首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Budge SP  Whipps JM 《Phytopathology》2001,91(2):221-227
ABSTRACT All pesticides used in United Kingdom glasshouse lettuce production (six fungicides, four insecticides, and one herbicide) were evaluated for their effects on Coniothyrium minitans mycelial growth and spore germination in vitro agar plate tests. Only the fungicides had a significant effect with all three strains of C. minitans tested, being highly sensitive to iprodione (50% effective concentration [EC(50)] 7 to 18 mug a.i. ml(-1)), moderately sensitive to thiram (EC(50) 52 to 106 mug a.i. ml(-1)), but less sensitive to the remaining fungicides (EC(50) over 200 mug a.i. ml(-1)). Subsequently, all pesticides were assessed for their effect on the ability of C. minitans applied as a solid substrate inoculum to infect sclerotia of Sclerotinia sclerotiorum in soil tray tests. Despite weekly applications of pesticides at twice their recommended concentrations, C. minitans survived in the soil and infected sclerotia equally in all pesticide-treated and untreated control soil trays. This demonstrated the importance of assessing pesticide compatibility in environmentally relevant tests. Based on these results, solid substrate inoculum of a standard and an iprodione-tolerant strain of C. minitans were applied individually to S. sclerotiorum-infested soil in a glasshouse before planting lettuce crops. The effect of a single spray application of iprodione on disease control in the C. minitans treatments was assessed. Disease caused by S. sclerotiorum was significantly reduced by C. minitans and was enhanced by a single application of iprodione, regardless of whether the biocontrol agent was iprodione-tolerant. In a second experiment, disease control achieved by a combination of C. minitans and a single application of iprodione was shown to be equivalent to that of prophylactic sprays with iprodione every 2 weeks. The fungicide did not affect the ability of C. minitans to spread into plots where only the fungicide was applied and to infect sclerotia. These results indicate that integrated control of S. sclerotiorum with soil applications of C. minitans and reduced foliar iprodione applications was feasible, did not require a fungicide tolerant isolate, and that suppression of Sclerotinia disease by C. minitans under existing chemical control regimes has credence.  相似文献   

2.
Coniothyrium minitans isolate Conio grew on both maizemeal-perlite and ground maizemeal-perlite, producing high numbers (1.6×107 conidiag–1 inoculum) of germinable conidia. Coniothyrium minitans isolate Conio applied as a preplanting soil incorporation of maizemeal-perlite inoculum at full application rate (0.6lm–2; 1011 colony forming units (cfu)m–2) significantly reduced Sclerotinia disease in a sequence of three lettuce crops grown in a glasshouse. No reduction in disease was achieved with any of the reduced rate treatments (108cfum–2) of a range of C. minitans isolates (Conio ground maizemeal-perlite at reduced rate, Conio and IVT1 spore suspensions derived from maizemeal-perlite, IVT1 spore suspension derived from oats and Contans® WG spore suspension). After harvest of the second and third crops, C. minitans maizemeal-perlite at full rate reduced the number and viability of sclerotia recovered on the soil surface and increased infection by C. minitans compared with spore suspension and reduced rate maizemeal-perlite inocula. Coniothyrium minitans was recovered from the soil throughout the trial, between 105 and 107cfucm–3 in maizemeal-perlite inoculum full rate treated plots and 101–104cfu cm–3 in all other inoculum treated plots.Pot bioassays were set up corresponding to the inoculum used in the glasshouse, with the addition of Conio ground maizemeal-perlite at a rate corresponding to the full rate maizemeal-perlite. Coniothyrium minitans maizemeal-perlite and ground maizemeal-perlite at full rate significantly decreased carpogenic germination, recovery and viability of sclerotia and increased infection of sclerotia by C. minitans in comparison with spore suspension treatments, reflecting results of the glasshouse trials. Additionally, reduced maizemeal-perlite treatment also decreased apothecial production, recovery and viability of sclerotia compared with the spore suspension treatment, despite being applied at similar rates. Simultaneous infection of sclerotia by several isolates of C. minitans was demonstrated. Inoculum level in terms of colony forming unitscm–3 of soil appears to be a key factor in both control of Sclerotinia disease and in reducing apothecial production by sclerotia.  相似文献   

