首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
由于对陆地生态系统土壤、植被碳蓄积量了解的缺乏,故在预测气候变化中存在较大分歧,因此很有必要对不同生态系统碳分布情况进行研究。本文以干旱盐湖为研究对象,探究盐湖生态系统碳分布特征。结果表明:土壤有机碳密度分布随土层深度的增加而降低,土壤无机碳呈无规律分布;100 cm土层内有机碳密度介于7.55~15.75 kg·m~(-2)之间,平均为12.54 kg·m~(-2),占植物群落和土壤总有机碳密度的97.84%。黑果枸杞和铃铛刺为盐生群落的优势种,地上平均生物量为261.38 g·m~(-2),占总生物量的70.49%,草本植物群落平均生物量仅为109.45g·m~(-2);灌木和草本层地上生物量显著高于凋落物层(84.81±9.22)g·m~(-2)和(79.76±8.61)g·m~(-2)。盐生植物地下生物量随土层的增加而降低,0~100 cm土层总地下生物量为77.74 g·m~(-2)。盐生植物总生物量碳密度为276.48 g·m~(-2),其中地上、凋落物和地下生物量分别占62.09%、25.75%和12.16%;地上植被和凋落物碳密度显著高于草本植物,根系生物量碳密度在剖面上分布不均,96.55%集中在0~50 cm土层。盐生植物地上地下以及凋落物平均碳含量43.09%,与经验系数(50%)换算得到碳密度相比实际碳密度高出13.80%,这将对植被碳储量的估算产生较大的偏差。  相似文献   

2.
以中国境内阿尔泰山小东沟林区ETM+遥感影像数据和林分乔木生物量抽样调查数据为基础,选取比值植被指数、归一化差异植被指数、土壤调节植被指数、差值植被指数和近红外光百分比植被指数,分析了该林区植被指数与乔木地上生物量之间的相关性,并对生物量相关性最高的植被指数建立了植被指数与乔木地上生物量的线性回归预测模型。以预测模型为基础,利用ArcGIS 9.1软件的空间分析功能生成了小东沟林区乔木地上生物量空间分布图。生物量残差图中较强、中等和较低预测面积分别为66.60%、30.31%和3.09%,表明小东沟林区生物量空间分布的预测效果较好。将生物量空间分布预测图分别与坡度、坡向和海拔图叠加分析表明:小东沟林区乔木地上部分的生物量以斜陡坡(15°~35°)的最高(200~250 t·hm~(-2)),平缓坡(0°~15°)次之(150~200 t·hm~(-2)),急险坡(35°)的最低(100~150 t·hm~(-2))。东南、南坡向的生物量较低,而其余坡向的生物量较高。较低海拔(1 042~1 400 m)的生物量最低(100~150 t·hm~(-2)),中海拔(1 400~1 900 m)的最高(200~250 t·hm~(-2)),高海拔(1 900 m)生物量居中(150~200 t·hm~(-2))。说明利用遥感影像提取的植被指数可以很好地预测小东沟林区乔木的地上生物量,生物量的空间变化与地形因子有着密切的关系。  相似文献   

3.
开展绿洲-荒漠过渡带植被地上生物量监测是植被生长状况评价与荒漠化监测的重要手段。文中利用Sentinel-2影像数据构建了地上生物量估算模型,比较了统计模型和两种机器学习算法模型的性能,并对渭干河-库车河绿洲的绿洲-荒漠过渡带的植被地上生物量进行了估算。结果显示,在统计模型中,红边三角植被指数(RTVI)与地上生物量的非线性模型拟合效果最好,且相关最显著。在机器学习算法中,随机森林模型优于支持向量机回归模型。通过验证发现,RTVI非线性估测模型和随机森林模型具有较好的外推能力。在绿洲-荒漠过渡带植被地上生物量的反演中,随机森林模型表现出较高的精度,验证集R2为0.65,RMSE和MAE分别为255.08g·m-2和192.93g·m-2。相较其他模型,随机森林模型可以在小样本情况下更精确,对科学监测绿洲-荒漠过渡带植被地上生物量和维护绿洲的稳定发展提供依据。  相似文献   

