首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
After decades of searching for a practical method to estimate the N mineralization capacity of soil, there is still no consistent methodology. Indeed it is important to have practical methods to estimate soil nitrogen release for plant uptake and that should be appropriate, less time consuming, and cost effective for farmers. We fractionated soil organic matter (SOM) to assess different fractions of SOM as predictors for net N mineralization measured from repacked (disturbed) and intact (undisturbed) soil cores in 14 weeks of laboratory incubations. A soil set consisting of surface soil from 18 cereal and root‐cropped arable fields was physically fractionated into coarse and fine free particulate OM (coarse fPOM and fine fPOM), intra‐microaggregate particulate OM (iPOM) and silt and clay sized OM. The silt and clay sized OM was further chemically fractionated by oxidation with 6% NaOCl to isolate an oxidation‐resistant OM fraction, followed by extraction of mineral bound OM with 10% HF (HF‐res OM). Stepwise multiple linear regression yielded a significant relationship between the annual N mineralization (kg N/ha) from undisturbed soil and coarse fPOM N (kg N/ha), silt and clay N (kg N/ha) and its C:N ratio (R2 = 0.80; P < 0.01). The relative annual N mineralization (% of soil N) from disturbed soils was related to coarse fPOM N, HF‐res OC (% of soil organic carbon) and its C:N ratio (R2 = 0.83; P < 0.01). Physical fractions of SOM were thus found to be the most useful predictors for estimating the annual N mineralization rate of undisturbed soils. However, the bioavailability of physical fractions was changed due to the disturbance of soil. For disturbed soils, a presumed stable chemical SOM fraction was found to be a relevant predictor indicating that this fraction still contains bio‐available N. The latter prompted a revision in our reasoning behind selective oxidation and extraction as tools for characterizing soil organic N quality with respect to N availability. Nonetheless, the present study also underscores the potential of a combined physical and chemical fractionation procedure for isolating and quantifying N fractions which preferentially contribute to bulk soil N mineralization. The N content or C:N ratio of such fractions may be used to predict N mineralization in arable soils.  相似文献   

2.
Soil organic matter (SOM) is a complex heterogeneous mixture formed through decomposition and organo-mineral interactions, and characterization of its composition and biogeochemical stability is challenging. From this perspective, Rock-Eval® is a rapid and efficient thermal analytical method that combines the quantitative and qualitative information of SOM, including several parameters related to thermal stability. This approach has already been used to monitor changes in organic matter (OM) properties at the landscape, cropland, and soil profile scales. This study was aimed to assess the stability of SOM pools by characterizing the grain size fractions from forest litters and topsoils using Rock-Eval® thermal analysis. Litter (organic) and topsoil samples were collected from a beech forest in Normandy (France), whose management in the last 200 years has been documented. Fractionation by wet sieving was used to separate large debris (> 2 000 μm) and coarse (200-2 000 μm) and fine particulate OM (POM) (50-200 μm) in the organic samples as well as coarse (200-2 000 μm), medium (50-200 μm), and fine (< 50 μm) fractions of the topsoil samples. Rock-Eval® was able to provide thermal parameters sensitive enough to study fine-scale soil processes. In the organic layers, quantitative and qualitative changes were explained by the progressive decomposition of labile organic compounds from plant debris to the finest organic particles. Meanwhile, the grain size fractions of topsoils presented different characteristics. The coarse organo-mineral fractions showed higher C contents, albeit with a different composition, higher thermal stability, and greater decomposition degree than the plant debris forming the organic layer. These results are consistent with those of previous studies that microbial activity is more effective in this fraction. The finest fractions of topsoils showed low C contents, the highest thermal stability, and low decomposition degree, which can be explained by the stronger interactions with the mineral matrix. Therefore, it is suggested that the dynamics of OM in the different size fractions be interpreted in the light of a plant-microbe-soil continuum. Finally, three distinct thermostable C pools were highlighted through the grain size heterogeneity of SOM:free coarse OM (large debris and coarse and fine particles), weakly protected OM in (bio)aggregates (coarse fraction of topsoil), and stabilized OM in the fine fractions of topsoil, which resulted from the interactions within organo-mineral complexes. Therefore, Rock-Eval® thermal parameters can be used to empirically illustrate the conceptual models emphasizing the roles of drivers played by the gradual decomposition and protection of the most thermally labile organic constituents.  相似文献   

