首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The integrated effect of irrigation and agricultural practices on soil salinity in the Jordan Valley (JV), where over 60% of Jordan’s agricultural produce is grown, was investigated in this study during 2009-2010. Due to the differences in agricultural operations, cropping patterns, irrigation management, and weather conditions, 206 top- and sub-soil samples were taken every 1 to 3 km from representative farms along a north-south (N-S) transect with 1 to 2 km lateral extents. Soil electrical conductivity of saturated extract (ECse), Ca, Mg, K, Na, Cl, and Na adsorption ratio (SAR) were determined in saturated paste extracts. Results indicated that about 63% of soils in the JV are indeed saline, out of which almost 46% are moderately to strongly saline. Along the N-S transect of the JV, ECse increased from 4.5 to 14.1 dS m-1 in top-soil samples. Similar increase was observed for the sub-soil samples. The major chemical components of soil salinity; i.e., Ca, Mg, and Cl, also showed a similar increase along the N-S transect of the valley. Moreover, compared to previous field sampling, results showed that changes in soil salinity in the JV were dramatic. In addition, it was found that Cl imposed an existing and potential threat to sensitive crops in 60% of the soils in the JV, where Cl concentrations were greater than 710 mg L-1. Under the prevalent arid Mediterranean conditions, improving the management of irrigation water, crops, and nutrient inputs and increasing water and fertilizer use efficiencies should be indispensable to conserve and sustain the already fragile agricultural soils in the JV.  相似文献   

2.
Much is known about mechanisms and regulation of phenoxy acid herbicide degradation at the organism level, whereas the effects of environmental factors on the performance of the phenoxy acid degrading communities in soils are much less clear. In a microcosm experiment we investigated the small-scale effect of litter addition on the functioning of the MCPA degrading communities. 14C labelled MCPA was applied and the functional genes tfdA and tfdAα were quantified to characterise bacterial MCPA degradation. We identify the transport of litter compounds as an important process that probably regulates the activity of the MCPA degrading community at the soil-litter interface. Two possible mechanisms can explain the increased tfdA abundance and MCPA degradation below the litter layer: 1) transport of α-ketoglutarate or its metabolic precursors reduces the costs for regenerating this co-substrate and thereby improves growth conditions for the MCPA degrading community; 2) external supply of energy and nutrients changes the internal resource allocation towards enzyme production and/or improves the activity of bacterial consortia involved in MCPA degradation. In addition, the presence of litter compounds might have induced fungal production of litter-decaying enzymes that are able to degrade MCPA as well.  相似文献   

3.
天津滨海开发区绿地土壤盐分时空变异特征   总被引:4,自引:2,他引:4  
该文依据天津滨海经济技术开发区多年土壤盐分数据,采用传统统计学和地统计学的方法,对区域内表层土壤(0~20 cm)及底层土壤(60~80 cm)含盐量和p H值的时空变异特征进行分析。结果表明,在2006、2008、2011年,表层土壤都属于非盐化土,底层土壤盐化程度从中度转变为轻度,平均值从2.82 g/kg降低到1.65 g/kg;p H值随深度略有增大,但表层和底层的值均逐年降低。区域内表层土壤含盐量在这3a中都表现出空间分布独立性,底层土壤具有强空间相关性,受结构因素影响很大,而p H值在所有层次中都表现强空间相关性。区域内绿地土壤质量基本稳定在当地绿化用客土标准值范围内,即土壤全盐含量≤3 g/kg、p H值≤8.5。该研究对于评价当地土壤改良效果,提高绿地管理水平,积累滨海盐渍地改良经验,实现当地土地资源的可持续发展具有现实意义。  相似文献   

4.
The vertical distribution and activity of earthworm life stages were studied in an arable field during 0.5 m deep frost. The anecic Lumbricus terrestris L. were below the frost at the bottom of their home burrows (max. depth 1.0 m) and remained there apparently active. Their burrows were open, free of ice and water. The endogeic Aporrectodea caliginosa Sav., mainly small juveniles, were aestivating in the frost layer, which confirms freeze-tolerance in this species. Large A. caliginosa individuals were actively burrowing below the frost down to 1 m depth at soil temperatures close to +1 °C, frost evidently triggering much deeper burrowing than summer droughts. Demonstrating cold-hardiness, viable cocoons of both A. caliginosa and L. terrestris were obtained within a 0-0.25 m layer, frozen for ca. one month prior to sampling. These two common earthworms of boreal soils seem to over-winter in all life stages and remain active below the frost, potentially contributing to the maintenance of subsoil processes during the winter months.  相似文献   