4.
为研究内蒙古典型草原不同放牧强度植被反射光谱与植被参数和蝗虫密度的关系,使用地物波谱仪于2015年和2016年对5个放牧梯度,共20hm~2样地进行调查研究。结果表明,不同放牧强度植被地上总生物量与归一化植被指数(NDVI)关系为y=0.034 8+0.002 9x(R~2=0.645 5,P=0.000 2),蝗虫密度与NDVI线性关系为y=0.067+0.013x(R~2=0.415,P=0.006)。对其进行冗余分析(RDA)发现,植被地上总生物量、植物高度、糙隐子草生物量是蝗虫数量和NDVI变化的主要影响因子,其中植被地上总生物量是显著性影响因子(P=0.001)。在不同放牧强度下蝗虫密度与草地NDVI显著相关(P0.05),随NDVI增大而增多。本文研究结果为进一步开展放牧区蝗灾遥感监测和科学合理地利用草地资源奠定了基础。  相似文献   

5.
荒漠区植被地上生物量是土地荒漠化监测和荒漠植被遥感信息提取的重要指标。本研究以甘肃民勤县为试验区,以哨兵2号(Sentinel-2)影像为数据源,构建了比值植被指数RVI、归一化植被指数NDVI、差值植被指数DVI、土壤调节植被指数SAVI及优化型土壤调节植被指数OSAVI 5种植被指数与植被实测地上生物量的估算模型(一元线性、指数、对数和二项式模型),并利用所选的最优模型,估算了研究区的地上生物量。结果表明:SAVI相较于RVI、NDVI、DVI和OSAVI指数同地上生物量之间的相关性最高(r=0.79),基于SAVI指数的二项式模型是研究区地上生物量估算的最优模型(R2=0.76),且精度较高(R2=0.73,RMSE=0.12)。民勤县的植被相对密集区主要分布于四大灌区(红崖山、环河、昌宁、南湖)、青土湖周边以及红沙岗镇西北区域,其他地域植被较为稀疏,无植被区[<0.005 kg·(100m2)-1]、低植被区[0.005~0.2 kg·(100m2)-1...  相似文献   

6.
研究了青海湖鸟岛地区不同土壤水分梯度下个体与群落水平株高,根长和地上、地下生物量的分配。旨在:(1) 在小尺度上调查不同土壤水分梯度对草地高、根长和地上、地下生物量分配的影响;(2) 在个体和群落水平上检验同速生长理论;(3) 为青海湖周边地区地下生物量估计提供数据支持,并讨论环境因素对地下生物量与地上生物量比值(R/S)的影响。结果表明:个体水平上株高、根长、地上生物量、地下生物量都随土壤含水量的增加而降低;群落水平上地上生物量随土壤含水量的增加而增加,而地下生物量随土壤含水量的增加而降低。青海湖流域鸟岛地区个体水平上根长、株高比值的变化范围为0.3~6.0,均值和中值分别为1.6和1.3;个体水平地下生物量与地上生物量的比值也有较大的变化范围(0.4~11.3),均值和中值分别为2.5和1.5;群落水平地上生物量变化范围为221.59~352.77 g·m-2,地下生物量变化范围为741.98~1182.20 g·m-2,地下、地上生物量比值的变化范围为1.4~7.1,均值和中值分别为3.0和1.9。土壤水分在个体和群落水平上都影响到了植物株高、根长以及生物量的分配。基本表现为:个体水平上株高、根长、地上生物量、地下生物量都随土壤含水量的增加而降低;群落水平上地上生物量随土壤含水量的增加而增加,而地下生物量随土壤含水量的增加而降低。该区域草地生物量分配规律在个体和群落水平上都不支持等速生长假说。  相似文献   

