首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Screening of five commercially available lipases for the incorporation of capric acid (CA) into docosahexaenoic acid single cell oil (DHASCO) indicated that lipase PS-30 from Pseudomonas sp. was most effective. Of the various reaction parameters examined, namely, the mole ratio of substrates, enzyme amount, time of incubation, reaction temperature, and amount of added water, for CA incorporation into DHASCO, the optimum conditions were a mole ratio of 1:3 (DHASCO/CA) at a temperature of 45 degrees C, and a reaction time of 24 h in the presence of 4% enzyme and 2% water content. Examination of the positional distribution of fatty acids on the glycerol backbone of the modified DHASCO with CA showed that CA was present mainly in the sn-1,3 positions of the triacylglycerol (TAG) molecules. Meanwhile, DHA was favorably present in the sn-2 position, but also located in the sn-1 and sn-3 positions. The oxidative stability of the modified DHASCO in comparison with the original DHASCO, as indicated in the conjugated diene values, showed that the unmodified oil remained relatively unchanged during storage for 72 h, but DHASCO-based structured lipid was oxidized to a much higher level than the original oil. The modified oil also attained a considerably higher thiobarbituric acid reactive substances value than the original oil over the entire storage period. However, when the oil was subjected to the same process steps in the absence of any enzyme, there was no significant difference (p > 0.05) in its oxidative stability when compared with enzymatically modified DHASCO. Therefore, removal of antioxidants during the process is primarily responsible for the compromised stability of the modified oil.  相似文献   

2.
Effects of tocopherols on the oxidative stability of stripped vegetable oils were studied by adding pure tocopherols--alpha, beta, gamma, and delta--in their naturally occurring proportions in soybean and sunflower oils to the triacylglycerols (TAG) of soybean and sunflower oils. Soybean and sunflower oils were purified by stripping all minor constituents, leaving the triacylglycerols. Pure tocopherols in the proportion typical of sunflower oil--high alpha, low gamma, and low delta--were added to purified sunflower oil and to purified soybean oil. Pure tocopherols in the proportion typical of soybean oil--low alpha, high gamma, and high delta--were added to the purified oils. Oils were subjected to accelerated autoxidation using oven storage at 60 degrees C in the dark and accelerated photooxidation at 7500 lx light intensity at 30 degrees C. Oxidation levels of aged oils were measured by the formation of both peroxides and volatile compounds and by flavor analysis. Results from substituting the tocopherol profile from one oil type to another varied on the basis of whether they were oxidized in the dark or in the light. For example, during autoxidation in the dark, soybean oil with the typical soybean tocopherol profile had the lowest levels of peroxides and total volatile compounds, whereas sunflower oil with the sunflower tocopherol profile had the highest levels. In flavor analyses of the same oils, sunflower oil with the soybean tocopherol profile was the most stable. Soybean oil with the profile of sunflower tocopherols was the least stable in dark oxidation. In contrast to the data from autoxidation in the dark, addition of tocopherols typical of sunflower oil significantly improved light stability of both oil types compared to the addition of soybean tocopherols to sunflower oil. The tocopherol profile typical of soybean oil was significantly more effective in inhibiting autoxidation in the dark; however, the tocopherol profile typical of sunflower oil inhibited light oxidation significantly more than the soybean tocopherol profile.  相似文献   

3.
Capillary electrophoresis (CE) can be effectively used as a fast screening tool to obtain qualitative and semiquantitative information about simple and complex phenolic compounds of extra virgin olive oil. Three simple phenols (tyrosol, hydroxytyrosol, and vanillic acid), a secoiridoid derivative (deacetoxy oleuropein aglycon), and two lignans (pinoresinol and acetoxypinoresinol) were detected as the main compounds in extra virgin olive oils by high-performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). Spectrophotometric indices, radical scavenging activity, and oxidative stability of extra virgin olive oil samples obtained from olives hand-picked at different ripening degrees were statistically correlated with the CZE and HPLC quantification. The concentration of phenols in extra virgin olive oil decreased with ripeness of olive fruits. The high correlations found between CZE and the other analytical results indicate that CE can be applied as a rapid and reliable tool to routinely determine phenolic compounds in extra virgin olive oils.  相似文献   