3.
We studied the quantitative and qualitative changes of soil organic matter (SOM) due to different land uses (arable versus grassland) and treatments (organic manure and mineral fertilizer) within an agricultural crop rotation in a long‐term field experiment, conducted since 1956 at Ultuna, Sweden, on a Eutric Cambisol. The organic carbon (OC) content of the grassland plot was 1.8 times greater than that of the similarly fertilized Ca(NO3)2 treated cropped plots. The comparison of two dispersion techniques (a low‐energy sonication and a chemical dispersion which yield inherent soil aggregates) showed that increasing OC contents of the silt‐sized fractions were not matched by a linear increase of silt‐sized aggregates. This indicated saturation of the aggregates with OC and a limited capacity of particles to protect OC physically. Thermogravimetric analyses suggested an increase of free organic matter with increasing OC contents. Transmission FT‐IR spectroscopy showed relative enrichment of carboxylic, aromatic, CH and NH groups in plots with increasing OC contents. The silt‐sized fractions contained the largest SOM pool and, as revealed by 13C NMR spectroscopy, were qualitatively more influenced by the plant residue versus manure input than the clay fractions. Alkyl and O‐alkyl C in the silt‐sized fractions amounted to 57.4% of organic carbon in the animal manure treated plots and 50–53% in the other treatments.  相似文献   

4.
We examined the short-term effect of five organic amendments and compared them to plots fertilized with inorganic fertilizer and unfertilized plots on aggregate stability and hydraulic conductivity, and on the OC and ON distribution in physically separated SOM fractions. After less than 1 year, the addition of organic amendments significantly increased ( P  <   0.01) the aggregate stability and hydraulic conductivity. The stability index ranged between 0.97 and 1.76 and the hydraulic conductivity between 1.23 and 2.80 × 10−3 m/s for the plots receiving organic amendments, compared with 0.34–0.43, and 0.42–0.64 × 10−3 m/s, respectively, for the unamended plots. There were significant differences between the organic amendments (P <  0.01), although these results were not unequivocal for both soil physical parameters. The total OC and ON content were significantly increased ( P  <   0.05) by only two applications of organic fertilizers: between 1.10 and 1.51% OC for the amended plots versus 0.98–1.08% for the unamended and between 0.092 and 0.131% ON versus 0.092–0.098% respectively. The amount of OC and ON in the free particulate organic matter fraction was also significantly increased ( P  <   0.05), but there were no significant differences ( P  <   0.05) in the OC and ON content in the POM occluded in micro-aggregates and in the silt + clay-sized organic matter fraction. The results showed that even in less than 1 year pronounced effects on soil physical properties and on the distribution of OC and ON in the SOM fractions occurred.  相似文献   

5.
Land use and mineral characteristics affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigation of the greenhouse effect. There is less information about the effects of land use and soil properties on the amount and composition of organic matter (OM) for subsurface soils as compared with surface soils. Here we aimed to analyse the long‐term (≥ 100 years) impact of arable and forest land use and soil mineral characteristics on subsurface soil organic carbon (SOC) contents, as well as on amount and composition of OM sequentially separated by Na pyrophosphate solution (OM(PY)) from subsurface soil samples. Seven soils with different mineral characteristics (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected from within Germany. Soil samples were taken from subsurface horizons of forest and adjacent arable sites continuously used for >100 years. The OM(PY) fractions were analysed for their OC content (OCPY) and characterized by Fourier transform infrared spectroscopy. Multiple regression analyses for the arable subsurface soils indicated significant positive relationships between the SOC contents and combined effects of the (i) exchangeable Ca (Caex) and oxalate‐soluble Fe (Feox) and (ii) the Caex and Alox contents. For these soils the increase in OC (OCPY multiplied by the relative C=O content of OM(PY)) and increasing contents of Caex indicated that OM(PY) mainly interacts with Ca2+. For the forest subsurface soils (pH < 5), the OCPY contents were related to the contents of Na‐pyrophosphate‐soluble Fe and Al. The long‐term arable and forest land use seems to result in different OM(PY)‐mineral interactions in subsurface soils. On the basis of this, we hypothesize that a long‐term land‐use change from arable to forest may lead to a shift from mainly OM(PY)‐Ca2+ to mainly OM(PY)‐Fe3+ and ‐Al3+ interactions if the pH of subsurface soils significantly decreases to <5.  相似文献   

