共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Laura Gazza Daniela SgrullettaAlessandro Cammerata Gloria GazzelloniMaurizio Perenzin Norberto E. Pogna 《Journal of Cereal Science》2011,54(3):481-487
The effects of grain texture on pastamaking and breadmaking quality were studied in three F8 soft-textured durum wheat lines (SDLs) containing wild-type alleles Pina-D1a and Pinb-D1a as compared with their hard durum sister lines (HDLs). SDLs homozygous for a small 5DS segment, less than 14.4 cM in size, accumulated puroindolines A (Pin-A) and B (Pin-B) and showed SKCS values (19.9-23.6) significantly lower than those (72.6-76.8) of their hard-textured counterparts lacking Pin-A and Pin-B. In addition, SDLs exhibited approximately 24% higher flour extraction rates compared with HDLs. Reducing the kernel hardness decreased farinograph water absorption, dough tenacity (P) and, accordingly, alveograph P/L ratio, but increased farinograph stability, mixing tolerance and dough extensibility (L). Spaghetti cooking quality, as determined by the sensory judgment of firmness, stickiness and bulkiness, was unaffected by the kernel hardness, whereas the loaf volume exhibited a 10% increase associated with kernel softening. Flour and semolina, but not spaghetti, from SDLs showed a substantial reduction in yellowness (b*) and brownness (100 − L*) likely due to their finer particle size compared with HDLs. Alleles Pina-D1a and Pinb-D1a may offer new perspectives for breeding dual purpose (pasta and bread) durum wheat varieties. 相似文献
3.
Since the production of durum wheat in the drier areas of the Mediterranean Basin is characterized by high variability in terms of yield and grain quality, there is also considerable interest in developing durum wheat in the northern regions, where the pedo-climatic conditions can offer the possibility of obtaining grain yields with higher technological quality and stability. However, the climatic conditions in the northern regions make durum wheat more prone to fungal foliar disease, particularly to Septoria Tritici Blotch (Septoria tritici Rob.) and to Fusarium Head Blight (Fusarium graminearum Petch and Fusarium culmorum Sacc.), with the consequent occurrence of DON in grains.Field experiments have been conducted over two growing seasons at four sites in North West Italy to evaluate the effect of fungicides and foliar nitrogen fertilizer application on durum wheat yield and grain quality. Five combinations of foliar application were compared at each site and each year (untreated control, azole fungicide application at heading, strobilurin fungicide at the stem elongation stage and/or at heading, the addition of a foliar N fertilizer to a fungicide programme). The following parameters were analysed: Septoria Tritici Blotch (STB) severity, flag leaf greenness using a chlorophyll meter, grain yield, test weight, grain protein content, ash content, vitreousness, Fusarium Head Blight (FHB) incidence and severity and deoxynivalenol (DON) contamination. The collected data underline that the cultivation of durum wheat at the climatic conditions of North Italy is actually risky and needs a direct control of fungal disease, which would be able to reduce the development of both foliar and head attacks. The double treatment, with a strobilurin application during the stem elongation stage and azole at heading, results to be an essential practice and showed advantages in terms of the delay of flag leaf senescence (+27%), STB control (+31), FHB control (+11%), yield (+32%) and DON contamination (−45%), compared to the untreated control. Other foliar treatments at heading, such as strobilurin or foliar N fertilizer applications, do not seem to provide any further advantage, for either grain yield or quality. No significant effect of fungicide or foliar N fertilizer application was recorded on the protein or ash concentration or vitreousness. 相似文献
4.