4.
Three monovarietal extra virgin olive oils (EVOOs) were subjected to accelerated storage conditions (60 degrees C, dark) representative of the autoxidation process during shelf life. Oxidation markers, i.e., the peroxide value, conjugated dienes, the oil stability index, and minor components, were monitored. The changes in minor components, related to the stage of ongoing oxidation and expressed as a percentage of the induction period (IP), followed a similar pattern in all oils: o-diphenols diminished by the highest rate (halved within 15% of the IP), followed by alpha-tocopherol (halved within 35% of the IP). Carotenoids and chlorophylls were also affected by autoxidation, whereas squalene showed high stability (<20% loss within 100% of the IP). Polar phenols (especially o-diphenols) and alpha-tocopherol were deduced to be the most potent antioxidants of EVOO. They efficiently inhibited oxidative lipid deterioration and subsequent development of sensory defects (rancidity, discoloration), which occurred only after substantial depletion of these antioxidants. Therefore, they could also be used as markers for the oxidative status of EVOO particularly in the early stage of oxidation.  相似文献   

5.
Phenolic compounds present in crude oil extracts from acai fruit ( Euterpe oleracea) were identified for the first time. The stability of acai oil that contained three concentrations of phenolics was evaluated under short- and long-term storage for lipid oxidation and phenolic retention impacting antioxidant capacity. Similar to acai fruit itself, acai oil isolates contained phenolic acids such as vanillic acid (1,616 +/- 94 mg/kg), syringic acid (1,073 +/- 62 mg/kg), p-hydroxybenzoic acid (892 +/- 52 mg/kg), protocatechuic acid (630 +/- 36 mg/kg), and ferulic acid (101 +/- 5.9 mg/kg) at highly enriched concentrations in relation to acai pulp as well as (+)-catechin (66.7 +/- 4.8 mg/kg) and numerous procyanidin oligomers (3,102 +/- 130 mg/kg). Phenolic acids experienced up to 16% loss after 10 weeks of storage at 20 or 30 degrees C and up to 33% loss at 40 degrees C. Procyanidin oligomers degraded more extensively (23% at 20 degrees C, 39% at 30 degrees C, and 74% at 40 degrees C), in both high- and low-phenolic acai oils. The hydrophilic antioxidant capacity of acai oil isolates with the highest phenolic concentration was 21.5 +/- 1.7 micromol Trolox equivalents/g, and the total soluble phenolic content was 1252 +/- 11 mg gallic acid equivalents/kg, and each decreased by up to 30 and 40%, respectively, during long-term storage. The short-term heating stability at 150 and 170 degrees C for up to 20 min exhibited only minor losses (<10%) in phenolics and antioxidant capacity. Because of its high phenolic content, the phytochemical-enriched acai oil from acai fruit offers a promising alternative to traditional tropical oils for food, supplements, and cosmetic applications.  相似文献   

6.
Human milk fat (HMF) analogue containing docosahexaenoic acid (DHA) and arachidonic acid (ARA) at sn-1,3 positions and palmitic acid (PA) at sn-2 position was produced. Novozym 435 lipase was used to produce palmitic acid-enriched hazelnut oil (EHO). EHO was then used to produce the final structured lipid (SL) through interesterification reactions using Lipozyme RM IM. Reaction variables for 3 h reactions were temperature, substrate mole ratio, and ARASCO/DHASCO (A:D) ratio. After statistical analysis of DHA, ARA, total PA, and PA content at sn-2 position, a large-scale production was performed at 60 °C, 3:2 A:D ratio, and 1:0.1 substrate mole ratio. For the SL, those results were determined as 57.3 ± 0.4%, 2.7 ± 0.0%, 2.4 ± 0.1%, and 66.1 ± 2.2%, respectively. Tocopherol contents were 84, 19, 85, and 23 μg/g oil for α-, β-, γ-, and δ-tocopherol. Melting range of SL was narrower than that of EHO. Oxidative stability index (OSI) value of SL (0.80 h) was similar to that of EHO (0.88 h). This SL can be used in infant formulas to provide the benefits of ARA and DHA.  相似文献   