7.
类短命植物粗柄独尾草器官生物量分配与估测   总被引:2,自引:0,他引:2  
粗柄独尾草(Eremurus inderiensis)是古尔班通古特沙漠特有类短命植物。采用全株挖掘法研究粗柄独尾草盛花期的生物学特征、器官生物量分配及生物量估测模型。结果表明:粗柄独尾草地上形态指标之间及其与器官生物量间均呈显著正相关,协同生长关系较强。粗柄独尾草地下生物量平均为(12.00±5.85) g/株,占全株58.23%±6.07%,地上生物量平均为(9.15±5.75) g/株,占全株41.77%±6.07%,根冠比为1.44±0.34。根生物量所占比例最大(51.61%±5.93%),其次为有性繁殖器官(25.14%±5.02%)和光合器官(16.63%±3.75%),这种分配模式体现了类短命植物生活型的特点。根冠比与地上形态指标间均为负相关关系。叶片、花序、地上及地下生物量间的相关生长分析表明,仅叶片重与地上生物量、叶片重与花序生物量间呈等速生长关系,其他均为异速关系。基于D (花柄基径)、HD2 (H为株高)的地上、地下和总生物量直接估测模型均较为精确,且地下生物量的直接和间接估测(基于异速关系)效果相同。  相似文献   

8.
研究了荒漠草原土壤有机碳的特征及其与植被之间的关系。结果表明:0-10cm和10-20cm土层土壤有机碳含量随着放牧强度的增加而降低,未放牧区(CK)>轻度放牧区(LG)>中度放牧区(MG)>重度放牧区(HG),中度放牧区和重度放牧区分别显著低于未放牧区(P<0.05);0-10cm土层土壤有机碳含量与草地地上生物量和植被盖度具有极强的相关性,与草群高度具有较强的相关性;10-20cm土层土壤有机碳与草地地上生物量和植被盖度具有极强的相关性,而与草群高度的相关性较弱;根据相关性的强弱,建立了土壤有机碳与草地地上生物量和植被盖度的线性回归模型。  相似文献   

9.
植被生物量反映了生态系统获取能量的能力,分析其分布特征对了解生态系统结构和功能具有十分重要的意义。传统的反演植被地上生物量的方法往往由于样本的缺少,以及影响因子的不确定性而导致预估精度不高。本文选用ELM对105块实测样本的遥感因子(TM影像灰度值和植被因子等10个因子)进行训练,用余下34块样地进行验证,结果表明:ELM反演植被地上生物量,可以获得较高的精度,模型预测结果与实测结果的曲线拟合决定系数R^2达0. 89。此外,对2010-2015年玛纳斯河流域的植被地上生物量进行反演,认为流域内上游山区生物量大部分较为稳定,中游平原区生物量呈现增加趋势,下游荒漠区生物量则呈现退化趋势。  相似文献   

10.
本文对不同生境盐生草(Halogeton glomeratus)种群分布特征及地上生物量做了初步分析。结果表明:(1)盐生草种群格局均为成群分布。(2)不同生境盐生草地上生物量不同:策勒-洛浦公路北侧最高达40.34±2.59g.m-2,昆仑山北坡-恰哈乡其次达24.91±1.80g.m-2,策勒-洛浦公路南侧最低为3.65±1.33g.m-2。(3)各样地地上生物量最优回归方程分别为:策勒-洛浦公路南侧Y=7.07e0.0002x;策勒-洛浦公路北侧Y=0.006x1.17;昆仑山北坡-恰哈乡Y=16.1550.0011x,各模型检验的平均拟合率都在90%以上,预测精度较可靠。  相似文献   

11.
利用内蒙古苏尼特右旗小针茅荒漠草原生长季地上、地下生物量数据,分析小针茅草原植被地上、地下生物量以及根冠比的季节动态,并建立根冠比季节动态模型。研究结果表明:① 小针茅草原植被地上生物量季节变化呈单峰型曲线,地上生物量的峰值出现在6月下旬,为46.14 g•m-2,地下生物量季节动态表现为“N”型变化规律,最高值出现在7月下旬,最低值出现在8月下旬,分别为1 275.46 g•m-2和365.1 g•m-2。② 2011年小针茅草原植被根冠比季节波动较大,最小根冠比为16.8, 出现在8月下旬, 最大根冠比为51.05, 出现在7月下旬。③ 小针茅草原植被地上生物量与根冠比具有较明显的相关关系,8月的相关关系最好,相关系数达到0.626,可以用8月的地上生物量模拟根冠比的变化。  相似文献   