3.
盾壳霉对核盘菌的拮抗作用研究   总被引:5,自引:0,他引:5  
系统研究了菌核重寄生菌盾壳霉对核盘菌的拮抗作用,结果表明:盾壳霉可在核盘菌菌落上寄生,使核盘菌菌丝消解、原生质泄露,并抑制菌核的形成;而且盾壳霉提前6d接种,其分泌的抗生物质还可抑制核盘菌菌丝生长,并产生明显抑菌带。盾壳霉孢子液喷雾处理也证明:盾壳霉分生孢子即可在核盘菌子囊盘(柄)上萌发、寄生,使子囊盘(柄)萎缩枯死,而且还可以在核盘菌菌落上萌发、寄生,消解破坏菌丝体、抑制的菌核形成。  相似文献   

4.
5.
The effects of Coniothyrium minitans inoculum quality and an 8-week interval between inoculum application and crop planting on sclerotinia ( Sclerotinia sclerotiorum ) disease in three successive lettuce crops were investigated in a glasshouse trial. Spore suspensions of three isolates of C. minitans (Conio, IVT1 and Contans) applied at 108 CFU m−2 and a standard Conio maizemeal–perlite application (06 L m−2, 1011 CFU m−2) were assessed for their ability to control S. sclerotiorum . Only the maizemeal–perlite inoculum (isolate Conio) consistently reduced sclerotinia disease. In the third lettuce crop only, isolates IVT1 and Contans formulated by Prophyta and isolate IVT as an oil–water formulation, all applied as spore suspensions, reduced disease at harvest compared with the untreated control. Recovery, viability and C. minitans infection of sclerotia buried during the 8-week period prior to each of the three lettuce crops, and of sclerotia formed on the crop, were tested. Only the maizemeal–perlite inoculum (isolate Conio) reduced the recovery of sclerotia buried in soil for weeks between inoculum application and crop planting, reducing their viability and increasing infection by C. minitans . Eight weeks was sufficient to enable C. minitans to infect sclerotia of S. sclerotiorum , and may account for disease control. After harvest of the second and third crops, maizemeal–perlite treatment (isolate Conio) reduced the number and viability of sclerotia recovered on the soil surface and increased infection by C. minitans compared with spore-suspension treatments. The effect of inoculum concentration and the influence of soil temperature (varying with time of year) on infection of sclerotia by C. minitans are discussed.  相似文献   

6.
Potential enhancement of mycoparasitic efficacy of Coniothyrium minitans and Microsphaeropsis ochracea through concomitant colonization of Sclerotinia sclerotiorum sclerotia was investigated, following observation that the two mycoparasites did not exhibit any mutual antagonism in dual culture assays. Simultaneous application of both mycoparasites increased sclerotia mortality in a temperature range from 16 to 26°C compared to single application, indicating a predominantly additive interaction. With increasing temperature the efficacy of M. ochracea decreased, but C. minitans was unaffected. Degradation of sclerotia by C. minitans proceeded slightly faster than with M. ochracea. Simultaneous colonization of sclerotia was studied at the histopathological level with mycoparasite strains transformed via Agrobacterium tumefaciens‐mediated transformation (ATMT) with reporter genes encoding for DsRed and GFP. Sclerotia colonization followed by fluorescence microscopy revealed effective penetration of the sclerotial rind, growth and formation of pycnidia in the cortex and medulla by both antagonists, resulting in complete degradation of sclerotia within 25 days after single inoculation. Upon simultaneous inoculation, both antagonists concomitantly colonized the sclerotial tissue and independently formed pycnidia in the sclerotial medulla and on the sclerotial rind, demonstrating their ability to co‐colonize the same host fungus. Although the individual growth of the two mycoparasites in dual inoculations was slightly delayed, the sclerotia degrading effects were additive, suggesting a complementary antagonistic interaction. The combined application of two different species of mycoparasites cooperating on the same host fungus and differing in temperature requirements may be advantageous for making biocontrol applications in the field less sensitive to varying environmental and host conditions.  相似文献   

