首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Controversial conclusions from different studies suggest that the decomposition of old soil organic matter (SOM) is either more, less, or equally temperature sensitive compared to the younger SOM. Based on chemical kinetic theory, the decomposition of more recalcitrant materials should be more temperature sensitive, unless environmental factors limit decomposition. Here, we show results for boreal upland forest soils supporting this hypothesis. We detected differences in the temperature sensitivity 1) between soil layers varying in their decomposition stage and SOM quality, and 2) inside the layers during a 495 day laboratory incubation. Temperature sensitivity increased with increasing soil depth and decreasing SOM quality. In the organic layers, temperature sensitivity of decomposition increased during the early part of a 495 day laboratory incubation, after respiration rate and SOM quality had notably decreased. This indicates that decomposition of recalcitrant compounds was more temperature sensitive than that of the labile ones. Our results imply that Q10 values for total heterotrophic soil respiration determined from short-term laboratory incubations can either underestimate or overestimate the temperature sensitivity of SOM decomposition, depending on soil layer, initial labile carbon content and temperature range used for the measurements. Using Q10 values that ignore these factors in global climate models provides erroneous estimates on the effects of climate change on soil carbon storage.  相似文献   

2.
Determining the relative temperature sensitivities of the decomposition of the different soil organic matter (SOM) pools is critical for predicting the long-term impacts of climate change on soil carbon (C) storage. Although kinetic theory suggests that the temperature sensitivity of SOM decomposition should increase with substrate recalcitrance, there remains little empirical evidence to support this hypothesis. In the study presented here, sub-samples from a single bulk soil sample were frozen and sequentially defrosted to produce samples of the same soil that had been incubated for different lengths of time, up to a maximum of 124 days. These samples were then placed into an incubation system which allowed CO2 production to be monitored constantly and the response of soil respiration to short-term temperature manipulations to be investigated. The temperature sensitivity of soil CO2 production increased significantly with incubation time suggesting that, as the most labile SOM pool was depleted the temperature sensitivity of SOM decomposition increased. This study is therefore one of the first to provide empirical support for kinetic theory. Further, using a modelling approach, we demonstrate that it is the temperature sensitivity of the decomposition of the more recalcitrant SOM pools that will determine long-term soil-C losses. Therefore, the magnitude of the positive feedback to global warming may have been underestimated in previous modelling studies.  相似文献   

3.
Quantifying the sensitivity of soil organic matter decomposition (SOM) to global warming is critical for predict future impacts of climate change on soil organic carbon stocks (SOC) and soil respiration, especially in semi‐arid regions such as north‐eastern Brazil, where SOC stocks are naturally small. In this study, the responses of the labile and recalcitrant carbon components and soil respiration dynamics were evaluated in three different soil types and land use systems (native vegetation, cropland and pasture) of the Brazilian semi‐arid region, when submitted to temperature increase. After 169 days of incubation, the results showed that an increase of 5°C generated an average increase in CO2 emission of 12.0%, but which could reach 28.1%. Overall, the labile carbon (LC) in areas of native vegetation showed greater sensitivity to temperature than in cropland areas. It was also observed that recalcitrant carbon (RC) was more sensitive to warming than LC. Our results indicate that Brazil's semi‐arid region presents a substantial vulnerability to global warming, and that the sensitivity of RC and of LC in areas of native vegetation to warming can enhance SOC losses, contributing to positive feedback on climate change, and compromising the productive systems of the region. However, further studies evaluating other types of soil and texture and management systems should be carried out to consolidate the results obtained and to improve the understanding about SOM decomposition in the Brazilian semi‐arid region.  相似文献   

4.
Conversion of natural forest to agricultural land use has significantly lowered the soil organic matter (SOM) content in sandy soils of northeast Thailand. This paper reviews the findings of comparative studies on contents of SOM pools (labile, i.e. microbial biomass and particulate organic matter—POM and stable, i.e. humic substance) and related soil aggregate formation, in natural forest plots and cultivated fields (monocrops of cassava, sugarcane and rice) in sites representative of northeast Thailand from the viewpoints of terrain (i.e. undulating), soils (sandy) and land use and discusses the restoration of SOM and fertility (nitrogen) in these degraded soils. Monocultural agriculture brings about the degradation of all SOM pools and associated soil aggregation as compared to the forest system because of decreased organic inputs and more frequent soil disturbance. The build‐up of SOM was achieved through the continuous recycling of organic residues produced within the system. Low‐quality residues contributed the largest SOM build‐up in whole and fractionated SOM pools, including POM and humic substance. However, to restore N fertility, high quality residues, (i.e. with low C/N ratios, lignin and polyphenols) were also needed. Timing of N release to meet crop demand was achieved by employing a mixture of high and low quality residues. Selection of appropriate residues for N sources was affected by environmental factors, notably soil moisture regimes, which differed in upland field and lowland paddy subsystems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
We investigated the interactions of altitude and artificial warming on the soil microbial community structure in a subalpine Abies faxoniana forest in southwestern China after four years of warming. Open top chambers (OTCs) at two elevations (3000 m and 3500 m) were established, and their soil microbial characteristics, organic carbon (C) and nitrogen (N) were measured. The microbial community structure was quantified by phospholipid fatty acid (PLFA) analysis. A two-step sulfuric acid hydrolysis was used to quantify the labile and recalcitrant C fractions in the soil organic matter. The results showed that bacterial PLFAs and gram-negative bacterial PLFAs increased and the fungal PLFAs and the fungi/bacteria ratio decreased with warming at the high altitude. By contrast, the warming effects on those parameters at low altitude were small. The higher proportion of labile easily decomposable soil C may explain the different responses of the microbial community composition at the two altitudes. An RDA analysis confirmed that the variations in the soil community structure were significantly associated with soil organic matter properties such as the sizes of the soil labile N pool (LP-N), the recalcitrant N pool (RP-N), and the labile C pool as well as dissolved organic C (DOC) and dissolved organic N concentrations (DON). Our results also showed that labile C and N pools increased with the altitude, but the microbial biomass C as measured with chloroform fumigation techniques decreased. Warming increased only the recalcitrant C pools at the high altitude. Given the longer mean residence time for recalcitrant C and the much greater size of this soil organic carbon pool, the results indicated that a rise in temperature in our case increased soil C pools at higher altitudes, at least during the early stages of experimental soil warming. Warming could also cause changes in the composition of the microbial community and enzyme activities, consequently leading to functional changes in soil ecosystem processes at the high altitude.  相似文献   