5.
Microbial communities mediate every step of the soil nitrogen cycle, yet the structure and associated nitrogen cycle functions of soil microbial communities remain poorly studied in tropical forests. Moreover, tropical forest soils are often many meters deep, but most studies of microbial nitrogen cycling have focused exclusively on surface soils. The objective of our study was to evaluate changes in bacterial community structure and nitrogen functional genes with depth in soils developed on two contrasting geological parent materials and two forest types that occur at different elevations at the Luquillo Critical Zone Observatory in northeast Puerto Rico. We excavated three soil pits to 140 cm at four different sites representing the four soil × forest combinations (n = 12), and collected samples at ten-centimeter increments from the surface to 140 cm. We used bacterial 16S rRNA gene-DGGE (denaturant gradient gel electrophoresis) to fingerprint microbial community structures, and quantitative PCR to measure the abundance of five functional genes involved in various soil nitrogen transformations: nifH (nitrogen fixation), chiA (organic nitrogen decomposition), amoA (ammonia oxidation), nirS (nitrite reduction) and nosZ (nitrous oxide reduction). Multivariate analyses of DGGE fingerprinting patterns revealed differences in bacterial community structure across the four soil × forest types that were strongly correlated with soil pH (r = 0.69, P < 0.01) and nutrient stoichiometry (r2 ≥ 0.36, P < 0.05). Across all soil and forest types, nitrogen functional genes declined significantly with soil depth (P < 0.001). Denitrification genes (nirS and nosZ) accounted for the largest proportion of measured nitrogen functional genes. Measured nitrogen functional genes were positively correlated with soil carbon, nitrogen and phosphorus concentrations (P < 0.001) and all genes except amoA were significantly more abundant in the Inceptisol soil type compared with the Oxisol soil type (P < 0.03). Greater abundances and a stronger vertical zonation of nitrogen functional genes in Inceptisols suggest more dynamic nitrogen transformation processes in this soil type. As the first study to examine bacterial nitrogen functional gene abundances below the surface 20 cm in tropical forest soils, our work provides insight into how pedogenically-driven vertical gradients control the nitrogen-cycling capacity of soil microbial communities. While previous studies have shown evidence for redox-driven hotspots in tropical nitrogen cycling on a watershed scale, our study corroborates this finding on a molecular scale.  相似文献   

6.
Total lipid extracts from an acid andic soil profile located on Madeira Island (Portugal) were analysed using gas chromatography (GC) and GC-mass spectrometry (GC/MS). The profile was covered mainly by grass. Bulk soil characteristics determined included soil pH (H2O) ranging from 4.5 to 4.0 and TOC, ranging from 84 to 30 g kg−1. A decrease of the contribution of lipids per TOC with depth was observed. The absence of typical bacterial markers might be an indication for reduced bacterial activity, most likely related to the low soil pH and the presence of Al and Fe (oxides). The distribution observed in the top layer with a dominant C26n-alkanol, steroids and triterpenoids, reflected mainly an input by grass leaves. A strong decrease in both relative and absolute concentration of these leaf-derived compounds was observed when comparing the litter layer with the mineral soil. The presence of C22-C32n-alkanoic acids, C22-C26 ω-hydroxy acids, C31n-alkane and C22-C32n-alkanols observed in the sub-soil is indicative of an important contribution by (grass) roots. In summer, a signal most likely reflecting the leaching of microbially derived products from the litter and/or aerial vegetation at the surface was observed.  相似文献   

