共查询到17条相似文献,搜索用时 78 毫秒
1.
基于彩色模型和近邻法聚类的水田秧苗列中心线检测方法 总被引:1,自引:4,他引:1
水田秧苗列中心线的检测是实现水田除草机器人自主导航的重要保证。在秧苗的不同生长时期,秧苗形态各不相同;并且在南方地区的水田中经常会出现的绿色浮萍、蓝藻,它们的颜色与目标秧苗非常接近,这给秧苗的分割以及列中心线的检测带来很大的困难。针对这些问题,提出一种基于彩色模型和近邻法聚类实现秧苗列中心线的检测方法。首先,基于彩色模型即2G-R-B模型(2Green-Red-Blue)和HSI(Hue,Saturation and Intensity)彩色空间中提取S分量提取秧苗灰度特征;然后,在保持秧苗原有形状的前提下提取秧苗特征点,获得秧苗特征点图像;最后,基于近邻法利用特征点间的邻近关系对特征点进行聚类,采用基于已知点的Hough变换(known point Hough transform)提取秧苗列中心线。试验表明:提出的方法能够在图像中存有绿色浮萍、蓝藻等噪声情况下准确提取秧苗灰度特征,平均每幅真彩色图像(分辨率:1280×960)整个流程所需时间小于350ms,并能够适应自然光线变化。提出的方法能够适应环境的变化,满足机器人实时性要求。 相似文献
2.
作物行检测是一个难题,回顾了国内外的研究情况。针对农田作物种植和作物早期生长的特点,为了检测作物行位置,提出了一种基于标记信息的Hough提取作物行方法。该方法分别用直方图法和最大类间方差法二值化图像后,经过8连通区域标记后据其面积属性去除噪声,然后再经一次标记后找出各标记作物的重心点坐标,最后通过Hough变换检测过重心点的直线,即到得到过作物行的中心线,试验结果表明了该方法的有效性。 相似文献
3.
为解决机器视觉对早期玉米苗带在多环境变量下导航线提取耗时长、准确率低的问题,该研究提出了一种基于中值点Hough变换作物行检测的导航线提取算法。首先,改进了传统的2G-R-B算法,再结合中值滤波、最大类间方差法和形态学操作实现土壤背景与玉米苗带的分割。其次,通过均值法提取玉米苗带特征点,然后采用中值点Hough变换拟合垄间两侧玉米苗列线,最后将检测出的双侧玉米苗列线为导航基准线,利用夹角正切公式提取导航线。试验结果表明:改进的灰度化算法能够正确分割玉米苗带与土壤,处理一幅640×480像素彩色图像平均耗时小于160 ms,基于中值点Hough变换检测玉米苗列再提取导航线的最大误差为0.53°,相比于传统Hough变换时间上平均快62.9 ms,比最小二乘法平均精确度提高了7.12°,在农田早期玉米苗带多环境变量影响因素下导航线提取准确率均达92%以上,具有较强的可靠性和准确性。 相似文献
4.
基于图像处理的玉米收割机导航路线检测方法 总被引:1,自引:9,他引:1
快速精准的检测出导航路线并对田端做出准确判断是收割机视觉导航的前提。为解决玉米收割机导航作业过程中因玉米列阴影、玉米田端的杂草等因素对检测精度干扰的问题,该文通过分析视觉导航图像的颜色特征去除阴影干扰,对玉米收割机提取导航作业路径和判断田端提出了检测算法。为减少计算量,设定关注区域作为非第一帧图像的处理范围;为去除玉米列阴影对检测结果造成的干扰,强调关注区域内G(绿色)分量并减弱R(红色)或B(蓝色)分量;为加快处理速度,采用跳行累计G分量的方式确定候补点。在关注区域内对图像中去除阴影干扰后的G分量垂直累计值查找候补点,对图像上半部分收敛性好的候补点通过方差计算确定出已知点,再利用过已知点Hough变换拟合出玉米列边界所在的导航线。最后采用R分量的连续突变判断收割机是否到达田端。田间试验表明:目标直线的平均检测时间为50.13 ms/帧,对田端的检测准确可靠,满足玉米收割的作业要求。该研究成果也适用于高粱等其它高杆作物的机械化收获应用。 相似文献
5.
