首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of gilts that conceive early and continue to produce offspring is a primary objective of swine production. The objective of this study was to determine the degree of feed restriction during development required to optimize reproductive performance and efficiency in gilts. The effects that various patterns of growth had on reproductive development and performance of gilts through d 30 of gestation were investigated. At 13 wk of age and 41 kg BW, 192 white crossbred gilts were penned individually and assigned to receive 87.5%, 75%, 62.5%, and 50% of predicted ad libitum energy intake. The study was replicated in two seasons. At 25 wk of age, gilts were moved to group pens and allowed ad libitum access to feed, and estrous detection was initiated. Gilts were inseminated at first observed estrus and those recycling were remated. Post-mating gilts were fed 1.5x maintenance in stalls. Gilts that did not return to estrus 17 to 30 d after mating were slaughtered at 30 d of gestation. Reproductive tracts were collected and numbers of corpora lutea and live embryos were recorded. Feed restriction during development resulted in differences in BW and backfat thickness at the start of the breeding period and differences in feed intake during breeding. Gilts subjected to the greatest feed restriction during development consumed the greatest quantity of feed during breeding. Feed intake during breeding was associated with BW and backfat gain during breeding. The treatment group that entered breeding lightest and leanest (50% of predicted ad libitum intake) had the least number of days to first estrus, followed by the fattest, heaviest group (87.5% of predicted ad libitum intake). Treatment groups did not differ (P > 0.38) in ovulation rate or live embryo numbers. Significant relationships between quantity of GE consumed during development and variables considered important in reproductive development and performance were evident, such as BW and fatness at start of breeding and first detected estrus, and ovulation rate. Variation in dietary energy during the development period impacted many aspects of reproductive development and performance. However, coupling restricted energy intake during development with ad libitum intake during breeding negated many of the effects of feed restriction during the development period.  相似文献   

2.
The overall objective was to compare reproductive performance through 4 parities of gilts developed with ad libitum access to feed or with restriction of energy to 75% of ad libitum intake. Effects on growth and pubertal development are reported. The experiment was a 2 × 2 factorial with 661 gilts. One-half of the gilts (n = 330) were allowed ad libitum access to feed from weaning to breeding at 235 d of age (AL), and 331 littermates were developed with ad libitum access to feed to 123 d of age and then restricted to 75% of ad libitum intake to 235 d of age (Res). Diets for gilts on regimen AL were formulated to meet requirements for growth. All nutrients except energy and selenium were increased in the diet fed to gilts on regimen Res so that nutrient intake per unit of BW was expected to be similar to that of gilts on regimen AL. Sires of all gilts were from an industry maternal line. Dams were either an industry Large White-Landrace cross, or Nebraska selection Line 45, producing gilts denoted as LW/LR and L45X, respectively. Traits were recorded every 2 wk. Recording of feed intake and BW began at 53 d of age, and recording of backfat (BF) and LM area (LMA) began at 123 d of age. Estrus detection began at 140 d of age to determine age at puberty (AP). The G:F ratio from 123 to 235 d of age for gilts on the AL regimen was greater (0.269 vs. 0.257, P < 0.01) than for gilts on the Res regimen; the greatest difference occurred in the first 2-wk period following feed restriction. The LW/LR gilts were heavier, had less BF, and had greater LMA than L45X gilts, but interactions with feeding regimen and period of development existed. Feed restriction reduced BW, BF, LMA, and ratio of BF to BW, but had little effect on ratio of LMA to BW. More L45X gilts than LW/LR gilts (98 vs. 93%, P < 0.01) and more gilts developed on regimen AL than regimen Res (98 vs. 91%, P < 0.01) expressed estrus. Mean age at puberty was 178.6 d for LW/LR and 173.0 d for L45X gilts (P < 0.01) and 174.1 d for regimen AL and 177.5 d for regimen Res (P < 0.05). The Res regimen delayed pubertal development. Subsequently, it will be important to determine effects on reproduction through 4 parities.  相似文献   