7.
To understand the ecological significance of arbuscular mycorrhizal (AM) associations in semi-arid and arid lands, the temporal and spatial dynamics of AM fungi and glomalin were surveyed in Mu Us sandland, northwest China. Soil samples in the rhizosphere of Artemisia ordosica Krasch. were collected in May, July and October 2007, respectively. Arbuscular, hyphal and total root infection and spore density of AM fungi peaked in summer. The mean contents of total Bradford-reactive soil proteins (T-BRSPs, TG) and easily extractable Bradford-reactive soil proteins (EE-BRSPs, EEG) reached maximal values in spring. Spore density and two BRSPs fractions were the highest in the 0-10 cm soil layer, but the ratios of two BRSPs fractions to soil organic carbon (SOC) were the highest in the 30-50 cm soil layer. Hyphal infection was negatively correlated with soil enzymatic activity (soil urease and acid phosphatase) (P < 0.05). Arbuscular infection was negatively correlated with soil acid phosphatase (P < 0.01). Spore density was positively correlated with edaphic factors (soil available N, Olsen P, and SOC) and soil enzymatic activity (soil acid and alkaline phosphatase) (P < 0.01). Two BRSPs fractions were positively correlated with edaphic factors (soil available N and SOC) and soil enzymatic activity (soil urease, acid and alkaline phosphatase) (P < 0.01). TG was positively correlated with soil Olsen P (P < 0.05). We concluded that the dynamics of AM fungi and glomalin have highly temporal and depth patterns, and influenced by nutrient availability and enzymatic activity in Mu Us sandland, and suggest that glomalin are useful indicators for evaluating soil quality and function of desert ecosystem on the basis of its relationship to AM fungal community, soil nutrient dynamics and carbon cycle.  相似文献   

8.
Real-time quantitative PCR assays, targeting part of the ammonia monooxygenase (amoA), nitrous oxide reductase (nosZ), and 16S rRNA genes were coupled with 15N pool dilution techniques to investigate the effects of long-term agricultural management practices on potential gross N mineralization and nitrification rates, as well as ammonia-oxidizing bacteria (AOB), denitrifier, and total bacterial community sizes within different soil microenvironments. Three soil microenvironments [coarse particulate organic matter (cPOM; >250 μm), microaggregate (53-250 μm), and silt-and-clay fraction (<53 μm)] were physically isolated from soil samples collected across the cropping season from conventional, low-input, and organic maize-tomato systems (Zea mays L.-Lycopersicum esculentum L.). We hypothesized that (i) the higher N inputs and soil N content of the organic system foster larger AOB and denitrifier communities than in the conventional and low-input systems, (ii) differences in potential gross N mineralization and nitrification rates across the systems correspond with AOB and denitrifier abundances, and (iii) amoA, nosZ, and 16S rRNA gene abundances are higher in the microaggregates than in the cPOM and silt-and-clay microenvironments. Despite 13 years of different soil management and greater soil C and N content in the organic compared to the conventional and low-input systems, total bacterial communities within the whole soil were similar in size across the three systems (∼5.15 × 108 copies g−1 soil). However, amoA gene densities were ∼2 times higher in the organic (1.75 × 108 copies g−1 soil) than the other systems at the start of the season and nosZ gene abundances were ∼2 times greater in the conventional (7.65 × 107 copies g−1 soil) than in the other systems by the end of the season. Because organic management did not consistently lead to larger AOB and denitrifier communities than the other two systems, our first hypothesis was not corroborated. Our second hypothesis was also not corroborated because canonical correspondence analyses revealed that AOB and denitrifier abundances were decoupled from potential gross N mineralization and nitrification rates and from inorganic N concentrations. Our third hypothesis was supported by the overall larger nitrifier, denitrifier, and total bacterial communities measured in the soil microaggregates compared to the cPOM and silt-and-clay. These results suggest that the microaggregates are microenvironments that preferentially stabilize C, and concomitantly promote the growth of nitrifier and denitrifier communities, thereby serving as potential hotspots for N2O losses.  相似文献   

9.
Copper is present in a range of fungicides as well as in some animal manures and biosolids that are applied to agricultural soils as fertilisers. Elevated and increasing levels of copper in agricultural soils are of worldwide concern. Copper is toxic to soil microorganisms and has been reported to reduce the ability of soil microorganisms to degrade pesticides. A glasshouse study was undertaken to determine if copper inhibited the degradation of atrazine and indoxacarb in soil. A fine sandy loam agricultural soil was fortified with copper at five concentrations over a concentration range of 0–1000 mg/kg copper, then field-aged for 6 months prior to treatment with either indoxacarb or atrazine at a rate of 2 mg/kg. The soils were sampled twice at intervals based on published half-lives. The samples were analysed for a range of parameters including total and bioavailable copper, urease and phosphatase activity, ergosterol and either indoxacarb or atrazine and its degradation products. The soil microbial biomass and enzyme activities decreased with increasing copper concentration (p < 0.05). There were no significant differences in soil atrazine and indoxacarb concentrations between the copper levels. At sampling time two, the concentrations of hydroxyatrazine in treatments containing the three highest copper concentrations were significantly greater (p < 0.05) than for the control soil. Our results indicate that copper does not inhibit the first step of indoxacarb and atrazine degradation, but may affect degradation of secondary metabolites like hydroxyatrazine in soil.  相似文献   