无人驾驶农机自主进行行驶路径检测和识别系统需要具备环境感知能力。作物行的中心线识别是环境感知的一个重要方面,已有的作物行中心线识别算法在缺株作物行中心线提取中存在检测精度低的问题。该研究提出了一种能够在缺株情况下提取玉米作物行中心线的算法。首先采用限定HSV颜色空间中颜色分量范围的方法将作物与背景分割,通过形态学处理对图像进行去噪并填补作物行空洞;然后分别在图像底部和中部的横向位置设置条状感兴趣区(Region of Interest,ROI),提取ROI内的作物行轮廓重心作为定位点。在图像顶端间隔固定步长设置上端点,利用定位点和上端点组成的扫描线扫描图像,通过作物行区域最多的扫描线即为对应目标作物行的最优线;将获取的最优线与作物行区域进行融合填充作物行中的缺株部位;最后设置动态ROI,作物行区域内面积最大轮廓拟合的直线即为目标作物行中心线。试验结果表明,对于不同缺株情况下的玉米图像,该算法的平均准确率达到84.2%,每帧图像的平均检测时间为0.092 s。该研究算法可提高缺株情况下的作物行中心线识别率,具有鲁棒性强、准确度高的特点,可为无人驾驶农机在作物行缺株的农田环境下进行作业提供理论依据。 相似文献
6.
针对Harris角点检测算法中角点响应函数(corner response function,CRF)系数阈值与非极大值抑制系数阈值需要人为设定所造成的可变性和随机性等问题,该文提出一种通过计算图像每个像素的自相关矩阵行列式值,构造特征角点图像进行自适应阈值分割的改进Harris角点检测算法.该算法首先通过计算原图像经过方向滤波和低通滤波后各像素的自相关矩阵行列式值,以此构造特征角点图像;然后采用OTSU算法计算特征角点图像分割阈值,从而筛选出预选区域;最后结合改进的非极大值抑制方法提取有效角点.通过5组角点检测对比试验结果数据分析,不同类型图像的角点检测准确率均有提高,高分二号遥感影像的角点检测准确率提高27.06个百分点,可以初步得出,该算法相比传统Harris角点检测算法不但能够自动计算角点检测的最佳阈值,而且能够更准确地定位角点和去除边缘伪角点,从而提高了角点检测的精确度,该研究可为农业遥感影像数据检测提供参考. 相似文献
7.
番茄目标的准确提取是番茄采摘的基础,目前番茄目标提取方法都有一定的局限性,难以满足采摘需求。该研究在传统Niblack算法的基础上,结合图像全局灰度变化的估计信息与局部区域信息之间的关联性,提出了一种基于Niblack自适应修正系数的温室成熟番茄目标提取新方法。首先对R-G番茄灰度图像,采用基于自适应修正系数选取的Niblack算法进行阈值分割,从理论意义上确定修正系数的选取原则,归一化局部标准差,实现修正值的计算及二值化过程,然后对分割后的图像去噪,最后采用最小临界矩形法提取成熟番茄果实。试验结果表明,该方法对温室成熟番茄图像有较好的提取效果,识别正确率达到98.3%,与基于归一化红绿色差灰度化的Otsu算法和传统的Niblack算法相比有更高的识别率和更快的处理速度,噪声率也明显减少,能够满足后续成熟番茄定位的需要,有效地解决传统方法适应性低,易产生伪噪声块等问题。 相似文献
8.
基于自动Hough变换累加阈值的蔬菜作物行提取方法研究 总被引:2,自引:8,他引:2
为解决机器视觉对生菜和绿甘蓝两种作物在整个生长时期内多环境变量对作物行识别影响的问题,同时提高机器视觉作物行识别算法的有效性,该文提出了一种基于自动Hough变换累加阈值的多作物行提取算法。首先,选用Lab颜色空间中与光照无关a分量对绿色作物进行提取,通过最优自适应阈值进行图像分割,并采用先闭后开形态学运算对杂草和作物边缘进行滤波。其次,采用双阈值分段垂直投影法对作物行特征点进行提取,通过对亮度投影视图中的目标像素占比阈值和噪声判断阈值设置,实现特征点位置判断和杂草噪声过滤,并对相邻特征点进行优化,剔除部分干扰特征。最后,采用Hough变化对特征点进行直线拟合,将不同Hough变换累加阈值获得的拟合直线映射到累加平面上,通过K-means聚类将累加平面数据聚类为与作物行数相同的类数,根据相机成像的透视原理提出基于聚类质心距离差和组内方差的最优累加阈值获取方法,将最优累加阈值下累加平面中的聚类质心作为识别出的真实作物行线。温室和田间试验表明,针对不同生长时期的生菜和绿甘蓝作物,该文算法均可有效识别出作物行线,最优阈值算法耗时小于1.5 s,作物行提取平均耗时为0.2 s,在田间和温室中作物行的平均识别准确率分别为94.6%、97.1%,识别准确率为100%的占比分别为86.7%和93.3%。研究结果为解决多环境变量影响因素下的算法鲁棒性和适用性问题提供依据。 相似文献
9.