6.
The long-term storage of soil organic matter (SOM) in forest soils is still poorly understood. In this study, particle size fractionation in combination with accelerator mass spectroscopy (AMS) and solid state 13C nuclear magnetic resonance (NMR) spectroscopy was applied to investigate organic carbon (OC) stabilisation in Cambisol and Luvisol profiles under spruce (Picea abies) and beech (Fagus sylvatica L.) forests. In most samples, OC was preferentially associated with <2 μm fractions. Throughout soil profiles the contribution of OC in the clay fraction to the total OC increased from 27%-53% in A horizons to 44-86% in E, B and EB horizons. The 200-2000 μm fractions from all sites and all depths showed a percentage of modern C (pmC)>100. They were enriched in 14C owing to high inputs of recent material from leaves and roots. Clearly less active material was associated with <2 and 2-20 μm fractions. This demonstrated that the particle size fractionation procedure applied to our study was capable to isolate a young OC fraction in all samples. The pmC values were strongly decreasing with depth but the decrease was much more pronounced in the fine fractions. The <2 and 2-20 μm fractions of B, E and EB horizons revealed radiocarbon ages between 512 and 4745 years before present which indicated that the SOM in those horizons was little affected by the recent vegetation. The major components of labile and stable SOM pools in topsoils and subsoils were always O/N-alkyl C (28-53%) and alkyl C (14-48%) compounds. NMR spectra of bulk soils and particle size fractions indicated that high alkyl C and O/N-alkyl C proportions throughout the soil profile are typical of Cambisols and Luvisols which were not subjected to regular burning. A relation between radiocarbon age and chemical composition throughout soil profiles was not observed. This suggests that the long-term stabilisation of SOM is mainly controlled by the existence of various mechanisms of protection offered by the soil matrix and soil minerals but not by the chemical structure of SOM itself.  相似文献   

7.

Purpose

It has been widely recognized that land use changes can cause significant alterations of soil organic matter (SOM) of various ecosystems. Forest conversion, a common land use change, and its effects on SOM have been a hot research topic during the past two decades. However, the mechanisms of the effects of forest conversion on SOM dynamics, particularly in deep soils, largely remain uncertain. This study aimed to examine the impacts of forest conversion on SOM stabilization through the analysis of soil aggregate and density fractionation, microbial composition, and functions in deep soils.

Materials and methods

Soil C and microbes were sampled in soil layers of 0–20 and 60–80 cm under broadleaved secondary forest and two coniferous plantations (Cunninghamia lanceolata and Pinus massoniana). Aggregate and density fractionation techniques were used to analyze C accumulation in non-protected, physically, chemically, and biochemically protected C fractions. A 90-day laboratory mineralization incubation experiment with and without 400-mg C kg?1 soil glucose and phenol was conducted to determine the potential mineralizable C, utilization of substrate capacity, and metabolic quotient (qCO2).

Results and discussion

Conversion of secondary forests into coniferous plantations significantly decreased bulk soil C, especially in the deep soils. Forest conversion significantly decreased non-protected, physically, and chemically protected C fractions in both topsoil and deep soil and biochemically protected C fraction in deep soils. The soil organic carbon (SOC) of topsoils was dominated by non-protected fraction while in deep soil which was dominated by protected fraction. Compared with the topsoils, soil microbes in the deep soils tend to preferentially use labile soil organic matter with lower substrate use efficiency (higher values of qCO2), which indicates that a r-strategy dominates of microbes. The increased respiration rate in the deep soils caused by forest conversion, when normalized to soil C, indicates that deep SOM may be more prone to decomposition and destabilization than top SOM.