3.
The effect of prepubertal feed level on growth and reproductive development of gilts was investigated. At 13 wk. of age, white crossbred gilts were penned individually and assigned to the following treatments: Ad lib, ad libitum intake from 13 to 25 wk. of age (n = 64); Control, ad libitum intake from 13 wk. of age until 100 kg BW and then 90% of ad libitum intake until 25 wk. of age (n = 65); and Restricted, 74% of ad libitum intake from 13 wk. to 25 wk. of age (n = 64). Feed was formulated to primarily restrict energy intake. The study was replicated in two seasons. At 25 wk. of age, gilts were moved to group pens, approximately 16 gilts/pen, allowed ad libitum access to feed, and estrus detection was initiated. Gilts were mated at first estrus and those recycling were remated. After mating, gilts were moved to gestation stalls and fed 1.5x maintenance. At 30 d of gestation, reproductive tracts were harvested, and numbers of corpora lutea (CL) and live embryos were recorded. From 13 to 25 wk. of age, feed consumption was 258 for Ad lib, 251 for Control, and 189 kg/gilt for Restricted, and, from 13 wk. of age until 30 d of gestation, total feed consumption was 367 for Ad lib, 356 for Control, and 299 kg/gilt for Restricted gilts. Age at puberty (196 d) and pregnancy (200 d) was not affected (P>.18) by treatment. However, the rate at which gilts attained puberty (e.g., percentage pubertal at 28 d) was greatest in Ad lib (75) and least in Control (61) gilts. Number of CL and live embryos at 30 d of gestation/gilt assigned to the study was unaffected (P>.21) by treatment. Quantity of feed consumed from 13 wk. of age to 30 d of gestation per live embryo in gilts assigned to the study was 40.0 for Ad lib, 39.8 for Control, and 30.6 kg/gilt for Restricted gilts. These results indicate that moderate feed restriction of gilts during prepubertal development may increase efficiency of swine production without negative impact on reproductive performance through 30 d of gestation.  相似文献   

4.
To determine whether recombinant porcine somatotropin (rpST) alters reproduction, 40 crossbred gilts weighing 59.1 +/- .5 kg at 125 +/- 1 d of age were assigned randomly to an experiment arranged as a 2 x 2 factorial. Eight gilts were given daily injections of diluent until they reached 104 kg BW (DW), and eight received diluent injections until puberty (DP). Twelve gilts were given rpST (4 mg/d) until 104 kg BW (PW) and 12 were given rpST injections until puberty (PP). All gilts were individually fed on an ad libitum basis an 18% CP corn-soybean meal diet (1.2% lysine and 3.1 Mcal/kg of ME). Beginning at 5 mo of age, gilts were exposed 20 min daily to mature boars. Serum concentrations of progesterone were measured weekly from 5 to 8 mo of age to verify age of puberty. Gilts observed in pubertal estrus were mated to two different boars 10 h apart. At 47 +/- 1 d of gestation, gilts were slaughtered to assess fetal development. After 60 d of treatment, serum LH and FSH profiles were determined in blood samples drawn at 20-min intervals for 4 h from eight diluent- and eight rpST-treated gilts fitted with indwelling jugular catheters. By 28 d, feed intake, feed/gain, and blood urea nitrogen were decreased (P less than .005) by rpST. Treatments did not affect (P greater than .05) the proportion of gilts attaining first ovulation (DW = 6/6; DP = 10/10; PW = 7/9; PP = 14/14) or conception rate (DW = 5/6; DP = 7/10; PW = 4/6; PP = 11/12).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Development of gilts that conceive early and continue to produce offspring is an objective of swine production. We investigated different patterns of growth on reproductive development and performance of gilts through the first farrowing. At 13 wk of age and 43 kg BW, 286 white crossbred gilts were penned individually and assigned to treatments: Ad lib, ad libitum intake from 13 to 25 wk of age; Control, ad libitum intake from 13 wk of age until 100 kg BW and then 90% of ad libitum intake until 25 wk of age; and Restricted, 74% of ad libitum intake from 13 wk to 25 wk of age. Feed was formulated to restrict energy intake. The study was replicated in three seasons. At 25 wk of age, gilts were moved by treatment to group pens, fed for ad libitum consumption, and estrus detection was initiated. Gilts were inseminated at first estrus, and those recycling were remated. Postmating gilts were fed 1.5x maintenance until 105 to 110 d of pregnancy. Gilts were moved either to the farrowing facility or the abattoir at 105 to 110 d of pregnancy. Those taken to the abattoir were slaughtered and number, weight, and condition of the fetuses were recorded. Gilts moved to the farrowing facility were allowed to farrow, and number, weight, and condition of the piglets were recorded. Daily feed intake during breeding was 3.4 kg/d by Restricted gilts, 2.9 by Control gilts, and 2.7 kg/d by Ad lib gilts. Increased feed intake by Restricted gilts during breeding resulted in compensatory gains that overcame the reduced reproductive performance that resulted from the reduced BW and backfat these gilts carried at the start of breeding. Days to first estrus and pregnancy were not influenced by development period treatment (P < 0.13). Percentage of Ad lib, Control, and Restricted gilts that successfully completed their pregnancies were 61, 74, and 66, respectively (P > 0.19). Total feed fed from 13 wk of age to end of the first pregnancy per gilt assigned did not differ among Ad lib (506 kg) and Control (498 kg) gilts but was less (P < 0.01) in Restricted gilts (451 kg). Number of piglets born per gilt assigned (P > 0.09) and piglets produced per kilogram of feed fed from 13 wk of age to term (P > 0.29) were 6.47 and 0.0134 in Ad lib gilts, 7.26 and 0.0150 in Control gilts, and 6.38 and 0.0149 in Restricted gilts, respectively. Moderate feed restriction, 74% of ad libitum intake, reduced feed consumed from 13 wk of age to end of the first pregnancy with no significant impact on efficiency of piglet production.  相似文献   