7.
The phenolic fraction of virgin olive oil influences both its quality and oxidative stability. One of the principal threats of the quality of olive fruit is the olive fly ( Bactrocera oleae) as it alters the chemical composition. The attack of this olive pest has been studied in order to evaluate its influence on the quality of virgin olive oil (free acidity, peroxide value, fatty acid composition, water content, oxidative stability, phenols, and antioxidant power of phenolic fraction). The study was performed using several virgin olive oils obtained from olives with different degrees of fly infestation. They were acquired in different Italian industrial mills from the Abruzzo region. Qualitative and quantitative analyses of phenolic profiles were performed by capillary electrophoresis-diode array detection, and electrochemical evaluation of the antioxidant power of the phenolic fraction was also carried out. These analyses demonstrated that the degree of fly attack was positively correlated with free acidity ( r = 0.77, p < 0.05) and oxidized products ( r = 0.58, p < 0.05), and negatively related to the oxidative stability index ( r = -0.54, p < 0.05) and phenolic content ( r = -0.50, p < 0.05), mainly with secoiridoid compounds. However, it has been confirmed that the phenolic fraction of olive oil depends on several parameters and that a clear correlation does not exist between the percentages of fly attack and phenolic content.  相似文献   

8.
The oxidative stability of long-chain polyunsaturated fatty acid (PUFA) and docosahexaenoic acid (DHA)-containing fish and algae oils varies widely according to their fatty acid composition, the physical and colloidal states of the lipids, the contents of tocopherols and other antioxidants, and the presence and activity of transition metals. Fish and algal oils were initially much more stable to oxidation in bulk systems than in the corresponding oil-in-water emulsions. The oxidative stability of emulsions cannot, therefore, be predicted on the basis of stability data obtained with bulk long-chain PUFA-containing fish oils and DHA-containing algal oils. The relatively high oxidative stability of an algal oil containing 42% DHA was completely lost after chromatographic purification to remove tocopherols and other antioxidants. Therefore, this evidence does not support the claim that DHA-rich oils from algae are unusually stable to oxidation. Addition of ethylenediaminetetraacetic acid (EDTA) prevented oxidation of both fish and algal oil emulsions without added iron and at low iron:EDTA molar concentrations. EDTA, however, promoted the oxidation of the corresponding emulsions that contained high iron:EDTA ratios. Therefore, to be effective as a metal chelator, EDTA must be added at molar concentrations higher than that of iron to inhibit oxidation of foods containing long-chain PUFA from either fish or algae and fortified with iron.  相似文献   

9.
A comparison between the results obtained by using HPLC-UV, HPLC-MS, and CE-UV for characterizing the deterioration of extra-virgin olive oil during heating (180 degrees C) was investigated, taking into account phenolic compounds. The concentration of several compounds belonging to four families of phenols (simple phenols, lignans, complex phenols, and phenolic acids) was determined in the samples after the thermal treatment by all three techniques. Hydroxytyrosol, elenolic acid, decarboxymethyl oleuropein aglycon, and oleuropein aglycon reduced their concentration with the thermal treatment more quickly than other phenolic compounds present in olive oil. HYTY-Ac and Lig Agl were demonstrated to be quite resistant to this kind of treatment, and the behavior of lignans could be outstanding, as they belong to the family most resistant to thermal treatment. Several "unknown" compounds were determined in the phenolic profiles of the oils after the thermal treatment, and their presence was confirmed in refined olive oils. The oxidative stability index (OSI time) was reduced from 25 to 5 h after 3 h of heating, whereas the peroxide value showed a minimum after 1 h of heating.  相似文献   

10.
The effect of heated quercetin (400 mg/kg of oil) or 5-caffeoylquinic acid (5-CQA) and the presence of ferric ion (2.2 mg/kg of oil) on the stability of soya oil oxidized in an oxidative stability index (OSI) instrument was investigated. After heating the phenolic at 100 degrees C or 150 degrees C, the OSI values of treated oils were not significantly (p < 0.001) different, whereas, at 200 degrees C, the values decreased significantly with addition of quercetin, but not with 5-CQA. However, the antioxidative activity of quercetin remained significantly greater than that of 5-CQA. The antioxidative potency of quercetin was reduced significantly by addition of ferric palmitate (FP), but that of 5-CQA was not. Reaction between the ortho-dihydroxy groups of the quercetin and ferric ion may reduce the number of hydroxyls available to react with free radicals. Chelating action of 5-CQA might be provided by ortho-dihydroxy grouping of the quinic acid moiety.  相似文献   