10.
Little is known how contrasting tillage (deep ploughing, top- and sub-soil loosening with straight or bent leg cultivator [BLC], direct drilling [DD]) affect important soil physical properties (total porosity [TP], pore size distribution [PSD], water release characteristics [WRC]) and CO2 emissions from a Luvisol. The study was aimed to alleviate compaction on land that had been under reduced tillage for 4 successive years. Undisturbed core samples were collected from 5–10, 15–20 and 25–30 cm depths for soil WRCs, TP and pore-size distribution determination. A closed chamber method was used to quantify the CO2 emissions from the soil. Soil loosening with straight or BLC produced the highest total soil porosity (on average 0.48 m3 m?3) within 5–30 cm soil layer, while conventional tillage (CT) gave 6%, DD up to 25% reduction. Sub-surface loosening with a BLC was the most effective tool to increase the amount of macro- and mesopores in the top- and sub-soil layers. It produced 21% more macro- and mesopores within 25–30 cm soil layer as compared to the soil loosened with a straight leg cultivator. Plant available water content under CT and DD was lower as compared to that under deep loosening with straight or BLC (23% and 18%, respectively). DD produced 12% lower soil surface net carbon dioxide exchange rate than CT and by 25–28% lower than deep soil loosening with straight or BLC. The increase in micropores within 25–30 cm soil layer caused net carbon dioxide exchange rate reduction. The amount of mesopores within the whole 5–30 cm soil layer acted as a direct dominant factor influencing net CO2 exchange rate (NCER) (Pxy = ?3.063; r = 0.86).  相似文献   

11.
The abundance and population structure of pseudomonads in soils collected from long-(1006 years) and short-(54 years) term grapevine monocultures in Switzerland were examined across five soil horizons within the 1.20-1.35 m range. Soil samples were baited with grapevine, and rhizosphere pseudomonads containing the biocontrol genes phlD (2,4-diacetylphloroglucinol synthesis) and/or hcnAB (hydrogen cyanide synthesis) were analyzed by MPN-PCR. The numbers of total, phlD+ and hcnAB+ pseudomonads decreased with depth by 1.5-2 log (short-term monoculture) and 3-3.5 log (long-term monoculture). In addition, the percentages of phlD+ (except in short-term monoculture) and hcnAB+ pseudomonads were also lower in deeper horizons. RFLP-profiling of phlD+ and hcnAB+ pseudomonads revealed three phlD and twelve hcnAB alleles overall, but the number of alleles for both decreased in relation to depth. The only phlD allele found in deeper horizons was also found in topsoil, whereas one hcnAB allele (k) found in deeper horizons in long-term monoculture was absent in the topsoil. This suggests that certain Pseudomonas ecotypes are adapted to specific depths. Four hcnAB alleles enabled discrimination between monocultures. We conclude that soil depth is a factor selecting phlD and hcnAB genotypes, and that the allelic diversity of the two biocontrol genes decreases with depth.  相似文献   