针对玉米根茎图像信息,提出一种在拔节期后玉米大田环境下快速、精准提取导航基准线的新方法。首先利用2G-B-R和最大类间方差法分割图像,并利用形态学处理提高图像质量,对去噪图像像素按列累加获取垂直投影。传统峰值点法在寻找特征点时需要设定阈值,耗时长且伪特征点多,因此提出一种基于梯度下降的特征点寻找方法,利用某点沿梯度下降的方向求解极小值从而求得特征点。根据角点检测原理,利用特征点像素各个方向梯度变化不同剔除伪特征点,解决了传统算法异常点过多、错误剔除玉米根茎定位点等问题,最终采用随机采样一致算法拟合导航线。试验结果表明,与传统算法相比该算法能够很好的适应复杂环境,实时性强,即使在缺苗、杂草等情况下仍具有很强的鲁棒性,平均处理准确率为92.2%,处理一帧分辨率为1 280像素×720像素的图像平均耗时为215.7 ms,该算法为智能农业化机械在玉米田间行走提供了可靠的、实时的导航路径。 相似文献
10.
针对笼养鸡舍环境下光照强度弱、作业通道内狭小导致机器人巡检时通道中心线检测困难的问题,该研究利用3D激光雷达对鸡舍通道中心线进行获取。首先通过机器人搭载的3D激光雷达对鸡舍作业通道信息进行采集,利用直通滤波、地面点滤波、体素滤波、统计滤波和平面投影对获取的3D激光雷达点云数据进行预处理,获取XOY平面上的点云数据。通过改变K-means聚类初始点选择方式和聚类函数对预处理后的点云数据进行数据分类。利用改进RANSAC算法对分类后的数据进行处理,提取通道中心线。试验结果表明该研究提出的改进K-means聚类算法平均耗时6.98 ms,相较于传统的K-means聚类算法平均耗时减少了29.40 ms,准确率提高了82.41%。该研究提出的改进RANSAC算法中心线提取准确率为93.66%、平均误差角为0.89°、平均耗时为3.94 ms,比LSM算法得到的平均误差角高0.14°,平均耗时减少6.15 ms。表明该研究提出的鸡舍通道中心线检测方法基本满足笼养鸡舍环境实时自主导航的需求,为巡检机器人在鸡舍作业通道内进行激光雷达导航提供了技术支撑。 相似文献
11.
Harris角点自适应检测的水稻低空遥感图像配准与拼接算法 总被引:2,自引:5,他引:2
图像配准和拼接的自动化是微小型无人机能否被广泛应用于水稻长势低空遥感监测的关键技术之一。为了改进Harris角点检测算法中阈值需要人为设定的局限,文章提出了基于Harris角点自适应检测的水稻低空遥感图像配准与拼接算法。该算法在Harris角点检测算法的基础上进行改进,采用基于图像像素灰度值标准差标准化的方法进行角点的自适应确定,并对角点进行特征描述,利用角点特征描述算子之间的欧式距离进行配准。为了验证算法的有效性并进行相关参数的优化,采用多旋翼无人直升机获取了水稻长势的低空遥感图像,并设计了重复率(衡量角点检测的稳定性)、辨识率(衡量角点描述算子的辨识度)、配准率(衡量图像的拼接精度)以及运行时间(衡量算法的运算速度)4个评价指标对配准与拼接的结果进行评判。随机选取获得的低空遥感图像分成3组进行测试,试验结果表明,平均配准率达到了98.95%,且各组图像之间的重复率与配准率差异不显著(显著性水平为0.05),说明改进后的算法稳定。设计了角点自适应检测算法阈值参数的优选试验,阈值参数为标准化处理后的图像像素灰度值标准差,方差分析结果表明,图像像素灰度标准差为1和2时配准率的差异不显著(显著性水平为0.05),但当图像像素灰度标准差为1时,图像配准与拼接平均运行时间是其为2时的2.5倍,因此,可设定图像像素灰度标准差为2作为本算法的较优参数。 相似文献
12.
13.