11.
Structured lipid (SL) was synthesized from extravirgin olive oil (EVOO) and conjugated linoleic acid (CLA) via a lipase-catalyzed reaction. CLA provides a variety of health benefits, but it is not consumed in free fatty acid form. The synthesized SL olive oil contained 42.5 mol % CLA isomers, and the major isomers were cis-9,trans-11-CLA (16.9 mol %) and trans-10,cis-12-CLA (24.2 mol %). The antioxidant activity determined by the radical scavenging capacity with the 2,2-diphenyl-1-picrylhydrazyl radical was lower in SL olive oil than in EVOO. The oxidative stability was also lower in SL olive oil since it had a higher peroxide value, rho-anisidine value, and 2-thiobarbituric acid reactive substances values during 20 days of storage at 60 degrees C. This observation could be due to the reduction in the natural phenolic compounds (97%) and tocopherols (56%), and the incorporated CLA with two conjugated double bonds in the SL olive oil. The oxidative stability of SL olive oil was increased by added rosemary extracts at concentrations of 100, 200, and 300 ppm. The present study suggests that the SL olive oil may be a suitable way to incorporate or deliver CLA into human diets. However, the addition of a proper antioxidant would be required for improving its oxidative stability.  相似文献   

12.
For the first time, a possible mechanism responsible, in part, for the removal of endogenous antioxidants through the formation of tocopheryl esters during acidolysis reactions is proposed and confirmed. Tocopherols in the oils were found to react with carboxylic acids present in the medium, thus leading to the formation of tocopheryl esters that do not render any stability to the resultant modified oils as they lack any free hydroxyl groups on the phenolic ring of the molecule. Tocopheryl oleate, used as a standard, was synthesized through the reaction of acyl chloride of oleic acid with alpha-tocopherol (m/z 695.5 as evidenced by mass spectrometry). Subsequently, lipase-assisted esterification of alpha-, gamma-, and delta-tocopherols with oleic acid was carried out, and corresponding tocopheryl esters were isolated. In a real acidolysis reaction system involving docosahexaenoic acid single-cell oil and capric acid, high-performance liquid chromatography-mass spectrometry analysis demonstrated the presence of several tocopheryl esters. These included tocopheryl esters of myristic acid, namely, alpha-tocopheryl myristate, m/z 641.1, gamma-tocopheryl myristate, m/z 627.1, and delta-tocopheryl myristate, m/z 613.1, as well as those of palmitic acid, namely, alpha-tocopheryl palmitate, m/z 669.1, gamma-tocopheryl palmitate, m/z 655.1, and delta-tocopheryl palmitate, m/z 641.1. The mixture also contained different species of tocopheryl oleates, namely, alpha-tocopheryl oleate, m/z 695.5, gamma-tocopheryl oleate, m/z 681.1, and delta-tocopheryl oleate, m/z 667.2. Esters produced from reactions of docosahexaenoic acid and tocopherols were also detected, namely, alpha-tocopheryl docosahexaenoate, m/z 738.7, and delta-tocopheryl docosahexaenoate, m/z 710.7.  相似文献   

13.
The total free radical scavenger capacity (RSC) of 57 edible oils from different sources was studied: olive (24 brands of oils), sunflower (6), safflower (2), rapeseed (3), soybean (3), linseed (2), corn (3), hazelnut (2), walnut (2), sesame (2), almond (2), mixture of oils for salad (2), "dietetic" oil (2), and peanut (2). Olive oils were also studied according to their geographical origins (France, Greece, Italy, Morocco, Spain, and Turkey). RSC was determined spectrophotometrically by measuring the disappearance of the radical 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(*)) at 515 nm. The disappearance of the radical followed a double-exponential equation in the presence of oils and oil fractions, which suggested the presence of two (fast and slow) groups of antioxidants. RSC was studied for the methanol-soluble phase ("methanolic fraction", MF) of the oil, the fraction nonsoluble in methanol ("lipidic fraction", LF), and the nonfractionated oil ("total oil"; TF = MF + LF). Only olive, linseed, rapeseed, safflower, sesame, and walnut oils showed significant RSC in the MF due to the presence of phenolic compounds. No significant differences were found in the RSC of olive oils from different geographical origins. Upon heating at 180 degrees C the apparent constant for the disappearance of RSC (k(T)) and the half-life (t1/2) of RSC for MF, LF, and TF were calculated. The second-order rate constants (k2) for the antiradical activity of some phenolic compounds present in oils are also reported.  相似文献   

