆为研究对象,基于Sentinel-2遥感卫星影像光谱指数、波段和纹理特征及其不同特征组合,利用灰色关联-随机森林(GRA-RF)敏感特征提取方法,结合高斯过程(GPR)、套索(LASSO)、岭回归(RR)和偏最小二乘(PLSR)等多种机器学习算法,开展小麦CRC估算的最优模型研究。结果表明,基于GRA-RF特征优选后的机器学习模型显著改善了小麦CRC的估算精度,LASSO算法总体对小麦CRC的估测效果最佳,并且针对不同的光谱特征组合表现出差异化的结果。其中,以光谱指数、波段和纹理信息构成的组合特征集构建的CRC遥感估算模型精度最优(r2=0.65,RMSE=9.25%),以波段与纹理两者组合特征估算的CRC精度次之(r2=0.63,RMSE=9.31%),仅利用单一的光谱指数、波段或者纹理特征估算冬小麦CRC的精度均劣于组合特征的结果。这说明应用GRA-RF组合筛选方法能够有效优选秸秆覆盖度的光谱特征;相比于单一特征,光谱指数、波段、纹理信息等构成的组合特征更能有效地监测小麦秸秆覆盖度...  相似文献   

12.
为筛选可用于干旱半干旱区春小麦冠层叶绿素含量估算的高光谱植被指数,2017年通过测定春小麦关键生育时期冠层的田间高光谱与叶绿素含量,利用光谱指数波段优化算法分别计算400~1 300 nm光谱波段中不同波段两两组合的比值光谱指数(ration spectral index,RSI)、归一化光谱指数(normalized difference spectral index,NDSI)、叶绿素指数(chlorophyll index,CI)、简化光谱指数(CI/NDSI,NPDI),并将这些参数及其他17个不同高光谱植被指数分别与实测冠层叶绿素含量进行Pearson相关分析,通过变量重要性准则筛选最优光谱参数,使用偏最小二乘回归法建立冠层叶绿素含量的预测模型。结果表明:(1)RSIs、NDSIs、CIs和NPDIs与冠层叶绿素含量的相关性都优于前人研究中定义的17种高光谱植被指数,并且冠层叶绿素含量与NDSI(R_(849),R_(850))、RSI(R_(849),R_(850)),CI(R_(849),R_(850))和NPDI(R_(849),R_(850))表现出强相关性。(2)用此4个优化光谱指数分别建模时,以CI(R_(849),R_(850))、 CI(R_(539),R_(553))、 CI(R_(540),R_(553))、 CI(R_(536),R_(553))为自变量的X-3模型预测精度最高(r~2=0.74,RMSE=0.272 mg·g~(-1))。(3)结合4个优化光谱指数构建的组合模型预测精度,其r~2=0.83,RMSE=0.187 mg·g~(-1)。  相似文献   

13.
模拟多光谱卫星传感器数据的冬小麦白粉病遥感监测   总被引:1,自引:0,他引:1  
为了解利用遥感技术快速大范围监测小麦白粉病病害情况的可行性,以Landsat5TM波段响应函数为基础,将地面实测冠层高光谱数据模拟为TM多光谱数据,从而分析卫星传感器多光谱波段对病害的响应情况,并构建多光谱指数(PMSI)估测白粉病严重度。在此基础上,采用2010年星-地配套数据对PMSI估测精度进行验证。结果表明,PMSI能够较准确地反映冬小麦白粉病发生的程度,获得较理想的病情严重度反演精度(r2=0.475,RMSE=0.129)。因此采用多光谱卫星遥感影像在小麦大面积种植区域进行病害监测具有应用潜力。  相似文献   

14.
为了解连续小波转换对利用冬小麦冠层高光谱数据反演叶片含水量精度的提高效果,以河北省衡水市安平县为研究区,基于野外高光谱数据,提取、筛选其光谱特征敏感波段,应用光谱指数、连续小波变换进行光谱处理,并采用偏最小二乘法构建冬小麦叶片含水量的定量反演模型。结果表明,连续小波变换可明显凸显冬小麦冠层光谱特征,提升其对叶片含水量的敏感性。在连续小波变换下,基于1尺度构建的冬小麦叶片含水量的反演模型为最优模型,模型的决定系数(r~2)和RMSE分别为0.756和0.994%,独立样本验证时r~2和RMSE分别为0.766和1.713%,说明反演模型的拟合效果和预测精度均较高。因此,利用连续小波变换可将冠层光谱信息进行二次分配,能有效将有益信息与噪声信息进行分离,提升光谱信息对冬小麦叶片水含量的敏感性,增强冬小麦叶片水含量的预测能力与稳定性。  相似文献   

15.
区域尺度冬小麦叶绿素含量的高光谱预测和空间变异研究   总被引:3,自引:0,他引:3  
为从区域尺度探讨小麦SPAD的近地高光谱遥感监测技术,采用ASDField Spec 3.0型便携式高光谱仪获取的冬小麦冠层高光谱数据,利用相关分析和偏最小二乘法(PLSR)对SPAD进行建模预测,并采用地统计学方法进行空间变异制图。结果表明,冬小麦叶片SPAD值在不同生长阶段存在一定的差异,但在不同区域之间差异不显著。基于PLSR建立模型,并利用原始光谱和二阶导数光谱进行预测,R~2分别为0.653和0.995,均方根误差分别为2.622和0.327,相对析误差分别为1.549和13.66。综合来看,二阶导数光谱所建立的模型预测能力比原始光谱好。选择拔节期和成熟期进行区域化表达,与实测得到的SPAD空间分布图相比,采用全光谱数据和二阶导数光谱数据预测的SPAD均表现出了较高的空间相似性,其中二阶导数接近实测值。  相似文献   