Conclusions

Forest conversion can cause a significant alteration of SOC stabilization through the changes of physically, chemically, and biochemically protected SOC fractions. The mechanisms for the changes in non-protected or/and protected SOC fractions may be associated with the redistribution of r-strategy- and K-strategy-dominated microbes due to changes in litter inputs and priming effects.
  相似文献   

8.
Forest‐to‐pasture conversion has been reported to increase soil organic matter (SOM) in mineral topsoils in the tropical mountain rainforest region of south Ecuador, with subsequent decreases following pasture abandonment. Until now the mechanisms behind these changes have not been fully understood. To elucidate their varied preservation patterns, we analysed root‐ and shoot‐derived organic matter and assessed their contribution to the formation of SOM in topsoils (0–5 cm) on a chronosequence of pastures (Setaria sphacelata (Schumach.); C4) established after slash and burn of the natural forest (diverse C3 plant species) and an abandoned pasture site invaded by bracken fern (Pteridium arachnoideum (Kaulf.) Maxon.; C3). Cutin and suberin biomarkers of the two plant species (grass and bracken) and of forest litter were identified after saponification and their contribution to SOM was studied by compound‐specific stable carbon isotope analyses. Our results showed specific root and shoot biomarkers for the two plant species and for forest litter, which often did not correspond to the classification of root‐versus shoot‐specific monomers reported in the literature. This illustrates the importance of direct biomarker determination rather than using results from studies with different plants. Shoot‐ as well as root‐derived OM of forest and grass origin contributed to the stable SOM pool with decadal turnover times. Forest‐derived monomers contributed more to the stable SOM pool compared with grass‐derived monomers. ω‐hydroxy carboxylic acids and α,ω‐alkanedioic acids of forest origin may have been stabilized in these tropical soils by bonding to soil minerals. Rapid degradation of grass‐derived lipids from the same compound classes suggests a saturation of the mineral binding capacity. In pasture soils, the accumulation of SOM was mainly driven by large inputs of root OM. The accumulated SOM during pasture use is, however, lost rapidly after abandonment.  相似文献   

9.
The formation of soil organic matter (SOM) very much depends on microbial activity. Even more, latest studies identified microbial necromass itself being a significant source of SOM and found microbial products to initiate and enhance the formation of long-term stabilized SOM. The objectives of this study were to investigate the microbial contribution to SOM in pools of different stability and its impact on SOM quality. Hence, four arable soils of widely differing properties were density-fractionated into free and occluded particulate organic matter (fPOM, oPOM < 1.6 g cm−3 and oPOM < 2.0 g cm−3) and mineral associated organic matter (MOM > 2.0 g cm−3) by using sodium polytungstate. These fractions were characterized by in-source pyrolysis-field ionization mass spectrometry (Py-FIMS). Main SOM compound classes of the fractions were determined and further SOM properties were derived (polydispersity, thermostability). The contribution of microbial derived input to arable soil OM was estimated from the hexose to pentose ratio of the carbohydrates and the ratio of C4–C26 to C26–C36 fatty acids. Additionally, selected samples were investigated by scanning electron microscopy (SEM) for visualizing structures as indicators for the origin of OM. Results showed that, although the samples differed significantly regarding soil properties, SOM composition was comparable and almost 50% of identifiable SOM compounds of all soils types and all density fractions were assigned to phenols, lignin monomers and alkylaromatics. Most distinguishing were the high contents of carbohydrates for the MOM and of lipids for the POM fractions. Qualitative features such as polydispersity or thermostability were not in general assignable to specific compounds, density fractions or different mean residence times. Only the microbial derived part of the soil carbohydrates could be shown to be correlated with high SOM thermostability (r2 = 0.63**, n = 39). Microbial derived carbohydrates and fatty acids were both enriched in the MOM, showing that the relative contribution of microbial versus plant-derived input to arable SOM increased with density and therefore especially increased MOM thermostability. Nevertheless, the general microbial contribution to arable SOM is suggested to be high for all density fractions; a mean proportion of about 1:1 was estimated for carbohydrates. Despite biomolecules released from living microorganisms, SEM revealed that microbial mass (biomass and necromass) is a considerable source for stable SOM which is also increasing with density.  相似文献   