14.
Crude vegetable oils are usually oxidatively more stable than the corresponding refined oils. Tocopherols, phospholipids (PL), phytosterols, and phenols are the most important natural antioxidants in crude oils. Processing of vegetable oils, moreover, could induce the formation of antioxidants. Black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils were extracted with n-hexane and the oils were further fractionated into neutral lipids (NL), glycolipids (GL), and PL. Crude oils and their fractions were investigated for their radical scavenging activity (RSA) toward the stable galvinoxyl radical by electron spin resonance (ESR) spectrometry and toward 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical by spectrophotometric method. Coriander seed oil and its fractions exhibited the strongest RSA compared to black cumin and niger seed oils. The data correlated well with the total content of polyunsaturated fatty acids, unsaponifiables, and PL, as well as the initial peroxide values of crude oils. In overall ranking, RSA of oil fractions showed similar patterns wherein the PL exhibited greater activity to scavenge both free radicals followed by GL and NL, respectively. The positive relationship observed between the RSA of crude oils and their color intensity suggests the Maillard reaction products may have contributed to the RSA of seed oils and their polar fractions. The results demonstrate the importance of minor components in crude seed oils on their oxidative stability, which will reflect on their food value and shelf life. As part of the effort to assess the potential of these seed oils, the information is also of importance in processing and utilizing the crude oils and their byproducts.  相似文献   

15.
Cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils were evaluated for their fatty acid composition, carotenoid content, tocopherol profile, total phenolic content (TPC), oxidative stability index (OSI), peroxide value, and antioxidant properties. All tested seed oils contained significant levels of alpha-linolenic acid ranging from 19.6 to 32.4 g per 100 g of oil, along with a low ratio of n-6/n-3 fatty acids (1.64-3.99). The total carotenoid content ranged from 12.5 to 30.0 micromoles per kg oil. Zeaxanthin was the major carotenoid compound in all tested berry seed oils, along with beta-carotene, lutein, and cryptoxanthin. Total tocopherol was 260.6-2276.9 mumoles per kg oil, including alpha-, gamma-, and delta-tocopherols. OSI values were 20.07, 20.30, and 44.76 h for the marionberry, red raspberry, and boysenberry seed oils, respectively. The highest TPC of 2.0 mg gallic acid equivalents per gram of oil was observed in the red raspberry seed oil, while the strongest oxygen radical absorbance capacity was in boysenberry seed oil extract (77.9 micromol trolox equivalents per g oil). All tested berry seed oils directly reacted with and quenched DPPH radicals in a dose- and time-dependent manner. These data suggest that the cold-pressed berry seed oils may serve as potential dietary sources of tocopherols, carotenoids, and natural antioxidants.  相似文献   

16.
Selected sugars (fructose, sucrose, or raffinose) and polyhydric alcohols (sorbitol or mannitol) were equilibrated directly with bulk fish oil (10% by weight, excess) and exposed to fluorescent lighting (2550 Lx) for 24 h at 5 degrees C. Data for room temperature-equilibrated samples revealed that polyols functioned as antioxidants in fish oil. Increased times and temperatures of equilibration (to 90-110 degrees C, 1-2 mmHg, to 2 h) greatly enhanced the antioxidant activity of polyols in fish oil exposed to light. Under accelerated oxidation conditions (60 degrees C) in the dark, dispersed sorbitol in bulk fish oil greatly suppressed the peroxide value, primarily by chelating transition metals, while fructose showed a limited antioxidant activity. Sugars with a lower molecular weight and smaller numbers of equatorial OH groups exhibited a higher rate of permeation of sugars into fish oil triacylglycerols and hence rendered greater antioxidant activities. The treatment of bulk fish oils with polyols and then using the oils in the preparation of emulsions greatly reduced their antioxidant activities as compared to those observed for treated bulk oils. The introduction of polyols dissolved in propylene glycol into bulk fish oils at 90 degrees C (0.025% polyol, 0.25 h of equilibration) provided a similar antioxidant activity to that imparted by the introduction of polyols into the oil by equilibrating excess polyols (10% by weight) with them at 90-110 degrees C for 2 h. However, regardless of the method of the introduction of polyols to bulk fish oil, an elevated temperature (90 degrees C) exposure during fish oil treatment was required to induce a notable antioxidant activity.  相似文献   