基于机器视觉的旱田多目标直线检测方法 总被引:1,自引:5,他引:1
在实际应用中,由于摄像头安装的高度不同或者车辆在地面高低不平的农田内行驶时产生的晃动,都会产生摄像头内出现多作物行的现象。因此根据农田图像的特点,提出了基于已知线的方法判断农作物列数,避免了传统算法只有先确定农作物列数才能提取导航线的弊端。针对农田图像中多列目标检测问题,采用了基于水平线扫描的归类算法,并利用改进的Hough变化快速检测多条定位线。试验结果表明,处理一幅720×480像素彩色图像平均消耗时间为258 ms,98%的图像中所有目标直线都可以检测出来。该算法能够准确提取各种天气环境下农田图像中的列信息,确定多条定位线的方位。 相似文献
14.
基于图像拼接的苗期玉米植株缺失数量自动测量方法 总被引:1,自引:1,他引:1
为自动测量苗期玉米植株缺失数量,研究一种基于图像拼接的玉米早期缺苗数量自动测量方法。该方法首先在田间光照条件下,从植株顶部沿行向获取玉米图像序列,并将图像序列注册到同一坐标系下拼接为行向图像,然后将植株像素从土壤背景中分割出来,在植株细化骨架上标识茎秆中心点。最后以行向图像上各茎秆中心点拟合行向直线,将茎秆中心点向行向直线投影,从相邻投影点的距离计算植株平均株距,缺苗数量可由平均株距和两相邻植株的距离计算。在3个不同密度的试验小区上对比该方法与人工测量,每个小区进行10次重复,在低密度和中密度小区两种方法具有较高的相关性,在高密度小区两种方法的相关性有所下降。该方法可以替代人工测量,从而减少时间和人力投入,提高玉米早期植株缺苗数调查的自动化程度。 相似文献
15.
基于稀疏表示的大米品种识别 总被引:4,自引:3,他引:1
为了实现机器视觉准确判别大米品种,提出了一种基于稀疏表示的大米品种识别方法。以长江米、圆江米、粳米、泰国香米、红香米和黑米等6种大米籽粒图像作为研究对象,采用颜色和形态结构参数表示单个籽粒。每种大米随机选取50粒作为训练样本,200粒作为测试样本。所有训练样本组成稀疏表示方法的数据词典,对每一个测试样本,计算其在数据词典上的投影,将具有最小投影误差的类作为测试样本所属的品种。最后将提出的方法与BP网络和SVM的识别结果做了对比和分析。试验结果表明,提出的方法对于6个大米品种的综合识别准确率为99.6%,获得了最好的分类效果。为大米品种的识别提供了一种新的有效方案。 相似文献
16.
水稻秧盘育秧播种技术与装备的研究现状及发展趋势 总被引:19,自引:15,他引:19
该文在收集、整理并研究国内外关于水稻秧盘育秧播种技术与装备的基础上,按照播种流水线的结构特点和工作原理进行分析归纳,系统地总结了每一类机型的研究现状,详细分析了播种、排土和秧盘同步传动等技术难点,以及主要部件采用的工作原理、技术参数和所能达到的性能指标,通过对现有机型特点的分析比较,给出了各类机型的适用范围.最后,根据水稻插、抛秧种植的农艺要求,尤其是中国超级杂交稻种植技术的要求,提出适合于超级杂交稻精密播种的新型育秧系统,上述研究为适用于中国传统水稻育秧,以及发展中的超级杂交稻低成本高速精准秧盘育秧播种技术研究提供参考. 相似文献
17.
稻瘟病菌孢子的检测通常在显微镜下由人工目测完成,该方法费时、费力、自动化程度低。因此,该研究提出了一种基于显微图像处理技术的稻瘟病菌孢子自动检测和计数方法。首先,采用显微图像系统获取稻瘟病菌孢子图像;然后提出一种分块背景提取法对其进行光照校正;根据显微图像中孢子的边缘特征,利用Canny算子进行边缘检测,其中Canny边缘检测过程中的阈值应用模糊C均值算法在梯度图上自动确定;接着对边缘检测后的二值图像进行数学形态学闭开运算处理。根据孢子和主要杂质的形态特征,利用椭圆度、复杂度和最小外接矩形宽度等形态特征参数对目标物进行分类,提取只含孢子的二值图像。最后,提出了基于距离变换和高斯滤波的改进分水岭算法对粘连孢子进行分离。测试结果表明:在100幅测试的显微图像样本中,孢子检测的平均准确率为98.5%,满足稻瘟病菌孢子自动检测和计数要求。 相似文献