10.
Sorption by soil organic matter (SOM) is considered the most important process affecting the bioavailability of hydrophobic organic chemicals (HOCs)in soil.The sorption capacity of SOM for HOCs is affected by many environmental factors.In this study,we investigated the effects of soil pH and water saturation level on HOC sorption capacity of SOM using batch sorption experiments.Values of soil organic carbon-water partition coefficient (KOC) of six selected polycyclic aromatic hydrocar...  相似文献   

11.
Permafrost degradation may cause strong feedbacks of arctic ecosystems to global warming, but this will depend on if, and to what extent, organic matter (OM) is protected against biodegradation by mechanisms other than freezing and anoxia. Here, we report on the amount, chemical composition and bioavailability of particulate (POM) and mineral‐associated OM (MOM) in permafrost soils of the East Siberian Arctic. The average total organic carbon (OC) stock across all soils was 24.0 ± 6.7 kg m?2 within 100 cm soil depth. Density fractionation (density cut‐off 1.6 g cm?3) revealed that 54 ± 16% of the total soil OC and 64 ± 18% of OC in subsoil horizons was bound to minerals. As well as sorption of OM to clay‐sized minerals (R2 = 0.80; P < 0.01), co‐precipitation of OM with hydrolyzable metals may also transfer carbon into the mineral‐bound fraction. Carbon:nitrogen ratios, stable carbon and nitrogen isotopes, 13C‐NMR and X‐ray photoelectron spectroscopy showed that OM is transformed in permafrost soils, which is a prerequisite for the formation of mineral‐organic associations. Mineral‐associated OM in deeper soil was enriched in 13C and 15N, and had narrow C:N and large alkyl C:(O‐/N‐alkyl C) ratios, indicating an advanced stage of decomposition. Despite being up to several thousands of years old, when incubated under favourable conditions (60% water‐holding capacity, 15°C, adequate nutrients, 90 days), only 1.5–5% of the mineral‐associated OC was released as CO2. In the topsoils, POM had the largest mineralization but was even less bioavailable than the MOM in subsoil horizons. Our results suggest that the formation of mineral‐organic associations acts as an important additional factor in the stabilization of OM in permafrost soils. Although the majority of MOM was not prone to decomposition under favourable conditions, mineral‐organic associations host a readily accessible carbon fraction, which may actively participate in ecosystem carbon exchange.  相似文献   

12.
An essential prerequisite for a sustainable soil use is to maintain a satisfactory soil organic‐matter (OM) level. This might be achieved by sound fertilization management, though impacts of fertilization on OM have been rarely investigated with the aid of physical fractionation techniques in semiarid regions. This study aimed at examining changes in organic C (OC) and N concentrations of physically separated soil OM pools after 26 y of fertilization at a site of the semiarid Loess Plateau in China. To separate sensitive OM pools, total macro‐OM (> 0.05 mm) was obtained from bulk soil by wet‐sieving and then separated into light macro‐OM (< 1.8 g cm–3) and heavy macro‐OM (> 1.8 g cm–3) subfractions; bulk soil was also differentiated into light OM (< 1.8 g cm–3) and mineral‐associated OM (> 1.8 g cm–3). Farmyard manure increased concentrations of total macro‐OC and N by 19% and 25%, and those of light fraction OC and N by 36% and 46%, compared to no manuring; both light OC and N concentrations but only total macro‐OC concentration responded positively to mineral fertilizations compared to no mineral fertilization. This demonstrated that the light‐fraction OM was more sensitive to organic or inorganic fertilization than the total macro‐OM. Mineral‐associated OC and N concentrations also increased by manuring or mineral fertilizations, indicating an increase of stable OM relative to no fertilization treatment, however, their shares on bulk soil OC and N decreased. Mineral fertilizations improved soil OM quality by decreasing C : N ratio in the light OM fraction whereas manuring led to a decline of the C : N ratio in the total macro‐OM fraction, with respect to nil treatment. Further fractionation of the total macro‐OM according to density clarified that across treatments about 3/4 of total macro‐OM was associated with minerals. Thus, by simultaneously applying particle‐size and density separation procedures, we clearly demonstrated that the macro‐OM differed from the light OM fraction not only in its chemical composition but also in associations with minerals. The proportion of the 0.5–0.25 mm water‐stable aggregates of soil was higher under organic or inorganic fertilizations than under no manure or no mineral fertilization, and increases in OC and N concentrations of water‐stable aggregates as affected by fertilization were greater for 1–0.5 and 0.5–0.25 mm classes than for the other classes. Results indicate that OM stocks in different soil pools can be increased and the loose aggregation of these strongly eroded loess soils can be improved by organic or inorganic fertilization.  相似文献   