6.
Hormones within the somatotropin cascade influence several physiological traits, including growth and reproduction. Active immunization against growth hormone-releasing factor (GRFi) initiated at 3 or 6 mo of age decreased weight gain, increased deposition of fat, and delayed puberty in heifers. Two experiments were conducted to investigate the effects of GRFi on puberty and subsequent ovulation rate in gilts. Crossbred gilts were actively immunized against GRF-(1-29)-(Gly)2-Cys-NH2 conjugated to human serum albumin (GRFi) or against human serum albumin alone (HSAi). In Exp. 1, gilts were immunized against GRF (n = 12) or HSA (n = 12) at 92 +/- 1 d of age. At 191 d of age, antibody titers against GRF were greater (P < .05) in GRFi (55.5 +/- 1.3%) than in HSAi (.4 +/- 2%) gilts. The GRFi decreased (P < .05) BW (86 +/- 3 vs 104 +/- 3 kg) by 181 d of age and increased (P < .05) backfat depth (15.7 +/- .4 vs 14.8 +/- .4 mm) by 130 d of age. At 181 d of age, GRFi reduced the frequency of ST release (1.0 +/- .5 vs 5.0 +/- .5, peaks/24 h; P < .0001) and decreased (P < .01) ST (1.1 +/- .06 vs 1.7 +/- .06 ng/mL), IGF-I (29 +/- 2 vs 107 +/- 2 ng/mL), and insulin concentrations (3.5 +/- .2 vs 6.3 +/- .2 ng/mL). The GRFi decreased (P < .05) feed conversion efficiency but did not alter age at puberty (GRFi = 199 +/- 5 d vs HSAi = 202 +/- 5 d) or ovulation rate after second estrus (GRFi = 10.7 +/- .4 vs HSAi = 11.8 +/- .5). In Exp. 2, gilts were immunized against GRF (n = 35) or HSA (n = 35) at 35 +/- 1 d of age. The GRFi at 35 d of age did not alter the number of surface follicles or uterine weight between 93 and 102 d of age, but GRFi decreased (P < .05) ovarian weight (.41 +/- .08 vs 1.58 +/- .4 g) and uterine length (17.2 +/- 1.1 vs 25.3 +/- 2.3 cm). Immunization against GRF reduced (P < .05) serum IGF-I (GRFi = 50 +/- 4 vs HSAi = 137 +/- 4 ng/mL) and BW (GRFi = 71 +/- 3 vs HSAi = 105 +/- 3 kg) and increased (P < .05) backfat depth (GRFi = .38 +/- .03 vs HSAi = .25 +/- .02 mm/kg). Age at puberty was similar in GRFi and HSAi gilts, but ovulation rate was lower (P < .05) after third estrus in GRFi (11.3 +/- .8) than in HSAi (13.8 +/- .8) gilts. Thus, GRFi at 92 or 35 d of age decreased serum ST, IGF-I, and BW in prepubertal gilts without altering age of puberty. However, GRFi at 35 d of age, but not 92 d of age, decreased ovulation rate. These results indicate that alterations in the somatotropic axis at 1 mo of age can influence reproductive development in pubertal gilts.  相似文献   