Durum wheat (Triticum turgidum L. var. durum) is used predominantly for pasta products, but there is increasing interest in using durum for bread-making. The goal of this study was to assess the bread-making potential of 97Emmer19, an Emmer wheat (Triticum turgidum L. var. dicoccum) and in breeding lines derived from crosses of 97Emmer19 with adapted durum wheat cultivars. 97Emmer19 and its progeny were evaluated in 2005 and 2006 along with five durum wheat cultivars. Three bread wheat (Triticum aestivum L.) cultivars were included as checks to provide a baseline of bread making quality observed in high quality bread wheat cultivars. 97Emmer19 exhibited higher LV than all the durum wheat checks and approached the LV achieved with the bread wheat cultivar ‘AC Superb’. Breeding lines derived from 97Emmer19 had higher LV than those of the durum wheat checks, confirming that this trait was heritable. In general, durum wheat cultivars with elevated gluten strength and/or increased dough extensibility were noted to have higher LV. Dough extensibility appeared to be a more critical factor as gluten strength increased. These results indicate that there is potential to select for genotypes with improved baking quality in durum breeding programs. 相似文献
5.
V. Muccilli V. Cunsolo R. Saletti S. Foti B. Margiotta F. Scossa S. Masci D. Lafiandra 《Journal of Cereal Science》2010
Glutenin polymers are formed by high (HMW-GS) and low molecular weight glutenin subunits (LMW-GS). The latter group of subunits has been less characterised compared to the former due to their great number and heterogeneity. 相似文献
6.
P. De Vita A.M. Mastrangelo L. Matteu E. Mazzucotelli N. Virzì M. Palumbo M. Lo Storto F. Rizza L. Cattivelli 《Field Crops Research》2010
In durum wheat (Triticum durum Desf.) the improvement of yield stability represents an important component for agricultural progress worldwide. This work reports on the evaluation of the yield performance of 65 durum wheat genotypes (landraces, old and new cultivars with different years of release and advanced breeding lines), in a range of Italian environments to assess the changes in adaptation and yield stability achieved over the last century as results of the genetic improvement. The Additive Main effect and Multiplicative Interaction (AMMI) analysis was used to capture a large portion of the Genotype × Environment interaction (GE) sum of squares and to separate main and interaction effects. The breeding strategies adopted during the last decades have contributed to reduce the interaction of genotypes with environments selecting genotypes with better stability across a wide range of locations and years and modern genotypes outperformed the old ones in all test environments with a strong adaptability to improved fertility. The old cultivars were characterized by a minimal responsiveness to improved environmental conditions, showing an almost stable nominal yield in agreement with the concept of “biological” or “static” stability. In contrast, the modern cultivars were highly responsive to fertility improvements and showed a pronounced adaptation to high-input environments. Notably, within the group of modern cultivars two of them, Tiziana and Giusto, showed a high-yield stability in biological terms and a high nominal yield across the tested environments. Giusto and Tiziana were the best cultivars in terms of both nominal yield and minimal GE interaction, indicating that selecting for improved yield potential may increase yield in a wide range of environments. 相似文献
7.
Durum wheat is an important crop widely distributed which grain is used in the elaboration of diverse food products. Most notably, durum wheat is used for the production of high quality pasta all around the world, but also for bread, couscous or bulgur, among other products. The end-use quality of these products is heavily determined by the grain quality characteristics, which depend on the wheat variety cultivated, the environmental effects and GxE interactions. The present study was conducted using a collection of 46 commercial durum wheat varieties to describe the phenotypic variation of the main target traits determining wheat quality, ascertain the effects of drought stress (very common in durum areas) on grain quality traits, and to assess the relationship between allelic variations of glutenins composition and gluten properties. Overall the varieties from Australia, USA and Italy showed the best performance in terms of grain quality. Additionally, the effects of drought stress on grain quality traits were analyzed: some traits were favored due to a higher protein concentration but others, such as flour yellowness were not affected by drought stress. The analysis of the varieties' glutenins composition showed the positive or negative effect of some alleles on different quality traits. 相似文献
8.
In this study 7 bran fractions were produced by grinding coarse durum wheat bran followed by sieving to achieve median particle size ranges between 115 and 1497 μm. These bran fractions were incorporated into pasta at 1, 5, 10 and 20% and the phytochemical and technological properties evaluated. Higher incorporation of bran, especially at 20%, reduced pasta quality, but a reduced impact was seen at the same degree of incorporation using finer bran. Bran increased antioxidants (by up to 65%), ferulic acid (up to 400%) and phytosterols (up to 130%) in pasta, parameters which were insensitive to bran particle size above 10% incorporation except for ferulic acid, which was higher in particles between 248 and 1497 μm. It is recommended to use finer fractions if bran is added to pasta at 20% and higher, since they provide a better quality pasta while still delivering enhancements in phytochemical content above regular semolina pasta. 相似文献
9.