12.
在东祁连山高寒草地,对围栏7年和不同放牧强度的草地进行了物种数、地上生物量、地下生物量、土壤理化性质等研究。结果表明,围栏7年的高寒草地鲜草产量为425.8 g·m-2,显著高于夏季中牧159.3 g·m-2和夏季重牧91.0 g·m-2,但与冬季轻牧、夏季轻牧差异不显著。围栏条件下的物种数为26.3种·16 m-2,显著低于其他放牧条件下的物种数,但显著高于夏季重牧条件下的物种数23.0种·16 m-2;轻度或重度放牧都会使物种数减少,夏季中牧下的物种数最高(33.5种·16 m-2)。在0~10 cm的表层土壤中,围栏7年的草地根系生物量显著高于其他放牧强度。随着放牧强度的增加,根系生物量在0~10 cm土壤中呈下降趋势,在30~40 cm土壤中则表现为升高趋势。围栏7年的土壤容重低于其他放牧强度下的土壤容重,但差异不显著;夏季重牧的土壤容重显著高于围栏7年和其他放牧强度的土壤容重。随着放牧强度的增加,0~10 cm土壤碱解氮增加,围栏7年草地最低。围栏封育可有效改善和恢复草地植被,但不能长时间禁牧不进行放牧利用。合理的放牧能够维护高寒草甸草地生态系统功能、促进物种丰富度和土壤营养的均衡。  相似文献   

13.
本文应用除趋势对应分析方法(DCA)对内蒙古草原中东部草原植被120个群落样地的分析表明:该区六种主要的草原群落类型在生境干燥度梯度上的顺序依次为:小针茅草原→短花针茅草原→克氏针茅草原→大针茅草原→贝加尔针茅草原和羊草草原。在上述分析基础上,研究了每种草原的群落组成、地上生物量及其种群结构,以及各类草原的理论载畜量。六种草原群落的地上生物量介于112Kg.DM.m ̄(-2)──1620Kg。DM.m ̄(-2)之间;相应地,理论载畜量变化于0.10─1.57羊单位/公顷。研究地区草原地上生物量(B)与年降水量(P)、年平均气温(T)和与≥10℃的积温(Tac)的关系分别为:B=-134.92+0.84P,B=136.37-25.68T,B=351.61-0.12Tac;与气候干燥度(依Penman方法计算)的关系为B=0.26+4.33e.  相似文献   

14.
生物炭对谷子幼苗生长及光合特性的影响   总被引:1,自引:0,他引:1  
为揭示生物炭在谷子种植中的应用潜力和价值,以祥谷3号为材料,采用室内盆栽试验的方式,在土壤中添加3种不同比例的生物炭(10、50、90 g·kg~(-1)),于播种后30 d对谷子幼苗进行生物量、根系形态和地上形态及叶片光合的测定分析。结果表明:与未施用生物炭(BC0)对照相比,不同剂量的生物炭均显著改善了谷子幼苗地上和地下生物量、形态指标以及除胞间CO_2浓度以外的其他光合参数指标,且以中等剂量生物炭(50 g·kg~(-1))对谷子生长和光合指标的影响效果最为明显。与对照相比,中等剂量生物炭(50 g·kg~(-1))处理谷子幼苗地上部分和地下部分鲜重、干重分别提高了220%、181%和500%、350%,根冠比增加41.7%;谷子幼苗地下部分主根长、总根长、总根表面积、根尖数、分枝数分别提高124%、215%、323%、86.4%、279%;谷子地上部分幼苗株高、茎粗和叶面积分别提高48.28%、50%、159%;叶片相对叶绿素含量和净光合速率分别提高21.01%和167%。研究表明,生物炭添加可以改善地下根系和地上茎叶形态,改善叶片光合和根系对水分和矿质元素的吸收能力,从而促进谷子生物量的积累,可为后期产量的形成奠定基础。  相似文献   