13.
The presence and mutual interactions of soil organic matter (SOM) and clay particles are major factors determining soil structural stability. In the scope of agricultural management and environmental sustainability, it remains unclear how various mineral and organic matter (OM) fractions, OM–clay interactions and swelling processes in the interparticle space determine soil–water interactions and thus soil structural stability. To investigate this issue, we isolated the mineral and OM fractions of an agriculturally cultivated silty loam soil by soil density fractionation and assessed their hydration characteristics and effects on soil structural stability combining 1H‐NMR relaxometry, soil rheology and single wet‐sieving of soil aggregates. The results showed that agricultural management practices, in particular compost and ploughing, as well as various OM–clay interactions significantly affected soil–water interactions and soil structural stability. On the one hand, ploughing reduced soil structural stability by promoting clay swelling as a result of disrupted soil structures and reduced SOM content. On the other hand, compost treatment and reduced tillage increased soil structural stability. In all cases, soil density fractionation showed that compost‐derived particulate organic matter (POM) and mineral‐associated organic matter (MAOM) restricted clay swelling and resulted in a highly porous and mechanically stable soil matrix. In particular, POM increased soil structural stability by acting as nucleus for soil aggregation and by restricting clay swelling via its presence as solid, granular interparticulate material. In contrast, MAOM seemed to restrict clay swelling via clay surface covering and the formation of viscous interparticulate hydrogel structures.  相似文献   

14.
Quantitative information about the amount and stability of organic carbon (OC) in different soil organic‐matter (OM) fractions and in specific organic compounds and compound‐classes is needed to improve our understanding of organic‐matter sequestration in soils. In the present paper, we summarize and integrate results performed on two different arable soils with continuous maize cropping (a) Stagnic Luvisol with maize cropping for 24 y, b) Luvic Phaeozem with maize cropping for 39 y) to identify (1) the storage of OC in different soil organic‐matter fractions, (2) the function of these fractions with respect to soil‐OC stabilization, (3) the importance and partitioning of fossil‐C deposits, and (4) the rates of soil‐OC stabilization as assessed by compound‐specific isotope analyses. The fractionation procedures included particle‐size fractionation, density fractionation, aggregate fractionation, acid hydrolysis, different oxidation procedures, isolation of extractable lipids and phospholipid fatty acids, pyrolysis, and the determination of black C. Stability of OC was determined by 13C and 14C analyses. The main inputs of OC were plant litter (both sites) and deposition of fossil C likely from coal combustion and lignite dust (only Phaeozem).  相似文献   