7.
In two field trials with oilseed rape, Coniothyrium minitans was applied to soil as a maizemeal-perlite preparation in order to determine its effect on sclerotial survival and apothecial production of Sclerotinia selerotiorum. The mycoparasite infected sclerotia and decreased sclerotial survival, carpogenic germination and production of apothecia. Effects were greatest when inoculum of C. minitans was applied in autumn, at the time of sowing, rather than when it was applied in spring. C. minitans survived in soil for 2 years and spread to adjacent control plots and infected sclerotia within those plots. However, despite the fact that the inoculum potential of S. selerotiorum was reduced by C. minitans treatment, no disease control was obtained either in trial 1, where disease levels were low (0-20% of plant stems affected), or in trial 2, where disease levels were high (up to 70% of plant stems affected). Possible reasons for this failure of C minitans to control sclerotinia disease in oilseed rape, and strategies to improve its efficacy in the field, are discussed.  相似文献   

8.
Coniothyrium minitans, marketed as Contans, has become a standard management tool against Sclerotinia sclerotiorum in a variety of crops, including winter lettuce. However, it has been ineffective against lettuce drop caused by S. minor. The interactions between C. minitans and S minor were investigated to determine the most susceptible stage in culture to attack by C. minitans, and to determine its consistency on S minor isolates belonging to four major mycelial compatibility groups (MCGs). Four isolates of S. minor MCG 1 and 5 each from MCGs 2 and 3 and one from MCG 4 were treated in culture at purely mycelial, a few immature sclerotial, and fully mature sclerotial phases with a conidial suspension of C. minitans. Sclerotia from all treatments were harvested after 4 weeks, air dried, weighed, and plated on potato dextrose agar for recovery of C. minitans. S. minor formed the fewest sclerotia in plates that received C. minitans at the mycelial stage; C. minitans was recovered from nearly all sclerotia from this treatment and sclerotial mortality was total. However, the response of MCGs was inconsistent and variable. Field experiments to determine the efficacy of C. minitans relative to the registered fungicide, Endura, on lettuce drop incidence and soil inoculum dynamics were conducted from 2006 to 2009. All Contans treatments had significantly lower numbers of sclerotia than Endura and unsprayed control treatments, and drop incidence was as low as in Endura-treated plots (P > 0.05). Although the lower levels of lettuce drop in Contans treatments were correlated with significantly lower levels of sclerotia, the lower levels of lettuce drop, despite the presence of higher inoculum in the Endura treatment, was attributable to the prevention of infection by S. minor. A useful approach to sustained lettuce drop management is to employ Contans to lower the number of sclerotia in soil and to apply Endura to prevent S. minor infection within a cropping season.  相似文献   

9.
The effects of different inocula of the mycoparasite Coniothyrium minitans on carpogenic germination of sclerotia of Sclerotinia sclerotiorum at different times of year were assessed. A series of three glasshouse box bioassays was used to compare the effect of five spore-suspension inocula of C. minitans , including three different isolates (Conio, IVT1 and Contans), with a standard maizemeal–perlite inoculum. Apothecial production, as well as viability and C. minitans infection of S. sclerotiorum sclerotia buried in treated soil, were assessed. Maizemeal–perlite inoculum at 107 CFU per cm3 soil reduced sclerotial germination and apothecial production in all three box bioassays, decreasing sclerotial recovery and viability in the second bioassay and increasing C. minitans infection of sclerotia in the first bioassay. Spore-suspension inocula applied at a lower concentration (104 CFU per cm3 soil) were inconsistent in their effects on sclerotial germination in the three box bioassays. Temperature was an important factor influencing apothecial production. Sclerotial germination was delayed or inhibited when bioassays were made in the summer. High temperatures also inhibited infection of sclerotia by C. minitans . Coniothyrium minitans survived these high temperatures, however, and infected the sclerotia once the temperature decreased to a lower level. Inoculum level of C. minitans was an important factor in reducing apothecial production by sclerotia. The effects of temperature on both carpogenic germination of sclerotia and parasitism of sclerotia by C. minitans are discussed.  相似文献   