Heat and drought stress on durum wheat: Responses of genotypes,yield, and quality parameters 总被引:1,自引:0,他引:1
Heat and/or drought stress during cultivation are likely to affect the processing quality of durum wheat (Triticum turgidum L. ssp. durum). This work examined the effects of drought and heat stress conditions on grain yield and quality parameters of nine durum wheat varieties, grown during two years (2008–09 and 2009–10). Generally, G and E showed main effects on all the parameters whereas the effects of G × E were relatively small. More precipitation in Y09–10 may account for the large differences in parameters observed between crop cycles (Y08–09 and Y09–10). Combined results of the two crop cycles showed that flour protein content (FP) and SDS sedimentation volume (SDSS) increased under both stress conditions, but not significantly. In contrast the gluten strength-related parameters lactic acid retention capacity (LARC) and mixograph peak time (MPT) increased and decreased significantly under drought and heat stress, respectively. Drought and heat stress drastically reduced grain yield (Y) but significantly enhanced flour yellowness (FY). LARC and the swelling index of glutenin (SIG) could be alternative tests to screen for gluten strength. Genotypes and qualtiy parameters performed differently to drought and heat stress, which justifies screening durum wheat for both yield and quality traits under these two abiotic stress conditions. 相似文献
10.
The degradation effects of wheat bug protease(s) on glutenin proteins of durum wheat cultivars were investigated by electrophoresis and modified rapid visco analyser (RVA) test. Glutenin patterns of the bug damaged durum wheats changed substantially due to bug protease(s). Although high molecular weight glutenin subunits (HMW-GS) of three cultivars (Ege, Svevo, and Zenith) disappeared after 60 min of incubation, the HMW-GS of other two cultivars (Diyarbakir and Firat) were still visible even after the longest incubation period at medium damage level. It shows that there was an intercultivar variation in susceptibility to hydrolysis by bug proteolytic enzymes. Low molecular weight glutenin subunits of all cultivars decreased substantially after 30 min of incubation. The RVA curves indicated a clear reduction in viscosity in semolina samples with both medium and high damage levels as compared to their respective undamaged (control) samples. There were significant correlations (p < 0.001) between bug damage level and viscosities at 3 min (r = −0.765), at 4.5 min (r = −0.549) and at 10 min (r = −0.835), breakdown value (r = −0.534) and decay rate (r = 0.600). Consequently, hydrolysis rate of wheat bug protease(s) can be determined by modified RVA technique without much more chemicals, procedures and expensive equipments. 相似文献
11.
A bright yellow colour of pasta is an important qualitative trait for the durum wheat industry. Final colour is the result of the balance between yellow and brown components in semolina. Carotenoid pigments and lipoxygenase (LOX) enzyme are mainly involved in yellowness, whereas peroxidase (POD) and ash affect brown hue. All these components have a different distribution across the kernel, with varietal differences too. This study aimed to evaluate the distribution pattern of carotenoid pigments, α-tocopherol, linoleic acid, and ash content as well as of LOX and POD activities within the kernel of six durum wheat cultivars characterised by different pigment content and hydroperoxidation activity of LOX in semolina. The results confirmed differences in the distribution of these components across the kernel and among varieties. Additionally, this study identified for some components (POD, pigments and bleaching activity of LOX) a higher effect of genotype whereas for others (ash, α-tocopherol, hydroperoxidation activity) a marked effect of the debranning process. These results suggest that improvement of the final semolina colour could be reached both through breeding activity, enabling an early selection of better lines, and through an appropriate debranning process. 相似文献
12.
Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars 总被引:1,自引:0,他引:1
D.B.M. Ficco C. RiefoloG. Nicastro V. De SimoneA.M. Di Gesù R. BeleggiaC. Platani L. CattivelliP. De Vita 《Field Crops Research》2009
Mineral deficiencies are prevalent in human populations and the improvement of the mineral content in cereal products represents a possible strategy to increase the human mineral intake. Nevertheless, most of the inorganic phosphorus (Pi) present in mature cereal seeds (40–80%) is stored as phytate, an anti-nutritional factor that forms complexes with minerals such as Ca, Mg, Zn and Fe reducing their bioavailability. The present study was undertaken: (i) to determine the variation in phytate and mineral concentrations in the whole grains of 84 Italian durum wheat (Triticum durum Desf.) cultivars representative of old and modern germplasm; (ii) to estimate the magnitude of genotype × environment interaction effects; and (iii) to examine the interrelationships among mineral concentrations in durum wheat with the final aim to identify superior durum wheat cultivars that possess low phytate content and high concentration of mineral elements in their whole-wheat flour. The cultivars were grown in field trials during 2004–2005 at Foggia, Italy and during 2005–2006 at Foggia and Fiorenzuola d’Arda—Southern and Northern Italy. The phytate content was estimated indirectly by using a microtitre plate assay evaluating the Pi absorbance at 820 nm, while the Cu, Fe, Mn, Ca, K, Mg, Na and Zn mineral contents were determined by ICP/OES. The contents of Zn and Fe across years and locations ranged from 28.5 to 46.3 mg/kg for Zn with an average of 37.4 mg/kg and from 33.6 to 65.6 mg/kg for Fe with an average of 49.6 mg/kg. Pi grain content was between 0.46 and 0.76 mg/g showing a positive correlation with all minerals except Cu and Zn. Although breeding activity for Fe and Zn would be difficult because G × E interaction is prevalent, multi-location evaluation of germplasm collection help to identify superior genotypes to achieve this objective. The results here reported open the possibility of designing a specific breeding program for improving the nutritional value of durum wheat through the identification of parental lines with low-Pi and high minerals concentration in whole grains. 相似文献
13.
Romina Beleggia Cristiano Platani Giuseppe Spano Massimo Monteleone Luigi Cattivelli 《Journal of Cereal Science》2009
Although pasta is generally not considered for its aromatic properties, some evidence proves that cereal flours release volatile compounds and they might have an effect on the aroma of the transformed products. This work reports on the characterization of the volatile components of semolina and pasta obtained from four durum wheat cultivars (Triticum durum Desf., cvs. PR22D89, Creso, Cappelli, Trinakria). Semolina samples were characterized through polar metabolite profiling and fatty acid analysis to identify potential precursors of the volatile components. The results show significant differences among the samples tested with cv. Trinakria characterized by the highest content of sugars and fatty acids. Volatile composition was investigated both in semolina and in cooked pasta using headspace solid-phase micro-extraction (HS-SPME) and identified by GC–MS. Thirty-five volatile compounds including aldehydes, ketones, alcohols, terpenes, esters, hydrocarbons and a furan were identified. Significant differences were observed between semolina and pasta samples in terms of composition and amount of the volatile compounds. During cooking an increase in aldehyde content, the appearance of ketones and a decrease in alcohol content were observed. Correlations between metabolites and volatiles demonstrate that the flavour of cooked pasta may differ significantly depending on the durum wheat cultivar employed. 相似文献
14.
Mariana S.L. Ferreira Pierre Martre Cécile Mangavel Christine Girousse Natalia N. Rosa Marie-Françoise Samson Marie-Hélène Morel 《Journal of Cereal Science》2012
Durum wheat is grown in the Mediterranean area where drought and high temperature frequently prevail and impact grain texture, composition and yield. The purpose of this work was to examine the effect of high temperature on grain development and final composition according to the timing of exposure. High temperature (up to 27.5 °C) was applied either during the linear grain filling or drying phases or during whole grain development. The dynamics of grain dry mass, water, glutenin polymers, and protein bodies during grain development were determined. Irrespective of high temperature timing, the arrest of grain filling was observed at 45.9% grain moisture content. At that point, starch granules included in endosperm cells reached their physical packing limit, limiting further deposits. HT applied before physiological maturity shortened the duration of grain filling and resulted in a significant increase in grain protein concentration and in the proportion of vitreous grain. Late formation of sodium dodecyl sulfate (SDS)-insoluble glutenin polymers below 32% grain moisture content was also favored. The ability of wheat storage protein to form a viscoelastic matrix embedding starch granules at the beginning of grain desiccation is proposed to be mandatory for gaining vitreous grains and a high proportion of SDS-insoluble glutenin polymers. 相似文献
15.