15.
Topsoil samples from cultivated and adjacent non‐cultivated fields on three major agricultural soils in North Cameroon were fractionated into particle‐size fractions that were analysed subsequently for their C and 13C contents. The aim was to obtain further insight into the dynamics of soil organic matter (SOM) in relation to land use in Cameroon. Since organic carbon contents of the fractions were often very small, samples and analyses were extensively replicated to obtain robust statistical estimates of observed differences. For each soil type, differences in δ13C values between fields could be related to changes in the input and decomposition of organic matter arising from soil type, land management and, for example, the nature and abundance of weeds. Turnover of organic matter appeared to be fastest in the sand fraction, which is in line with results from earlier studies. In the finer fractions, clear differences in reaction to changes in input and decomposition were observed, that seem to be linked to differences in clay mineralogy. The results illustrate that SOM in the various fractions is much less stable and more strongly affected by changes in land use than might be assumed on the basis of changes in total SOM contents alone. At the same time, they demonstrate the relevance of 13C isotope analyses of SOM for studies on the impact of land use on these savannah soils with little SOM that are highly susceptible to degradation.  相似文献   

16.
With increasing food demand worldwide, agriculture in semiarid and arid regions becomes increasingly important, though knowledge about organic matter (OM) conserving management systems is scarce. This study aimed at examining organic C (OC) and nitrogen (N) concentrations in various soil OM pools affected by 26-years application of chemical fertilizer and farmyard manure at an arid site of Gansu Province, China. Macro OM (>0.05 mm) was extracted by wet sieving and then separated into light macro OM (<1.8 g cm−3) and heavy macro OM (>1.8 g cm−3) sub-fractions; bulk soil was differentiated into free particulate OM (FPOM, <1.6 g cm−3), occluded particulate OM (OPOM, 1.6-1.8 g cm−3) and mineral-associated OM (>1.8 g cm−3). OC and N concentrations of heavy macro OM and FPOM were slightly affected by long-term N fertilization alone and its combination with P and K, but their magnitudes of change had not significantly contributed to total soil OC and N concentrations. Farmyard manure increased light macro OC and N by 58 and 70%, heavy macro OC and N by 86 and 117%, free particulate OC and N by 29 and 55%, occluded particulate OC and N by 29 and 55%, and mineral-associated OC and N by 44 and 48%, respectively, compared to nil-manure. Mineral fertilization improved soil OM quality by decreasing C/N ratio in the light macro OM and FPOM fractions where farmyard manure was absent. Organic manure led to a decline of the C/N ratio in all physically-separated OM fractions possibly due to the increased input of processed organic materials. We found about two thirds of macro OM was actually located within 2-0.05 mm organo-mineral associations or/and aggregates. In conclusion, this study stresses the vital importance to apply organic manure to the wheat-corn production system characterized by straw removal and conventional tillage in the region.  相似文献   

17.
Soil organic matter (OM) stabilization by the mineral phase can take place through sorption and aggregation. In this study we examined both of these processes, (i) organic carbon (OC) sorption onto clay‐sized particles and (ii) OC occlusion in silt‐size aggregates, with the objective of evaluating their relative importance in OM storage and stabilization in soil. We studied two loamy soil profiles (Haplic Luvisol and Plinthic Cambisol) currently under agricultural use down to a depth of 2 m. Our approach was based on two parallel fractionation methods using different dispersion intensities; these methods isolated a free clay fraction (non‐occluded) and a clay fraction occluded within water‐stable silt‐size aggregates. The two clay fractions were analysed for their C content and 14C activity. The proportion of sorbed OC was estimated as OC loss after hydrofluoric acid (HF) demineralization. Our results showed an important contribution to SOM stabilization by occlusion of OC into silt‐size aggregates with depth through both soil profiles. In the Haplic Luvisol, OC associated with clay and located in silt‐size aggregates accounted for 34–64% of the total soil OC, whereas in the Plinthic Cambisol this occluded material represented 34–40% of total OC. In the Haplic Luvisol, more OC was located in silt‐size aggregates than was sorbed onto clay‐size minerals, suggesting that silt‐size aggregation plays a dominant role in OC storage in this soil. In the Plinthic Cambisol, the abundance of sorbed OC increased with depth and contributed more to the stored C than that associated with silt‐size aggregates. Radiocarbon dating of both clay fractions (either occluded within silt‐size aggregates or not) suggests, in the case of the Plinthic Cambisol, a preferential stabilization of OC within silt‐size aggregates.  相似文献   