7.
A total of 105 nonboar-exposed, F2 ([Landrace x Yorkshire] x Duroc) gilts were used in two replicates of a randomized complete block experiment to evaluate the effect of dietary feed intake on pubertal onset and subsequent body composition. Feed intakes were established at 50% of ad libitum (AL-50), 75% of ad libitum (AL-75), or at ad libitum (AL-100) levels from 4.5 to 9 mo of age. A corn-soybean meal diet fed to all gilts was formulated to meet or exceed nutrient requirements except for energy. Puberty was measured by two methods: 1) monitored once daily by back pressure applied by the herdsman or 2) from elevated plasma progesterone concentrations. Body composition was evaluated by the deuterium oxide method after plasma progesterone concentrations were elevated. Daily feed intake for the experimental period averaged 1.6, 2.3, and 3.2 kg, and the BW of gilts at 8 mo of age were 111, 131, and 154 kg for the AL-50, AL-75, and AL-100 groups, respectively. Body weight, backfat thickness, and body fat content increased linearly (P < .01) as feed intake increased, but age at puberty was not severely influenced. A minimum body fat content or percentage did not seem to initiate pubertal onset. There was a trend for a lower percentage of the AL-50 gilts to ovulate (P = .08) than those fed the AL-75 and AL-100 intakes. An inverse relationship resulted between the percentage of gilts that ovulated to the percentage that showed behavioral estrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Two trials involving 128 gilts were conducted to determine the effect of nutritional status during the first 28 d postnatally on subsequent growth and reproductive performance. Nutritional status was altered by adjusting litter size at birth to either 6 or 12 pigs and maintaining a lactation length of either 13 or 28 d. Pigs weaned at d 13 were fed on an ad libitum basis or at 50% of ad libitum through d 28. After d 28, all pigs were fed the same diets through the first parity. By market weight (d 154) pigs recovered differences in body weight imposed during the early postnatal period. Postnatal nutritional status did not alter age at puberty. Gilts weaned at d 28 from litter size 6 produced 2.4 more (P less than .05) ova than gilts from litter size 12; however, when weaned at d 13, gilts from litter size 6 produced 2.3 fewer ova than gilts from litter size 12. Feed restriction for 15 d postweaning did not depress ovulation rate in gilts. Subsequent litter size was not affected by postnatal litter size, lactation length or feed restriction, even though growth rate and ovulation rate had been altered by treatments imposed during the first 28 d postnatally. Assuming no difference in fertilization, these data suggest that prenatal mortality was altered by the early postnatal treatments and was the limiting factor for litter size. Until factors that influence prenatal losses are characterized and controlled, the alteration of nutritional status by changes in postnatal litter size, lactation length or feeding level will not detrimentally affect subsequent litter size in gilts.  相似文献   

9.
The effect of lean growth rate on puberty attainment in gilts   总被引:1,自引:0,他引:1  
Two hundred sixteen prepubertal Genex Manor hybrid F1 gilts were used to determine the impact of lean growth rate on sexual development of gilts. This study was composed of two experiments (Exp. 1 and Exp. 2). In Exp. 1, at approximately 96 d of age and 54 kg weight, gilts were allocated with respect to growth rate and litter origin to one of two dietary treatments: 1) a diet formulated to maximize lean growth potential (LP; n = 84) or 2) a diet formulated to produce a lower lean growth rate (LL; n = 84). In Exp. 2, at approximately 88 d of age and 50 kg weight, gilts were allocated with respect to growth rate and litter origin to one of two dietary treatments: 1) a diet formulated to maximize lean growth potential (LP; n = 24) or 2) a diet formulated to restrict lean growth further than was achieved in LL in Exp. 1 (RL; n = 24). All gilts were fed treatment diets for ad libitum consumption and housed in groups of six. Weight, backfat depth and loin depth, and feed intake were measured weekly. Starting at 135 d of age, gilts received 20 min of direct daily exposure to a boar as a pen group for pubertal stimulation. Puberty attainment was determined as the day gilts first exhibited the standing reflex in response to contact with a boar. At pubertal estrus, body weight, backfat depth, and loin depths were recorded. Diet affected (P < or = 0.05) estimated fat-free lean gain (LP, 424 vs LL, 347 g/d, Exp. 1; LP, 397 vs RL, 376 g/d, Exp. 2) during the growth period (start to stimulation). However, age at puberty was not affected by diet (LP, 157.3 vs LL, 157.6, Exp. 1; LP, 166.7 vs RL, 167.3, Exp. 2) or overall lean growth at stimulation (P > or = 0.05 in both experiments), confirming that innate variability in sexual development of commercial genotypes, rather than growth performance, determines onset of sexual maturity. A negative correlation between age at puberty and growth rate from 50 kg until puberty (P < or = 0.05) (LP, r = -0.40, LL, r = -0.36, Exp. 1; LP, r = -0.64, RL, r = -0.48, Exp. 2) was a consequence of reduced lean tissue growth during the stimulation period in later-maturing gilts.  相似文献   

10.
Modern sows are younger and leaner at time of mating and probably have poorer appetites than sows of 10 to 15 years ago. Therefore, feeding strategies should aim to minimize weight loss and maintain a sow's body condition throughout her reproductive life. The efficiency with which gilts are introduced into the breeding herd is as important in economic terms as is the efficiency with which the sow returns to estrus after weaning. Gilts should be selected at 50 to 60 kg, and fed a 16% protein diet ad libitum until mated at their second estrus, when they weigh 115 to 120 kg and have 17 to 20 mm backfat. Flushing gilts before the onset of second or third estrus increases ovulation rate of restricted gilts to the levels achieved by gilts fed ad libitum. During gestation, maintenance represents 75 to 85% of total energy requirements. The aim should be to achieve 20 to 25 mm backfat at farrowing. Increased feed intake from day 2 to 3 after mating will not increase embryo mortality. Feeding an extra 1 kg feed/sow/day for the last 10 days of gestation increases piglet birth weight slightly and prevents a loss of 1.5 to 2.0 mm of sow backfat. Wherever possible, sows should be fed ad libitum from the day after farrowing until weaning. Reduced feed intake by lactating sows, for whatever reason, results in excessive weight and condition loss. Excessive weight loss in lactation causes extended remating intervals, a lower percentage of sows returning to estrus within 10 days of weaning, reduced pregnancy rate, and reduced embryo survival. Ovulation rate is not affected by level of feed intake in lactation. It has been suggested that sows will have minimum weaning-to-service intervals when they weigh 150 kg or more at weaning. It is likely that the sow must be anabolic for about 10 days before she will exhibit postweaning estrus. The decision when to rebreed is made some time prior to weaning and is mediated by a host of substrates, hormones, and neurotransmitters. Sows with a delayed return to estrus also have a lower pregnancy rate and smaller subsequent litters. If sows lose considerable weight or condition during lactation, a high level of feeding in the postweaning period will improve embryo survival.  相似文献   