The effect of technological processing on the contents of eight minerals – i.e., calcium, copper, iron, magnesium, phosphorous, potassium, selenium, and zinc – was investigated in pasta making. Milling of durum wheat as well as pasta making were carried out in a pilot plant by using three different grain samples. Pasta samples purchased on the market were also surveyed to gain information on the mineral content of commercial products. The effect of cooking was also investigated in order to determine the retention of the selected elements in the final ‘ready-to-eat’ product. Analyte concentrations in whole grains, semolina, pasta and cooked pasta were determined by inductively coupled plasma-mass spectrometry. 相似文献
16.
Quantitative trait loci for yellow pigment concentration and individual carotenoid compounds in durum wheat 总被引:1,自引:0,他引:1
Antonio Blanco Pasqualina Colasuonno Agata Gadaleta Giacomo Mangini Adalgisa Schiavulli Rosanna Simeone Anna Maria Digesù Pasquale De Vita Anna Maria Mastrangelo Luigi Cattivelli 《Journal of Cereal Science》2011,54(2):255-264
A defining factor for the commercial value of durum wheat pasta is its amber colour, which depends on the semolina yellow pigment concentration and on the oxidative enzymatic activity. Among carotenoids controlling yellow colour, the presence of β-carotene is also important as precursors of vitamin A. The aim of the present study was to detect quantitative trait loci (QTL) for yellow pigment concentration, yellow index and individual carotenoid compounds (lutein, zeaxanthin, β-cryptoxanthin, α-carotene and β-carotene) in a durum segregant population. Total carotenoid concentration amounted to 37% of the yellow pigments, indicating unknown colour-producing compounds in the durum extracts. Lutein was the most abundant carotenoid, followed by zeaxanthin, α-carotene and β-carotene, while β-cryptoxanthin was a minor component. Phytoene synthase marker Psy-A1, 150 SSR and EST-SSR markers, and 345 DArT® markers, were used to construct the linkage map for subsequent QTL analysis. Clusters of QTL for total and/or one or more carotenoid compounds were detected on the same chromosome regions (2A, 3B, 5A and 7A) where QTL for yellow pigment concentration and yellow index were identified. The molecular markers associated to major QTL would be useful for marker-assisted selection programs to facilitate high carotenoid concentration with high nutritional carotenoid compounds in wheat grain. 相似文献
17.
Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia,Italy 总被引:3,自引:0,他引:3
Marco Dettori Carla Cesaraccio Andrea Motroni Donatella Spano Pierpaolo Duce 《Field Crops Research》2011
Durum wheat is a crop of great economic relevance for Mediterranean regions, especially in developing countries. A decreasing trend in durum production is expected in the near future because of several factors, in particular environmental constraints due to climate change and variability. The aim of this work was to test the predictive performance of CERES-Wheat model, implemented in DSSAT software systems, under Mediterranean climate condition and soil types of Southern Sardinia, Italy. CERES-Wheat model was calibrated for three durum wheat Italian varieties (Creso, Duilio, and Simeto) using a 30-year data set (1974–2004) and a trial and error iterative procedure. Then, the model was validated and evaluated using several statistics. The model showed a quite good performance in predicting grain yield and anthesis date, with errors comparable with those reported by other studies conducted on bread and durum wheat. Predictions of grain weight and grain number did not match very well observations, confirming the difficulties of CERES-Wheat in estimating grain yield components. The results of this study suggest the need of specific field experiments and further model evaluations and improvements to better understand model simulation results of grain yield components of durum wheat. 相似文献
18.