12.
Soil freeze-thaw cycles in the winter-cold zone can substantially affect soil carbon, nitrogen and phosphorus cycling, and deserve special consideration in wetlands of cold climates. Semi-disturbed soil columns from three natural wetlands (Carex marsh, Carex marshy meadow and Calamagrostis wet grassland) and a soybean field that has been reclaimed from a wetland were exposed to seven freeze-thaw cycles. The freeze-thaw treatments were performed by incubating the soil columns at −10 °C for 1 d and at 5 °C for 7 d. The control columns were incubated at 5 °C for 8 d. After each freeze-thaw cycle, the soil solution was extracted by a solution extractor installed in each soil layer of the soil column, and was analyzed for dissolved organic carbon (DOC), NH4+-N, NO3-N and total dissolved phosphorus (TDP). The results showed that freeze-thaw cycles could increase DOC, NH4+-N and NO3-N concentrations in soil solutions, and decrease TDP concentrations. Moreover, the changes of DOC, NH4+-N, NO3-N and TDP concentrations in soil solutions caused by freeze-thaw cycles were different in various sampling sites and soil layers. The increments of DOC concentrations caused by freeze-thaw cycles were greater in the wetland soil columns than in the soybean field soil columns. The increments of NH4+-N concentrations caused by freeze-thaw cycles decreased with the increase of soil depth. The depth variation in the increments of NO3-N concentrations caused by freeze-thaw cycles in the wetland soil columns was different from that in the soybean field soil columns. The decrements of TDP concentrations caused by freeze-thaw cycles were greater in columns of Carex marsh and Carex marshy meadow than in columns of Calamagrostis wet grassland and the soybean field. The study results provide information on the timing of nutrient release related to freezing and thawing in natural versus agronomic soils, and have implications for the timing of nutrient application in farm fields in relation to water quality protection.  相似文献   

13.
Mineralization and sorption of 14C-ring labeled herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) were quantified along with the tfdA gene abundance in 7 different soils. The soils tested were five gravel soils from urban locations, one soil from the embankment of a railway track, and finally an agricultural soil as a control. The mineralization experiments were performed with a concentration of MCPA of 5 mg/kg and incubated at 10 °C for a period of 60 days.With Kd values ranging from 0.04 to 0.41 l kg−1 the sorption experiments revealed that binding of MCPA to the six gravel soils was lower compared to the control soil which had a Kd value of 0.91 l kg−1. The potential for MCPA mineralization varied from less than 5 to over 55% mineralized in 60 days. The most rapid MCPA mineralization was observed in the soil from the Danish railway tracks with 55% mineralized after only 18 days. The mineralization data was fitted to degradation kinetic models, which indicated that growth occurred as a response to MCPA degradation in most of the soils.Soil DNA was extracted and tfdA genes responsible for the first step in MCPA degradation were quantified by real-time PCR (qPCR) at appropriate time points throughout the mineralization experiments. Indicating growth of specific MCPA degraders, the abundance of class III tfdA genes showed an increase during MCPA mineralization in those soils able to mineralize MCPA.These findings emphasize the importance of the presence of microorganisms that are able to readily degrade MCPA, to avoid groundwater leaching following use on urban gravel areas that possess low binding ability of the compound.  相似文献   

14.

Purpose

The purpose of this study was to determine the natural atrazine degradation activity and the genetic potential in a soil profile spanning down to the groundwater zone, collected in Finland at a site where past use of atrazine has contaminated the groundwater, and in Indian agricultural topsoils having different histories of atrazine use.

Materials and methods

Atrazine degradation potential was assessed by quantifying the atrazine degradation genes atzA, trzN, and atzB by quantitative PCR reaction. Atrazine mineralization was studied by radiorespirometry in order to find out if these genes were expressed.

Results and discussion

Indian soils contained a large number up to 104–105 copies (g?1 dry weight (dw) soil) of atrazine degradation genes after the first treatment with atrazine. These genes were also expressed, as up to 55 % of atrazine mineralized. Some unspecific binding of primers required thorough investigation and confirmation by sequencing of the qPCR products in the agricultural soil samples. The degradation capability of the nonagricultural boreal soil profile was much lower: atrazine degradation genes were present at detection limit (102 copies g?1 soil), but mineralization studies indicated that these genes were not transcribed, since no or very little atrazine mineralization was observed.

Conclusions

Our results indicate that when atrazine was applied in agricultural practice, the soil atrazine degradation capacity was high. The organisms responsible for the degradation were effectively degrading atrazine already 3 months after the first treatment with atrazine. However, in boreal soil, decades after atrazine use had been discontinued, residual atrazine was not degraded even though a small number of degradation genes could still be detected in soil. There is a need for more specific primers for qPCR in tropical soils.  相似文献   