11.
Twenty-five nongravid crossbred gilts (avg initial wt, 126 kg) were placed on either a high (38%) or a low (13%) crude protein (CP) diet and fed either at the rate of 1.82 kg/d or had ad libitum access to feed. In addition, a fifth group was pair-fed the 13% CP diet to the average intake of the gilts fed high CP ad libitum. The experimental period lasted 30 d. Corn-soybean meal diets were used and CP levels were varied by altering the corn:soybean meal ratio. Gain and gain/feed were reduced (P less than .01) in gilts fed 1.82 kg/d compared with the gilts fed ad libitum or pair-fed gilts. Gain (P less than .03) and feed intake (P less than .01) of gilts with ad libitum access to the 13% CP diet were higher than those of gilts with ad libitum access to the 38% CP diet. Gain/feed was not different (P greater than .10) between the two groups, however. Rate of gain and feed efficiency of gilts pair-fed the 13% CP diet were similar (P greater than .10) to those of gilts with ad libitum access to the 38% CP diet. Plasma total free amino acids, NH3 and total protein were not (P greater than .10) affected by treatment. Plasma urea-N and urinary total N, urea-N and orotic acid were increased (P less than .01) in gilts fed the high CP diet regardless of feed intake level. However, urinary NH3 was higher (P less than .01) in gilts fed the low-protein diet. These results indicate that excess dietary CP for nongravid gilts decreases gain and feed intake and has no effect on efficiency of feed utilization, but it increases plasma urea-N and urinary total N, urea-N and orotic acid.  相似文献   

12.
The possible roles of dietary protein level and feed restriction in regulating mammary development of prepubertal gilts were investigated. Cross-bred gilts were fed a commercial diet until 90 d of age and then divided into four nutritional regimens based on two pelleted diets (as-fed basis): a high-protein diet (HP = 13.8 MJ of ME, 1.0% total lysine, 18.7% CP) and a low-protein diet (LP = 13.8 MJ of ME, 0.7% total lysine, 14.4% CP). Nutritional regimens were as follows: 1) HP ad libitum until slaughter (n = 22, T1); 2) HP ad libitum until 150 d of age followed by LP until slaughter (n = 20, T2); 3) LP ad libitum until slaughter (n = 21, T3); and 4) HP with a 20% feed restriction until slaughter (n = 19, T4). Gilts were weighed, their backfat thickness was measured, and jugular blood samples were obtained on d 90, 150, and at slaughter to determine concentrations of prolactin, IGF-I, leptin, and glucose. Gilts were slaughtered 8+/-1 d after their first or second estrus (202.7+/-14.5 d of age). Mammary glands were excised, parenchymal and extraparenchymal tissues were dissected, and composition of parenchymal tissue (protein, fat, DM, DNA, protein/DNA) was determined. The T4 gilts weighed less (P < 0.01) and had less backfat (P < 0.01) than did gilts on other treatments on d 150 and at slaughter. Treatments had no significant effects on prolactin, IGF-I, or glucose concentrations, but there was a treatment x day interaction (P < 0.01) for leptin, with concentrations being lower at slaughter in restricted-fed (T4) vs. LP (T3) gilts (P < 0.05). There was less extraparenchymal mammary tissue (P < 0.01) in T4 gilts than in gilts from the other groups and a tendency (P = 0.13) for the amount of parenchymal tissue to be lower in T4 gilts. In conclusion, a lower lysine intake during prepuberty did not hinder mammary development of gilts, but a 20% feed restriction decreased mass of parenchymal and extraparenchymal tissues. The effect of feed restriction on extraparenchymal tissue is most likely associated with the lower fat deposition.  相似文献   