15.
不同干扰对高寒草原群落物种多样性和生物量的影响   总被引:14,自引:2,他引:12  
通过对新疆巴音布鲁克高寒草原天然草地进行灌溉、围栏(2年、7年、13年)和自由放牧处理,探讨不同干扰类型对草地植物多样性和生物量的影响。结果表明:灌溉使草地植物群落的高度、盖度和地上、地下生物量达到较高的水平,物种多样性也有一定程度的增加;而在自由放牧制度下,由于干扰过于剧烈,草地已呈退化趋势,物种多样性和生物量均较低;在围栏草地中,随着围封年限的增加,群落高度、盖度、地上、地下生物量逐渐增加,物种丰富度、多样性指数、均匀度指数呈现先增加后减小的趋势。在5种干扰类型中,物种丰富度、Shannon-W iener指数(H′)的排列顺序为:放牧草地<围栏2年草地<灌溉草地<围栏13年草地<围栏7年草地;P ielou均匀度指数的排列顺序为:围栏2年<放牧<灌溉<围栏13年<围栏7年;地上生物量的变化趋势为:放牧草地<围栏2年草地<围栏7年草地<围栏13年草地<灌溉草地;地下生物量的变化趋势为:放牧草地<围栏2年草地<灌溉草地<围栏7年草地<围栏13年草地。  相似文献   

16.
为了探讨叶面喷施硼(Na2B4O7·10H2O溶液)对马铃薯植株在干旱胁迫下生长发育及抗性的影响及其生理机制,在甘肃省景泰县条山集团马铃薯种植基地,对中度干旱和轻度干旱处理的两垄地,每隔3m进行一个硼浓度(Na2B4O7·10H2O)喷施处理,浓度依次为0、10、20、30、40、60 g·L-1,每个浓度(3 m长)的喷施量为166.7 ml。结果表明:叶面喷施硼相对增加了干旱胁迫下马铃薯的块茎产量及生物量,使干旱胁迫下叶片含水量和色素含量下降幅度减小;叶面喷施硼还从整体上表现为抗氧化酶活性的提高,并抑制了超氧阴离子产生速率的增加。通过去花与不去花植株生长发育的比较,发现去花后马铃薯植株地上部分重和地下部分重均有所下降,但施硼相对提高了块茎产量及地下部分重。可见,叶面喷施硼能促进马铃薯植株在干旱胁迫下的生长发育,提高其抗旱性及块茎产量,且这种变化可能与其促进光合产物向地下部分输送密切相关。  相似文献   

17.
基于HYDRUS模型的暗管排水水盐运移模拟   总被引:4,自引:0,他引:4  
为了探索暗管排水条件下膜下滴灌农田的水盐运移规律,本文设计了埋深1 m,间距4 m的暗管排水模型试验,研究分析灌水淋洗过程中土壤水分和盐分的动态变化规律,并利用HYDRUS模型对暗管排水条件下的水盐运移规律进行数值模拟分析与验证。结果表明:经过3次灌水淋洗后,表层0~20 cm土层内盐分含量下降至2 g·kg-1,达到了非盐化土水平,20~60 cm土体内上层土壤脱盐效果高于下层,总盐分含量下降至8 g·kg-1以下;经过实测值与模拟值的验证,土壤盐分和水分的均方根误差RMSE最大分别为0.632和1.324,决定系数R2最小分别为0.992和0.906,说明模拟结果与实测结果吻合度较好,HYDRUS模型能够较好地模拟暗管排水过程中水盐运移规律。通过模型模拟6次灌水(共90 d)后暗管排水条件下不同土层深度的水盐动态变化特征,模拟结果表明,0~40 cm土层内盐分含量下降至2 g·kg-1,40~80 cm土层内盐分含量下降至4 g·kg-1左右,基本达到轻度盐化水平;距离暗管不同间距处的土壤剖面盐分含量呈波动变化,距离暗管越远,土壤剖面含盐量越大,盐分含量在0~8 g·kg-1范围内变化。  相似文献   