15.
Antibiotic residues and antibiotic resistance genes originating from animal waste represent environmental pollutants with possible human health consequences. In this study, we addressed the question whether chlortetracycline (CTC) residues in soils can act as selective pressure enhancing the persistence of tetracycline (TC-r) resistance genes in grassland soils receiving cattle feces. We performed a soil microcosm experiment, using 3 grassland soils with different management history, which were incubated with feces from conventionally raised dairy cows. The microcosms included treatments with a low dose (0.2 mg kg−1), a high dose (100 mg kg−1) and no CTC. The presence and abundance of TC-r genes tet(O), tet(Q) and tet(W) and the intI1 gene coding for class 1 integrase were assessed with real-time PCR after 0, 14, 28, 56 and 86 d of incubation. The genes tet(Q) and intI1 persisted in all feces-containing treatments for at least 28 d, and tet(W) and tet(O) for at least 86 d, though they went close to limits of quantification after 14–28 d in most cases. The soil, but not the dose of CTC, significantly affected the gene persistence. Concluding, certain TC-r genes originating from cattle feces may persist in soil for several months independently from antibiotic selection pressure.  相似文献   

16.
The flavonoid class of plant secondary metabolites play a multifunctional role in below-ground plant–microbe interactions with their best known function as signals in the nitrogen fixing legume–rhizobia symbiosis. Flavonoids enter rhizosphere soil as a result of root exudation and senescence but little is known about their subsequent fate or impacts on microbial activity. Therefore, the present study examined the sorptive behaviour, biodegradation and impact on dehydrogenase activity (as determined by iodonitrotetrazolium chloride reduction) of the flavonoids naringenin and formononetin in soil. Organic carbon normalised partition coefficients, log Koc, of 3.12 (formononetin) and 3.19 (naringenin) were estimated from sorption isotherms and, after comparison with literature log Koc values for compounds whose soil behaviour is better characterised, the test flavonoids were deemed to be moderately sorbed. Naringenin (spiked at 50 μg g?1) was biodegraded without a detectable lag phase with concentrations reduced to 0.13±0.01 μg g?1 at the end of the 96 h time course. Biodegradation of formononetin proceeded after a lag phase of ~24 h with concentrations reduced to 4.5±1% of the sterile control after 72 h. Most probable number (MPN) analysis revealed that prior to the addition of flavonoids, the soil contained 5.4×106 MPN g?1 (naringenin) and 7.9×105 MPN g?1 (formononetin) catabolic microbes. Formononetin concentration had no significant (p>0.05) effect on soil dehydrogenase activity, whereas naringenin concentration had an overall but non-systematic impact (p=0.045). These results are discussed with reference to likely total and bioavailable concentrations of flavonoids experienced by microbes in the rhizosphere.  相似文献   

17.
The exotic C4 grass Spartina alterniflora was intentionally introduced to tidal coastal wetlands in Jiangsu province of China in 1982. Since then it has rapidly replaced the native C3 plant Suaeda salsa, becoming one of the dominant vegetation types in the coastal wetlands of China. Although plant invasion can change soil organic carbon (SOC) storage, little is known about how plant invasion influences C storage within soil fractions. We investigated how S. alterniflora invasion across an 8, 12 and 14-year chronosequence affected SOC and soil nitrogen (N), using soil fractionation and stable δ13C isotope analyses. SOC and N concentrations at 0-10 cm depth in S. alterniflora soil increased during the S. alterniflora invasion chronosequence, ranging from 3.67 to 4.90 g C kg−1 soil, and from 0.307 to 0.391 g N kg−1 soil. These were significantly higher than the values in the Suaeda salsa community, by 27.0-69.6% for SOC, and 21.8-55.2% for total N. The S. alterniflora-derived SOC varied from 0.40 to 0.92 g C kg−1 according to mixing calculations, assuming the two possible SOC sources of S. alterniflora and S. salsa, and accounted for 10.8-18.7% of total SOC in the colonized soils. The estimated accumulative rate of SOC from C4 (S. alterniflora) was 64.1 C kg−1 soil year−1 and from C3 sources was 78.1 mg C kg−1. The concentration of S. alterniflora-derived SOC significantly decreased from coarse fraction to fine fraction, and linearly increased as the period of S. alterniflora invasion increased. The highest accumulative rate of SOC from a C4 source occurred in macroaggregates, while the highest rate from C3 was in microaggregates. The storage of SOC derived from S. alterniflora in the macroaggregates was 0.27-0.44 g C kg−1 soil, accounting for 43.1-49.1% of the total C4derived SOC in the soil. Our results suggest that S. alterniflora invasion in coastal wetlands could facilitate SOC storage, because of the high potential for accumulation of the C which has been newly derived from S. alterniflora litter and roots.  相似文献   