13.
A 5-generation selection experiment in Yorkshire pigs for feed efficiency consists of a line selected for low residual feed intake (LRFI) and a random control line (CTRL). The objectives of this study were to use random regression models to estimate genetic parameters for daily feed intake (DFI), BW, backfat (BF), and loin muscle area (LMA) along the growth trajectory and to evaluate the effect of LRFI selection on genetic curves for DFI and BW. An additional objective was to compare random regression models using polynomials (RRP) and spline functions (RRS). Data from approximately 3 to 8 mo of age on 586 boars and 495 gilts across 5 generations were used. The average number of measurements was 85, 14, 5, and 5 for DFI, BW, BF, and LMA. The RRP models for these 4 traits were fitted with pen × on-test group as a fixed effect, second-order Legendre polynomials of age as fixed curves for each generation, and random curves for additive genetic and permanent environmental effects. Different residual variances were used for the first and second halves of the test period. The RRS models were fitted with the same fixed effects and residual variance structure as the RRP models and included genetic and permanent environmental random effects for both splines and linear Legendre polynomials of age. The RRP model was used for further analysis because the RRS model had erratic estimates of phenotypic variance and heritability, despite having a smaller Bayesian information criterion than the RRP model. From 91 to 210 d of age, estimates of heritability from the RRP model ranged from 0.10 to 0.37 for boars and 0.14 to 0.26 for gilts for DFI, from 0.39 to 0.58 for boars and 0.55 to 0.61 for gilts for BW, from 0.48 to 0.61 for boars and 0.61 to 0.79 for gilts for BF, and from 0.46 to 0.55 for boars and 0.63 to 0.81 for gilts for LMA. In generation 5, LRFI pigs had lower average genetic curves than CTRL pigs for DFI and BW, especially toward the end of the test period; estimated line differences (CTRL-LRFI) for DFI were 0.04 kg/d for boars and 0.12 kg/d for gilts at 105 d and 0.20 kg/d for boars and 0.24 kg/d for gilts at 195 d. Line differences for BW were 0.17 kg for boars and 0.69 kg for gilts at 105 d and 3.49 kg for boars and 8.96 kg for gilts at 195 d. In conclusion, selection for LRFI has resulted in a lower feed intake curve and a lower BW curve toward maturity.  相似文献   

14.
Boar exposure has been used for estrus induction of prepubertal gilts, but has limited effect on estrus synchronization within 7 d of introduction. In contrast, PG600 (400 IU of PMSG and 200 IU of hCG; Intervet, Millsboro, DE) is effective for induction of synchronized estrus, but the response is often variable. It is unknown whether boar exposure before PG600 administration might improve the efficiency of estrus induction of prepubertal gilts. In Exp. 1, physical or fence-line boar contact for 19 d was evaluated for inducing puberty in gilts before administration of i.m. PG600. Exp. 2 investigated whether 4-d boar exposure and gilt age influenced response to PG600. In Exp. 1, 150-d-old prepubertal gilts were randomly allotted to receive fence-line (n = 27, FBE) or physical (n = 29, PBE) boar exposure. Gilts were provided exposure to a mature boar for 30 min daily. All gilts received PG600 at 169 d of age. Estrous detection continued for 20 d after injection. In Exp. 2, prepubertal gilts were allotted by age group (160 or 180 d) to receive no boar exposure (NBE) or 4 d of fence-line boar exposure (BE) for 30 min daily before receiving PG600 either i.m. or s.c. Following PG600 administration, detection for estrus occurred twice-daily using fence-line boar exposure for 7 d. Results of Exp. 1 indicated no differences between FBE and PBE on estrus (77%), age at puberty (170 d), interval from PG600 to estrus (4 d), gilts ovulating (67%), or ovulation rate (12 corpora lutea, CL). Results from Exp. 2 indicated no effect of age group on estrus (55%) and days from PG600 to estrus (4 d). A greater (P < 0.05) proportion of BE gilts expressed estrus (65 vs. 47%), had a shorter (P < 0.05) interval from PG600 to estrus (3.6 vs. 4.3 d), and had decreased (P < 0.05) age at estrus (174 vs. 189 d) compared with NBE. Ovulation rate was greater (P < 0.05) in the BE group for the 180-d-old gilts (12.7 vs. 11.9 CL) compared with the NBE group. However, age group had no effect on ovulation (77%) or ovulation rate (12 CL). Collectively, these results indicate that physical boar contact may not be necessary when used in conjunction with PG600 to induce early puberty. The administration of PG600 to 180-d-old gilts in conjunction with 4 d prior fence-line boar exposure may improve induction of estrus, ovulation, and decrease age at puberty.  相似文献   