18.
It is generally assumed that the sorption of a nonionic pesticide on soil depends mainly on the content of soil organic matter (SOM); however, there are other factors that can contribute to this process. The possible causes of variation in the carbon-normalized partition coefficient (K OC) for chlorpyrifos (CPF) for a diverse set of ten soils have been investigated. On the one hand, the analysis of the chemical composition of the SOM was analyzed, and on the other hand, the likely interactions between the organic matter and the mineral phase were assessed. Sorption experiments of CPF were performed on whole soil, on soils treated with 2% hydrofluoric acid (HF), and onto calcined soil at 550 °C. Organic matter chemistry of soil was determined by 13C CP/MAS NMR spectroscopy; K OC values were positively correlated with aryl C relative proportion and negatively correlated with alkyl C and O-aryl C proportions and prediction equation of K OC was found (R 2?=?0.82, p?<?0.001). To evaluate possible organo-mineral interactions, a mathematical model was proposed which calculates the concentration of CPF at equilibrium (C cal) considering adsorption coefficients for the organic (K DHF) and inorganic (K D550 °C) soil constituents, separately. The comparison between C cal and the equilibrium concentration obtained from experimental data (C exp) onto whole soil allowed us to confirm that interactions between the OM and clay affect the adsorption of CPF in whole soil. Such findings should be taken into account in the development of predictive models for the evaluation of the fate and transport of this pesticide in soil.  相似文献   

19.
Phosphorus (P) sorption processes in soils contribute to important problems in agriculture: a deficiency of this plant nutrient and eutrophication in aquatic systems. Soil organic matter (SOM) plays a major role in sorption processes, but its influence on P sorption remains unclear and needs to be elucidated to improve the ability to effectively manage soil P. The aim of this research was to investigate the influence of SOM on P sorption. The study was conducted in sandy soil profiles and in topsoils before and after removal of SOM with H2O2. The results were interpreted with the Langmuir and Freundlich isotherms. Our results indicated that SOM affected P sorption in sandy soils, but that P sorption also depended on specific soil properties (e.g. values of the degree of P saturation (DPS), P sorption capacity (PSC) and pH) often related to land use. Removal of SOM decreased PSC in most of the topsoils tested; other soil properties became important in controlling P sorption. An increase in P desorption observed after SOM removal indicated that SOM was potentially that soil constituent which increased P binding and limited P leaching from these sandy soils.  相似文献   

20.
The current paradigm in soil organic matter (SOM) dynamics is that the proportion of biologically resistant SOM will increase when total SOM decreases. Recently, several studies have focused on identifying functional pools of resistant SOM consistent with expected behaviours. Our objective was to combine physical and chemical approaches to isolate and quantify biologically resistant SOM by applying acid hydrolysis treatments to physically isolated silt‐ and clay‐sized soil fractions. Microaggegrate‐derived and easily dispersed silt‐ and clay‐sized fractions were isolated from surface soil samples collected from six long‐term agricultural experiment sites across North America. These fractions were hydrolysed to quantify the non‐hydrolysable fraction, which was hypothesized to represent a functional pool of resistant SOM. Organic C and total N concentrations in the four isolated fractions decreased in the order: native > no‐till > conventional‐till at all sites. Concentrations of non‐hydrolysable C (NHC) and N (NHN) were strongly correlated with initial concentrations, and C hydrolysability was found to be invariant with management treatment. Organic C was less hydrolysable than N, and overall, resistance to acid hydrolysis was greater in the silt‐sized fractions compared with the clay‐sized fractions. The acid hydrolysis results are inconsistent with the current behaviour of increasing recalcitrance with decreasing SOM content: while %NHN was greater in cultivated soils compared with their native analogues, %NHC did not increase with decreasing total organic C concentrations. The analyses revealed an interaction between biochemical and physical protection mechanisms that acts to preserve SOM in fine mineral fractions, but the inconsistency of the pool size with expected behaviour remains to be fully explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号