《Journal of Cereal Science》2005,41(1):123-131
The F4 progenies of four durum wheat crosses were used to determine the effects of different prolamin alleles on quality properties evaluated by the SDS sedimentation, mixograph, micro-alveograph and vitreousness tests and by protein content. Allelic compositions of the gliadins (Gli-B1 and Gli-2 loci) and the glutenins (Glu-1, Glu-3 and Glu-B2 loci) were determined. Alleles at the Glu-B3 locus showed a strong influence on quality measured by SDSS, mixograph and alveograph tests. Significant interactions between Glu-B3 and other glutenin loci were also detected. Prolamin composition explained more than 30% of the variation in SDSS, mixograph MT and alveograph W. The mixograph parameter BDR, and alveograph P and L parameters were the most erratic with between 8 and 76% of variation explained by prolamin composition. In general, no significant associations of prolamins with vitreousness or protein content were found. A significant correlation was detected between SDSS, MT and W. These results together with those from previous studies have important implications for wheat breeders since selection based on good alleles at Glu-B3 (a, c, j) together with favourable alleles at other loci such as Glu-A1 (subunit 1), Glu-A3 (a, c, d, h), Glu-B2 (a,b) and Gli-B1 (ω-35) could improve durum wheat quality. 相似文献
19.
Samira ChekaliSamia Gargouri Timothy Paulitz Julie M. NicolMohsen Rezgui Bouzid Nasraoui 《Crop Protection》2011,30(6):718-725
The effects of water stress on Fusarium foot and root rot in durum wheat were investigated in growth chamber, greenhouse and field tests in Tunisia. In the seedling stage, emergence of six durum wheat cultivars in the growth chamber was significantly reduced by inoculation with Fusarium culmorum and water stress (P<0.0001), with more disease under drier conditions. Additionally, the tiller number per mature plant, the 1000 grain weight and disease severity in mature stage were reduced by inoculation in greenhouse studies. In a field test, inoculation with F. culmorum significantly reduced the yield (P<0.001), by more than 17% for Om Rabiaa and 38% for Karim, the two cultivars tested. Yield was also significantly affected by precipitation and irrigation levels. The severity of the disease, estimated by the percentage of white heads, was separately affected by the cultivar (P<0.001) and inoculation (P = 0.0004). Percentage of white heads was 1.5 and 2 × higher in inoculated plants than non-inoculated for Om Rabiaa and Karim cultivars, respectively. Disease severity was highest in treatments with the greatest water stress. This is the first detailed study of water stress and F. culmorum on durum wheat in Tunisia, and indicates that cultivar resistance and irrigation management may be important in the management of Fusarium foot rot. 相似文献
20.
Under terminal drought conditions, cereal varieties with limited tillering have been suggested to be advantageous, because they have fewer nonproductive tillers, thereby limiting water consumption prior to anthesis. In this study, four field trials were conducted over two growing seasons in southern Spain, under rainfed and irrigated conditions. Twenty-five genotypes were studied to evaluate the contribution of the main stem (MS) and tillers to grain yield and its components. Significant differences were found among genotypes for these contributions under non-stressed environments, but these differences were not significant under water-stress conditions. The contribution of the MS to plant grain yield was higher than that of tillers (68% vs. 32%) and was stable between years in irrigated trials. However, in the rainfed trials, MS contributed differently depending on year-to-year climate variations. Thus, under favorable weather conditions the contribution of MS to grain yield was higher than in the unfavorable year (85% vs. 59%). In irrigated environments, MS and tiller grain yield depended on the number of grains per spike, spikelets per spike, and thousand kernel weight (TKW). Under water-limited conditions, MS yield depended on the number of grains per spike and grains per spikelet, whereas the number of spikelets and TKW had less influence on MS grain yield. Furthermore, under water-stress conditions, high tillering genotypes showed yield levels similar to the genotypes with restricted tillering. Additionally, there was no significant evidence of a positive or negative effect of maximum tiller number on grain yield under rainfed conditions. 相似文献