10.
BACKGROUND: Sclerotinia sclerotiorum (Lib.) de Bary is a major pathogen of witloof chicory. For lack of authorised field treatment, post‐harvest sprays with dicarboximide fungicides have been standard practice since the 1970s to prevent root rot and chicory heart decay during the forcing phase. However, the registration of procymidone and vinclozolin has been withdrawn in Europe. The development of organic agriculture and the necessity to reduce fungicide applications in conventional agriculture prompted an assessment of the efficacy of new fungicides and the use of the mycoparasite Coniothyrium minitans (Campbell). RESULTS: A mixture of the fungicides fludioxonil and cyprodinil (Switch®) applied on chicory roots achieved a very good control of S. sclerotiorum (up to 95%). The use of C. minitans limited root infection, both when applied in the field (50–65% efficacy) and before the forcing period (post‐harvest treatment up to 80%). CONCLUSION: In organic agriculture, two treatments with C. minitans (in field and later at the forcing period) could improve protection against S. sclerotiorum. In conventional agriculture, after the field biological treatment, a post‐harvest chemical treatment could be applied. The addition of other prophylactic methods could lead to a high level of performance in practice against decay caused by S. sclerotiorum. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
White mould disease leads to production of sclerotia, which subsequently survive in soil and may be responsible for future epidemics. The effect of the mycoparasite Coniothyrium minitans in decreasing survival of sclerotia of Sclerotinia sclerotiorum was studied. Infection of sclerotia of S. sclerotiorum by C. minitans can be achieved by a single conidium. Under optimal conditions, 2 conidia per sclerotium produced 63% of the maximum infection (ca. 90%) of sclerotia produced by up to 1000 conidia. Similar results were observed on the infection of stem pieces infected by S. sclerotiorum. In field trials, application of conidial suspensions of C. minitans to a bean crop soon after white mould outbreak led to a higher percentage of sclerotial infection than later applications. Ninety per cent infection of sclerotia was obtained within 3 weeks of application by C. minitans suspensions in the range of 5 × 105 and 5 × 106 conidia ml–1 at 1000 l ha–1. The concentration of the conidial suspensions and the isolate used were of less importance. The result was marginally affected by the germinability of the conidia (75% against 61% infected sclerotia at 91% and 16% viability of isolate IVT1, respectively). Less apothecia of S. sclerotiorum developed in soil samples collected after 2 months from plots sprayed immediately after disease outbreak than from those treated 11–18 days later. It is concluded that a suspension of 106 conidia ml–1 in 1000 l ha–1 (= 1012 conidia ha–1) sprayed immediately after the first symptoms of disease are observed, results in > 90% infection of sclerotia of S. sclerotiorum. The infection of sclerotia, which prevents their carry-over, occurs within a broad range of inoculum quality.  相似文献   

12.
The environmental factors that influence infection of lettuce by ascospores of Sclerotinia sclerotiorum , and subsequent disease development, were investigated in controlled environment and field conditions. When lettuce plants were inoculated with a suspension of ascospores in water or with dry ascospores and exposed to a range of wetness durations or relative humidities at different temperatures, all plants developed disease but there was no relationship between leaf wetness duration or humidity and percentage of diseased plants. Ascospores started to germinate on lettuce leaves after 2–4 h of continuous leaf wetness at optimum temperatures of 15–25°C. The rate of development of sclerotinia disease and the final percentage of plants affected after 50 days were greatest at 16–27°C, with disease symptoms first observed 7–9 days after inoculation, and maximum final disease levels of 96%. At lower temperatures, 8–11°C, disease was first observed 20–26 days after inoculation, with maximum final disease levels of 10%. Disease symptoms were always observed first at the stem base. In field-grown lettuce in Norfolk, 2000 and 2001, inoculated with ascospore suspensions, disease occurred only in lettuce planted in May and June, with a range of 20–49% of plants with disease by 8 weeks after inoculation. In naturally infected field-grown lettuce in Cheshire, 2000, disease occurred mainly in lettuce planted throughout May, with a maximum of 31% lettuce diseased within one planting, but subsequent plantings had little (≤ 4%) or no disease. Lack of disease in the later plantings in both Norfolk and Cheshire could not be attributed to differences in weather factors.  相似文献   