18.
Mixed-species plantations of Eucalyptus and legume trees can symbiotically fix nitrogen and potentially improve the soil quality and biomass productivity compared with a conventional Eucalyptus monoculture. In this study, we evaluated changes in the structure and abundance of different microbial groups and nitrogen cycle genes in mixed and pure plantations of Acacia mangium and Eucalyptus urograndis in an experimental area in southeastern Brazil. Soil samples (0–10 cm) collected in two- and three-year-old stands were submitted to chemical characterization and molecular analyses using DGGE and real time-PCR for bacteria (16S rRNA), fungi (ITS), and genes involved in nitrogen cycling (nirK, amoA, nifH). The mixed plantation did not significantly change general soil fertility or total soil C and N content compared with the Eucalyptus monoculture. However, there was a significant increase in available phosphorus and soil nitrate content in both the A. mangium and mixed-species treatments. The multivariate ordination of the DGGE profiles of bacteria, fungi and archaea groups showed distinct community structures in each treatment. Significant differences in the abundance of copies of the target genes were found for fungi, with higher values in the Eucalyptus followed by the mixed and A. mangium plantations. The analysis of nitrogen cycle genes showed no clear difference in the communities of nitrogen fixing bacteria or nitrifying archaea among treatments. The nitrification activity was dominated by archaea because it was not possible to detect the presence of bacterial nitrifiers; the denitrifier community had a distinct profile in the Eucalyptus monoculture. The abundance of archaeal amoA and nirK genes suggests that the A. mangium treatment had higher nitrification and lower denitrification than the other treatments, which would explain the higher soil nitrate levels found in pure A. mangium treatments. Our data suggest that mixed plantations of E. urograndis and A. mangium result in a distinct microbial community relative to the respective monocultures with positive effects on soil phosphorus and nitrate content, which potentially reduces the need for anthropogenic fertilization.  相似文献   

19.
Collembolans have been known to be involved in various soil ecosystem functions. However, the role of Collembola in organic contaminant degradation has not been sufficiently elucidated to assess its contribution. In this study, varying densities of Allonychiurus kimi (Lee, 1973) (0, 10, and 30 individuals per 30 g of soil) were introduced into glyphosate-contaminated soils (74.1 mg glyphosate kg−1 soil). This study investigated changes in the microbial community and the residual glyphosate concentration in soils over incubation time to elucidate the effects of A. kimi on the glyphosate degradation through its influence on the microbial community. Furthermore, the investigation was conducted in soils collected in May and September 2018 to assess the contribution of A. kimi to glyphosate degradation in soils with varying microbial compositions and biomass. Autoclaved soil was used as a control to minimize the influence of indigenous soil microorganisms on glyphosate degradation. We hypothesize that as the initial density of A. kimi increases, the effects of A. kimi on the soil microbial community become pronounced, altering the degradation kinetics of glyphosate in the soil. The composition and biomass of the soil microorganisms were quantified using the phospholipid fatty acid (PLFA) method. Our study determined that the presence of A. kimi altered the microbial community structure by increasing the bacterial and total microbial, but not fungal, biomass. After seven days of treatment, the bacterial and total microbial biomass in the treatment with A. kimi were >2.0-fold and 1.5-fold greater, respectively, compared to those in the treatments without A. kimi. Specifically, the concentration of PLFA 18:1ω7c, i15:0, and 16:1ω7c was positively correlated with A. kimi density. The residual glyphosate concentration decreased exponentially over time as A. kimi density increased. At the end of the experiment, the remaining portions (%) of glyphosate in the May soil samples were 26.3, 20.1, and 6.2, with A. kimi densities of 0, 10, and 30 per vessel, respectively, and the portions in the September soil samples were 13.4, 12.7, and 2.2, respectively. The DT50s (time required for 50 % degradation) decreased significantly with increasing A. kimi density, ranging from 6.8 to 10.1 days at an A. kimi density of 30 to 12.9–19.4 days without A. kimi. However, in the autoclaved soil, a similar effect was not apparent (i.e., DT50s ranged from 23.3 to 27.4 days). Our study demonstrated that Collembola can enhance organic contaminant degradation in soils by altering the microbial community structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号