16.
为探讨利用三波段植被指数(three-band index, 3BI)对春小麦叶片水分含量(leaf water content, LWC)估算的可行性,在田间尺度上,利用ASD-FieldSpec-3光谱仪测定春小麦抽穗期冠层光谱反射率,采用任意波段组合方法,分别建立两波段植被指数(two-band index, 2BI)包括比值植被指数(RVI)、归一化植被指数(NDVI)、差值植被指数(DVI)及3BI,并对单波段反射率、两波段植被指数和三波段植被指数与春小麦抽穗期LWC之间进行相关性分析,筛选稳定的光谱参数,基于人工神经网络(artificial neural network, ANN)、K近邻(K-nearest neighbors, KNN)和支持向量回归(support vector regression, SVR)等3种机器学习算法,建立有效波段组合运算的抽穗期春小麦LWC估算模型,并利用独立样本对模型精度进行检验和评价。结果表明,单波段反射率、2BI和3BI与春小麦抽穗期LWC之间的相关性均达极显著水平(P<0.01),而相关系数差异较大,绝对值分别为0.23、0.62、0.94,说明组合波段展现了光谱隐含信息,避免有效光谱信息的丢失;估算模型中,春小麦抽穗期以KNN算法和最佳3BI组合变量(3BI-5(1075, 1095, 1085)、3BI-6(1100, 400, 1097))构建的模型拟合度最高(r2=0.83),均方根误差最小(RMSE=2.14%),相对偏差百分比超出了2.0以上(RPD=2.31),说明该模型具有一定的预测能力。由此可见,通过任意波段组合,可明显提高3BI与春小麦LWC的关联度,且基于K近邻算法构建的模型具有较好的稳定性和估算能力。  相似文献   

17.
为提高冬小麦冠层光谱对叶绿素含量的估算精度,以陕西省乾县冬小麦为研究对象,利用SVC-1024i光谱仪和SPAD-502型叶绿素仪实测了冬小麦冠层反射率和叶绿素含量,分析了一阶导数光谱、10种特征参数和9种植被指数与叶绿素含量的相关性,并利用主成分分析(PCA)对叶绿素敏感的可见光波段(390~780 nm)一阶导数光谱进行降维,将特征值大于1的主分量结合特征参数和植被指数形成不同的输入变量,用偏最小二乘回归和随机森林回归构建冬小麦冠层叶绿素估算模型,并利用独立样本对模型进行验证。结果表明,小麦冠层叶绿素含量与一阶导数光谱在751 nm处的相关性最高(r=0.71),特征参数中红边蓝边归一化(SDr-SDb)/(SDr+SDb)与叶绿素含量的相关性最高(r=0.66),植被指数(VI)中修正归一化差异指数(mND705)相关性最高(r=0.74)。在输入变量相同的情况下,基于随机森林(RF)回归的预测模型均优于偏最小二乘回归(PLSR)模型,其中PCA-VI-RF模型的各精度指标均达到最优(r2=0.94,RMSE=1.05,RPD=3.70),是冬小麦冠层叶绿素...  相似文献   

18.
为探讨利用高光谱技术快速无损地监测小麦白粉病灾情的方法,通过人工田间诱发白粉病,在灌浆期对不同发病等级(病情指数)的冬小麦进行冠层高光谱测定,对原始光谱数据进行一阶微分处理,筛选最佳光谱特征参量和植被指数,构建冬小麦白粉病病情指数反演模型。结果表明,在冠层尺度,小麦白粉病"红边"位置均在730nm左右(±1nm);经验证,5种模型中三角植被指数(TVI)模型估算精度最好,r2和RMSE分别达到了0.700和0.112,与精度最低的优化土壤调节植被指数(OSAVI)模型相比,r2提高了0.071,RMSE降低了0.013。小麦白粉病"红边"蓝移现象并不明显;五种模型r2都达到了0.6以上,说明高光谱技术都能够有效地对冬小麦白粉病病情指数进行无损、快速、精确的反演,其中TVI的反演精度最佳。  相似文献   

19.
基于无人机多光谱遥感的冬小麦冠层叶绿素含量估测研究   总被引:6,自引:0,他引:6  
为探讨利用无人机多光谱影像监测冬小麦叶绿素含量的可行性,基于北京市大兴区中国水科院试验基地的2019年冬小麦无人机多光谱影像和田间实测冠层叶绿素含量数据,选取16种光谱植被指数,确定对冬小麦冠层叶绿素含量显著相关的植被指数,采用一元二次线性回归和逐步回归分析方法建立各生育时期及全生育期的SPAD值估测模型,通过精度检验确定对冬小麦冠层叶绿素含量监测的最优模型。结果表明,两种分析方法中逐步回归建模效果最佳。拔节期选取4个植被指数(MSR、CARI、NGBDI、TVI)建模效果最好,模型率定的决定系数(r~2)为0.73,模型验证的r~2、相对误差(RE)和均方根误差(RMSE)分别为0.63、2.83%、1.68;抽穗期选取3个植被指数(GNDVI、GOSAVI、CARI)建模效果最好,模型率定的r~2为0.81,模型验证的r~2、RE、RMSE分别为0.63、2.83%、1.68;灌浆期选取2个植被指数(MSR、NGBDI)建模效果最好,模型率定的r~2为0.67,模型验证的r~2、RE、RMSE分别为0.65、2.83%、1.88。因此,无人机多光谱影像结合逐步回归模型可以很好地监测冬小麦SPAD值动态变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号