13.
Indoor and field experiments were conducted to evaluate the efficacy of applying the mycoparasite Coniothyrium minitans to the aerial parts of rapeseed plants at the flowering stage to control sclerotinia diseases caused by Sclerotinia sclerotiorum. Under controlled conditions, a petal inoculation technique was used to determine the effect of conidial suspensions of C. minitans on suppression of sclerotinia leaf blight. Results showed that C. minitans was effective in inhibiting infection initiated by ascospores of S. sclerotiorum on flower petals by restricting mycelial growth of the pathogen. Suppression of lesion development was related to the conidial concentration of C. minitans, with larger lesions at low concentration (5×103conidia ml−1), but smaller lesions at high concentration (5×104 conidia ml−1 or higher). When C. minitans-treated rapeseed leaves were inoculated with mycelia of S. sclerotiorum, C. minitans failed to prevent infection of leaves, but caused a significant reduction in number of sclerotia produced on the diseased leaves. No significant difference in efficacy was detected between the two isolates of C. minitans, LRC 2137 and Chy-1, on the two rapeseed cultivars, Westar (spring type) and Zhongyou 821 (winter type). Results of field trials showed a significant reduction of stem rot of rapeseed in four (1997, 1999, 2003 and 2004) out of five years by aerial application of C. minitans, compared with controls. No significant difference in suppressive efficacy was observed between the treatments of C. minitans (106 conidia ml−1), C. minitans (106 conidia ml−1) + benomyl (50 μg ml−1) and benomyl (100 μg ml−1) in 2003, and between the treatments of C. minitans (106 conidia ml−1), C. minitans (106 conidia ml−1) + vinclozolin (100 μg ml−1) and vinclozolin (500 μg ml−1) in 2004. Sclerotia of S. sclerotiorum collected from diseased plants in plots treated with C. minitans in 1999, 2000 and 2003, or with C. minitans + benomyl in 2003 were infected by C. minitans at frequencies ranging from 21.3 to 54.5%. This study concludes that aerial spraying of C. minitans is an effective method for controlling sclerotinia diseases of rapeseed.  相似文献   

14.
The effects of the mycoparasites Coniothyrium minitans and Trichoderma atroviride on the suppression of alfalfa blossom blight caused by Sclerotinia sclerotiorum were evaluated under indoor and field conditions. When T. atroviride (9·0 × 104 conidia/floret) + S. sclerotiorum (6·0 × 103 ascospores/floret) or C. minitans (9·0 × 104 conidia/floret) + S. sclerotiorum (6·0 × 103 ascospores/floret) were applied to detached young alfalfa florets, T. atroviride effectively inhibited saprophytic growth of S. sclerotiorum, whereas C. minitans showed no inhibition under the same conditions. When T. atroviride (6·9 × 104 conidia/floret) + S. sclerotiorum (6·0 × 103 ascospores/floret) or C. minitans (6·9 × 104 conidia/floret) + S. sclerotiorum (6·0 × 103 ascospores/floret) was applied to young alfalfa petals in vivo just after pollination, the percentage of pod formation was higher for T. atroviride+S. sclerotiorum than that for C. minitans+S. sclerotiorum, and the percentage of pod rot was lower for T. atroviride+S. sclerotiorum than that for C. minitans+S. sclerotiorum. However, when they were applied to senescent petals attached to developing pods of alfalfa at 9·2 × 104 conidia/floret together with S. sclerotiorum at 4·5 × 103 ascospores/floret at 14 days after pollination, C. minitans was more effective than T. atroviride in suppressing sclerotinia pod rot and seed rot of alfalfa. Field experiments showed that three applications of C. minitans (5·4 × 106 conidia mL−1) or T. atroviride (5·4 × 106 conidia mL−1) at a 7-day interval to blossoms of alfalfa effectively suppressed sclerotinia pod rot in two out of three annual trials. Coniothyrium minitans effectively suppressed sclerotinia seed rot in all three years, whereas T. atroviride was not effective against seed rot in any of the trial years. The efficacy of C. minitans was not significantly different (P > 0·05) from benomyl (250 µg ai mL−1). This study suggests that C. minitans has potential as a biocontrol agent to control blossom blight of alfalfa caused by S. sclerotiorum.  相似文献   

15.
利用栽培措施控制油菜菌核病的综合研究   总被引:4,自引:0,他引:4  
通过以3个甘蓝型油菜品种作为材料,采用田间自然鉴定方法,研究了不同播期和不同密度等栽培措施对控制油菜茵核病的作用.结果表明,在油菜生育期间,无任何药剂防治的条件下,品种和播期对油菜菌核病的影响均达显著水平,而密度对菌核病无明显影响,要与其他栽培条件,特别是氮肥的用量结合起来,才具有显著作用.因此,选用抗病性的品种和适当的晚播可有效控制或避开油菜菌核病的发生,合理密植可提高产量.  相似文献   