17.
The HPLC phenolic profile of virgin olive oils obtained from young olive trees (Arbequina cv.) grown under different deficit irrigation strategies was studied. Deficit irrigation (RDI) did not affect all the phenolic compounds in the same way. Lignans, vanillic acid, vanillin, and the unknown phenolic compound named P24 increased in the oils from the most irrigated treatments. The secoiridoid derivatives and the unknown phenolic compound named P19 increased in the oils from the most stressed irrigation treatments. The period of growth where a water stress significantly affects the phenolic profile of oils was between pit hardening and the first stages of fruit growth and oil accumulation, independently of the water applied during the previous period to harvest. The phenolic profile and those parameters related to phenol content, oxidative stability, and the bitter index were significantly affected only in the most severe RDI strategies. Other strategies produced important savings in irrigation requirements and an increase in the water use efficiency without noticeably affecting the phenolic profile.  相似文献   

18.
The antioxidant activity of oregano, parsley, olive mill wastewaters (OMWW), Trolox, and ethylenediaminetetraacetic acid (EDTA) was evaluated in bulk oils and oil-in-water (o/w) emulsions enriched with 5% tuna oil by monitoring the formation of hydroperoxides, hexanal, and t-t-2,4-heptadienal in samples stored at 37 degrees C for 14 days. In bulk oil, the order of antioxidant activity was, in decreasing order (p < 0.05), OMWW > oregano > parsley > EDTA > Trolox. The antioxidant activity in o/w emulsion followed the same order except that EDTA was as efficient an antioxidant as OMWW. In addition, the total phenolic content, the radical scavenging properties, the reducing capacity, and the iron chelating activity of OMWW, parsley, and oregano extracts were determined by the Folin-Ciocalteau, oxygen radical absorbance capacity, ferric reducing antioxidant power, and iron(II) chelating activity assays, respectively. The antioxidant activity of OMWW, parsley, and oregano in food systems was related to their total phenolic content and radical scavenging capacity but not to their ability to chelate iron in vitro. OMWW was identified as a promising source of antioxidants to retard lipid oxidation in fish oil-enriched food products.  相似文献   

19.
The initial stability of virgin olive oil depends on various factors, among which are the variety and the degree of fruit ripeness. The former, which genetically determines the composition of the olive and its oil, also marks, to some extent, its stability. However, oil stability changes as the olive ripens, so it is obvious that the degree of ripeness is an important factor. The oils were obtained by the Abencor system. Acidity, peroxide index, UV absorption at 232 and 270 nm, sensory analysis, fatty acid composition, tocopherols, phenolic compounds, orthodiphenolic compounds, sterols, pigments, and oxidative stability were determined, and the results were analyzed statistically. During ripening there was a decrease in all of the parameters studied except linoleic acid, Delta-5-avenasterol, and oil content, which increased. Virgin oils showed very good correlation between stability and the concentrations of total phenols, o-diphenols, tocopherols, chlorophyll pigments and carotenoids, linoleic and linolenic acids, total sterols, beta-sitosterol, and Delta-5-avenasterol.  相似文献   

20.
Vegetable oils have significant potential as a base fluid and a substitute for mineral oil in grease formulation. Preparation of soybean oil-based lithium greases using a variety of fatty acids in the soap structure is discussed in this paper. Soy greases with lithium-fatty acid soap having C12-C18 chain lengths and different metal to fatty acid ratios were synthesized. Grease hardness was determined using a standard test method, and their oxidative stabilities were measured using pressurized differential scanning calorimetry. Results indicate that lithium soap composition, fatty acid types, and base oil content significantly affect grease hardness and oxidative stability. Lithium soaps prepared with short-chain fatty acids resulted in softer grease. Oxidative stability and other performance properties will deteriorate if oil is released from the grease matrix due to overloading of soap with base oil. Performance characteristics are largely dependent on the hardness and oxidative stability of grease used as industrial and automotive lubricant. Therefore, this paper discusses the preparation methods, optimization of soap components, and antioxidant additive for making soy-based grease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号