18.
乌拉特荒漠草原红砂生物量预测模型   总被引:1,自引:0,他引:1  
红砂(Reaumuria soogorica)是一种广泛分布在中国半荒漠地区的多年生半灌木,是干旱荒漠区分布最广的植物种之一,具有固沙、固土的优良特性。其生物量估算对评价荒漠草原红砂的生态功能和荒漠草原经营管理具有重要作用,红砂生物量模型是估测红砂生物量的重要方法之一。本研究采用全挖法,以乌拉特荒漠草原优势种之一红砂为研究对象,基于对红砂地上、地下和整株生物量及株高(H)、冠幅(C)、基径(D)等的测定,通过数理统计的回归分析方法,利用相关生长模型(幂函数W=aX^b),分别构建了地上部分(W1)、地下部分(W2)和全株生物量(W)的预测模型。通过对比判别系数R2的大小,挑选最佳生物量估测模型。结果表明:①以冠幅(C)为指标的估测模型W1=0.555×C^1.867(R^2=0.866)能较好地反映红砂单株地上生物量累计特征。②以复合因子基径×基径×株高(D2H)为指标的估测模型W2=2.259×(D^2H)^0.762(R^2=0.769)能较好地反映红砂单株地下生物量累计特征。③以复合因子基径×基径×株高(D^2H)为指标的估测模型W=7.057×(D^2H)^0.813(R^2=0.859)能较好地反映红砂总生物量的累计特征。利用此类方法建立的生物量模型,精度高,简便易行,为评价乌拉特荒漠草原红砂的生态功能和准确测定其生物量提供科学依据。  相似文献   

19.
本研究利用CASA(Carnegie-Ames-Stanford Approach)模型模拟了2000—2013年青藏高原草地净植被生产力(Net Primary Production,NPP),结合实测数据、气象数据和土地覆被数据计算了草地降水利用效率(PUE),探究其时空分布特征,以及不同草地类型PUE及其对气候变化的响应。结果表明:青藏高原草地PUE在研究年限内呈现波动增加趋势,增加速率为每年0.0035 g·m-2·mm-1,14 a的平均值为0.38 g·m-2·mm-1PUE的空间分布具有明显的异质性,呈现东部高、中西部低的基本格局。PUE分布在0.2~0.4 g·m-2·mm-1之间的比例最大,占青藏高原总面积的55.63%,呈减少趋势的区域主要分布在青藏高原的北部和西部,以及东部的边界地区,呈增加趋势的地区集中在研究区的中部和南部。研究年限内PUE的变异系数分布在0.07~0.85之间,变化稳定的区域所占面积最大,为总面积的43.43%,主要分布在唐古拉山脉和横断山脉附近。不同草地类型间PUE均值存在差异,具体表现为:草甸(1.06 g·m-2·mm-1)>坡面草地(0.80 g·m-2·mm-1)>平原草地(0.30 g·m-2·mm-1)>高山与亚高山草甸(0.29 g·m-2·mm-1)>荒漠草地(0.23 g·m-2·mm-1)>高山与亚高山草地(0.094 g·m-2·mm-1)。总体上,青藏高原草地PUE与降水成负相关关系,而与气温呈正相关,PUE的变化对降水响应更加敏感。  相似文献   

20.
为探明咸水灌溉对土壤水盐分布及设施番茄植株生长、产量和品质的影响,本试验以南疆地区设施番茄为研究对象,设置4个灌溉水矿化度,分别为2 g·L-1(T1)、4 g·L-1(T2)、6 g·L-1(T3)和8 g·L-1(T4),并以淡水灌溉为对照(CK),开展同一灌水定额条件下设施番茄适宜灌水矿化度的研究。结果表明:不同生育期阶段土壤含水率基本表现为20~60 cm土层较高,表层及深层土壤含水率相对较低,土壤含水率随着灌水矿化度的增大逐渐增加;0~80 cm土层平均土壤含水率在生育期内逐渐降低,且深层土壤降幅显著;生育期初始阶段土壤含盐量主要积聚在0~40 cm土层,随着生育期的推进土壤盐分呈累积趋势且向深层土壤运移,生育期末主要积聚在0~60 cm土层;灌水矿化度小于4 g·L-1时0~20 cm土层整体呈脱盐状态,其中CK处理平均脱盐率达27.79%,T1处理平均脱盐率达17.07%;灌水矿化度2~4 g·L-1促进了番茄植株生长,株高和茎粗相较CK分别...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号