15.
In an attempt to improve the reproductive performance of gilts mated at puberty, 70 Yorkshire x Landrace gilts were allocated at 120 d of age and 60 kg body weight to one of two treatments. Restricted gilts were fed 2.0 kg d-1 of a diet formulated to provide 18% crude protein and 14.5 MJ DE kg-1 from selection until mated at their first estrus (n = 35). Flushed gilts were fed 2.0 kg d-1 of the same diet from 120 to 150 d of age, but then had their feed intake increased to 3.5 kg d-1 until mated at their first estrus (n = 35). An additional group of gilts (control fed; n = 33) were fed 3.0 kg d-1 from selection until they were bred at their third estrus in order to investigate the influence of feed restriction on the onset of puberty. During gestation all gilts were fed 1.8 to 2.2 kg d-1 of a 16.8% crude protein diet having 13.7 MJ DE kg-1. Control fed gilts were younger (p less than 0.05) at puberty (150 d) than restricted (165 d) or flushed gilts (165 d). There was no difference in subsequent litter size between the restricted and flushed gilts (7.7 and 8.0, respectively). It is concluded that the institution of a flushing nutritional regime in the prepubertal period will not enhance piglet production from gilts mated at puberty.  相似文献   

16.
Two barrows and two gilts were selected from each of five different crossbred litters and allotted to either ad libitum- or restricted-fed treatments. Pigs fed at a level of 81% ad libitum intake grew slower (P less than .05), had less tenth-rib backfat (P less than .05), more percent muscle (P less than .05), an increased growth hormone (GH) secretion in response to glucose challenge at 50 kg (P less than .05) and decreased insulin secretion in response to glucose challenge at 50 and 100 kg (P less than .05) than ad libitum fed pigs. Hormone secretion response was also significantly affected by weight, with growth hormone decreasing and insulin increasing as pigs grew from 50 to 100 kg. No sex effects of sex X treatment interactions were found for hormone response (P greater than .10). There were no differences between treatments in feed efficiency, total feed intake on test, loin eye area, dressing percentage, or carcass length (P greater than .10). Carcass composition of barrows and gilts was affected differently by restricted nutrient intake.  相似文献   

17.
The literature on the effects of nutrition during the growing period and the oestrous cycle on the reproductive performance of the pig is reviewed. It is concluded that the age at which the gilt reaches puberty is influenced much less by nutrition than by other environmental factors. This being so it would be advisable to feed the gilt at a level of intake which optimises food conversion efficiency. By extrapolation from the recent work of Davies and Lucas (1972) this might be expected to occur when dietary energy intake was approximately three times the maintenance requirement.In some circumstances ovulation may be a limiting factor to litter size therefore in order to maximise ovulation rate it would be advisable to feed gilts ad libitum for 11–14 days before the oestrus at which they are to be mated.Following mating the feed intake of the gilt should be reduced to provide an intake of approximately 5 Mcal ME/day.On the limited evidence available at present it would appear likely that reducing the age at which gilts reach puberty and are mated will produce small reductions in litter size, but that such a practice may be justifiable in terms of savings in food consumption.From the evidence that is available it would appear that nutritional variations during the weaning to remating period and the post weaning oestrous period may influence ovulation rate. However, ovulation rate does not seem to be the factor which limits litter size. Post weaning nutrition may be of significance in determining if and when the female returns to oestrus and also in influencing conception rate. There is certainly a case for feeding the primiparous sow liberally between weaning from her litter and conception. However in the older sow the effects are less clearly defined. The precise requirements of the sow between weaning and conception still await definition.  相似文献   

18.
A collaborative study was conducted to evaluate factors related to determining optimal feeding and management programs for increasing net returns from marketing cull sows. A total of 269 multiparous sows averaging 192 kg of body weight were weaned, moved to individual gestation crates, and assigned to one of eight treatment combinations in a 2 x 2 x 2 factorial arrangement for a 42-d postweaning feeding experiment. Factors included limited (L) (1.8 kg/sow/d) or ad libitum (AL) access to feed during wk 1 postweaning, a corn-soybean meal (corn) or barley-sunflower meal (barley) diet, and pregnant or nonpregnant status. All sows were provided ad libitum access to feed from wk 2 to 6 postweaning. Gain and feed intake (FI) data were collected weekly for each sow and used to calculate gain:feed (G/F). Ultrasonic backfat (BF) data were collected on d 0, 21, and 42 postweaning. Sows on the AL treatment had greater FI (P < 0.05) but similar gain (P = 0.80) for the 42-d postweaning period compared to sows on the L treatment. Most of this response was due to lower sow body weight loss during wk 1 postweaning (P < 0.01) when sows were provided AL (-7.2 kg) vs L (-13.2 kg) access to feed. Sows fed the corn diet had higher gain (P < 0.01), improved G/F (P < 0.01), and increased BF (P < 0.01) over the 42-d feeding period than sows fed barley. The corn diet resulted in less sow BW loss (P < 0.01) during wk 1 (-8.8 kg) than the barley diet (-11.6 kg). Pregnant sows had higher gain, FI, G/ F, and BF (P < 0.01) than nonpregnant sows over the 42-d feeding period. Most of this advantage occurred during wk 4 postweaning when FI and gain of nonpregnant sows was lower (P < 0.01) than for pregnant sows. An economic analysis indicated that, when cull sow prices are relatively high and feed prices are moderate to low, maintaining and managing cull sows for an additional 6 wk postweaning may be economically advantageous compared to 0 or 3 wk. Pregnant sows fed the corn diet produced the greatest economic return. These results suggest that mating sows as they return to estrus postweaning and providing ad libitum access to a corn-soybean meal diet improves growth performance and feed efficiency, and may thereby provide increased returns when marketing cull sows.  相似文献   