16.
Lettuce leaves co-inoculated withSclerotinia sclerotiorum andConiothyrium minitans and controls were placed on, or buried in, soil for a period of two weeks to study development and survival ofC. minitans. OnS. sclerotiorum-infected leaves on the soil surface, the number of colonies ofC. minitans recovered was about 40% of the number of pycnidiospores applied. When buried in the soil there was a reduction to about 2% of the spores applied. WhenC. minitans was applied on healthy lettuce leaves, which were subsequently placed on or in soil, the recovery was about 4%. It is argued that these figures indicate multiplication ofC. minitans onS. sclerotiorum-infected lettuce leaves on the soil, and good survival in all other cases.  相似文献   

17.
Brassica crops are of global importance, with oilseed rape (Brassica napus) accounting for 13% of edible oil production. All Brassica species are susceptible to sclerotinia stem rot caused by Sclerotinia sclerotiorum, a generalist fungal pathogen causing disease in over 400 plant species. Generally, sources of plant resistance result in partial control of the pathogen although some studies have identified wild Brassica species that are highly resistant. The related pathogen Ssubarctica has also been reported on Brassica but its aggressiveness in relation to S. sclerotiorum is unknown. In this study, detached leaf and petiole assays were used to identify new sources of resistance to S. sclerotiorum within a wild Brassica ‘C genome’ diversity set. High‐level resistance was observed in B. incana and B. cretica in petiole assays, whilst wild B. oleracea and B. incana lines were the most resistant in leaf assays. A B. bourgeai line showed both partial petiole and leaf resistance. Although there was no correlation between the two assays, resistance in the detached petiole assay was correlated with stem resistance in mature plants. When tested on commercial cultivars of B. napus, B. oleracea and B. rapa, selected isolates of S. subarctica exhibited aggressiveness comparable to S. sclerotiorum indicating it can be a significant pathogen of Brassica. This is the first study to identify B. cretica as a source of resistance to S. sclerotiorum and to report resistance in other wild Brassica species to a UK isolate, hence providing resources for breeding of resistant cultivars suitable for Europe.  相似文献   

18.
19.
重寄生真菌盾壳霉产生几丁质酶的条件优化   总被引:2,自引:0,他引:2  
本试验采用摇瓶培养的方法研究了盾壳霉产生胞外几丁质酶的条件。结果表明:培养液组分、通气状况、表面活性剂和草酸等因子对盾壳霉产生几丁质酶均有影响。改良的马铃薯蔗糖培养液(mPSB)较合成培养基SMCS更适宜作为几丁质酶产生的基础培养基,其几丁质酶产量达到616.8U/L;以mPSB为基础培养基,供试的9种碳源和7种氮源中5g/L葡萄糖和1g/L硝酸钾可使几丁质酶的产量分别达到756U/L和672U/L,较适宜几丁质酶的产生;生长曲线试验显示20℃培养15d几丁质酶产量达到高峰。另外,两种供试表面活性剂对几丁质酶的产生均有抑制作用;一定浓度的草酸溶液(0.1-3g/L)有助于盾壳霉几丁质酶的产生。  相似文献   

20.
采用适应性培养的方法获得了4个抗杀菌剂vinclozolin的盾壳霉突变体。vinclozolin对野生型盾壳霉菌株Chy-1菌丝生长和分生孢子萌发的EC50分别为1.1和140.0μg/ml;而对突变菌株SV.5.1、SV.5.2、SV.10.1和V-250-1菌丝生长的EC50分别为2219.1、2683.9、2222.8和2504.2μg/m1,对分生孢子萌发的EC50分别是710.4、866.0、931.3和609.3μg/ml。在没有杀菌剂存在的情况下,这些突变菌株的转代培养后代和感染核盘菌菌核后产生的分生孢子后代仍具有抗性。用突变菌株与野生菌株接种核盘菌菌核时,突变菌株的大多数接种处理的菌核被寄生率和菌核腐烂指数与野生菌株接种处理没有明显差异。除菌株V-250-1外,其它3个突变菌株在至少1个接种处理的菌核上产生分生孢子的能力显著高于野生菌株或无明显差异。突变菌株与野生菌株在油菜花瓣上对核盘菌子囊孢子侵染油菜叶片具有明显抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号