19.
Broiler breeder pullets are fully fed for several weeks to give chicks a vigorous start, to establish an adequate frame size, and to build increased flock BW uniformity. This study was designed to determine whether reducing the length of the initial ad libitum feeding period of pullets would be detrimental to subsequent fleshing, skeletal development, and BW variation. A total of 720 Ross 308 pullets were placed in 8 pens on the day of hatch and provided ad libitum access to feed at 1 wk (1WK) or 3 wk (3WK) of age, at which time a 5:2 restriction program began. Individual BW and external fleshing scores, and flock BW variation (CV and uniformity) were monitored. At 4, 8, 12, and 16 wk, 60 randomly selected birds per treatment were dissected for assessment of breast muscle, fatness, and reproductive development. At 3 wk of age, BW of the 3WK pullets (471 g) was greater than that of the 1WK pullets (312 g), and the daily rate of gain was double. Although feed allocation was decreased markedly at 3 wk in 3WK birds, by 4 wk they weighed 30% more, and had a greater frame size and proportion of breast muscle than the 1WK birds. At 8 wk of age, the 3WK birds were still heavier (973 g for 3WK vs. 899 g for 1WK). Most carcass measures were similar between treatments at 12 wk of age, by which time BW profiles were similar. At 16 wk of age, frame size and proportion of breast muscle were not different between groups. The BW variation did not differ through the initial 12 wk, but was superior at 14 and 16 wk of age in 1WK birds, possibly because of greater feed allocation between 8 to 16 wk, which is the most intense feed restriction period. The reduced feed intake of 3WK birds at the onset of feed restriction reduced their ME requirement for maintenance, likely contributing to this result. Increasing the length of the ad libitum feed access period after hatch altered growth and conformation traits to 8 wk of age and did not affect frame size or proportion of breast muscle, but increased BW variability late in the rearing period.  相似文献   

20.
Much of our understanding of energy metabolism in the pig has been derived from studies in which the energy supply was controlled through regulated feed intake. In commercial situations, where ad libitum feeding is practiced, dietary energy concentration, but not daily feed intake, is under producer control. This study evaluated the interactive effects of dietary energy concentration and feeding level (FL) on growth, body composition, and nutrient deposition rates. Individually penned PIC barrows, with an initial BW of 9.5 +/- 1.0 kg, were allotted to 1 of 9 treatments in a 3 x 3 factorial arrangement plus an initial slaughter group (n = 6) that was slaughtered at the beginning of the trial. Three NE concentrations (low, 2.15; medium, 2.26; and high, 2.37 Mcal of NE/kg) and 3 feeding levels (FL: 100, 80, or 70% of ad libitum access to feed) were investigated. Daily feed allowance for the restricted-fed pigs was adjusted twice per week on a BW basis until completion of the experiment at 25 +/- 1 kg of BW. Average daily gain, ADFI, and G:F were unaffected by NE (mean = 572 g, 781 g, and 0.732 g/g, respectively). Average daily gain and ADFI, but not G:F, increased (P < 0.05) with FL. Empty body lipid concentration increased with dietary NE concentration and with FL; a significant (P < 0.01) interaction revealed that empty body lipid concentration increased most rapidly as ADFI increased on the highest energy diet. Empty body lipid concentration was greatest in pigs with ad libitum access to the high-NE diet. Empty body protein concentration decreased with increasing NE (P < 0.05) but was not affected by FL. Empty body protein deposition (PD) increased with increasing FL (P < 0.001), but not with NE. Empty body lipid deposition (LD) and the LD:PD ratio increased (P < 0.01) in pigs with ad libitum access to the high-NE diet. In conclusion, NE did not interact with FL on growth, body protein concentration, or PD, suggesting that the conclusions regarding energy utilization obtained from experiments using restricted feed intake may not easily be applied to pigs fed under ad libitum conditions. The interactive effects of NE and FL on body lipid concentration, LD, and the LD:PD ratio indicate that changes in dietary energy concentration alter the composition of gain without necessarily changing overall BW gain. Consequently, the composition of gain is an important outcome in studies on energy utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号