6.
An hypothesis about the different temperature dependences of the decomposition of the labile and stable organic carbon pools has been tested using an agrochernozem sampled from an experimental plot of 42-year-old continuous corn in Voronezh oblast. The partitioning of the CO2 loss during the decomposition of the labile and stable soil organic matter (SOM) at 2, 12, and 22°C in a long-term incubation experiment was performed using the method of 13C natural abundance by C3–C4 transition. On the basis of the determined decomposition constants, the SOM pools have been arranged in an order according to their increasing stability: plant residues < new (C4) SOM < old (C3) SOM. The tested hypothesis has been found valid only for a limited temperature interval. The temperature coefficient Q 10 increases in the stability order from 1.2 to 4.3 in the interval of 12–22°C. At low temperatures (2–12°C), the values of Q 10 insignificantly vary among the SOM pools and lie in the range of 2.2–2.8. Along with the decomposition constants of the SOM, the new-to-old carbon ratio in the CO2 efflux from the soil and the magnitude of the negative priming effect for the old SOM caused by the input of new organic matter depend on the temperature. In the soil under continuous corn fertilized with NPK, the increased decomposition of C3 SOM is observed compared to the unfertilized control; the temperature dependences of the SOM decomposition are similar in both agrochernozem treatments.  相似文献   

7.
万晓华  黄志群 《土壤学报》2013,50(6):1207-1215
森林土壤有机质的稳定机制对于森林长期碳吸存研究具有重要意义。土壤中难分解的生物大分子构成了土壤稳定性有机质库。稳定性土壤碳库主要来自于植物、动物、真菌和细菌,每一种土壤有机质的来源均有具体的天然生物标志物(biomarker)。本文回顾了近20年来植物标志物在土壤碳循环研究中的进展,概述了植物标志物在推断土壤有机质的植物来源以及有机质的分解程度方面的应用,并介绍了植物标志物的稳定性同位素分析在定量估算土壤有机质周转时间上的应用。本文还详细介绍了土壤中植物标志物的化学分析方法,为今后我国应用植物标志物开展土壤有机质研究提供参考。  相似文献   

8.

Purpose

Biochemical protection is an important mechanism for maintaining the long-term stability of the soil carbon (C) pool. The labile and recalcitrant pools of soil organic matter (SOM) play different roles in regulating C and N dynamics; however, few studies have characterized the capacity of soil C sequestration while considering the biochemical quality of SOM. The aim of the present study was to assess the changes in the soil organic carbon (SOC) and nitrogen (N) pools during a traditional rotation period (25 years) of a Chinese fir (Cunninghamia lanceolata) plantation with an emphasis on SOM biochemical quality.

Materials and methods

Three different forest stand development stages—young (6 years old), middle-aged (16 years old) and mature (25 years old)—were selected for soil sampling to a depth of 100 cm. Total C and total N of the soil was analysed to determine the changes in the SOC and N stocks among the three development stages using an equivalent soil mass (ESM) approach. Bulk soils were fractionated into labile and recalcitrant fractions using the acid hydrolysis method to identify the quality of SOM.

Results and discussion

The mineral soil organic carbon pool at a 1-m depth slightly decreased from the young stand to the middle-aged stand and rapidly increased by 28 % to reach a maximum in the mature stand. SOC accumulation in the surface soil predominated the changes in total SOC stocks in all three stands. The increased N was reflected in the entire depth, and the highest soil N accumulation was in the mature stand. The recalcitrant C concentration and SOC were positively correlated. The non-hydrolysable C proportion was lower in the middle-aged stand versus the young stand (8.69 % loss), while the labile C percentage was higher (13.89 % gain). In the mature stand, the recalcitrant C index increased to 39.84 %. The recalcitrant index of C decreased with an increasing soil depth, whereas the recalcitrant index of N dramatically increased.

Conclusions

These results highlighted the significant effect of the stand age and the soil depth on the storage and biochemical availability of SOM in Chinese fir plantations of southern China. The recalcitrant index of C changed with the change in SOC concentration, indicating that biochemical protection mechanism plays an important role in soil C sequestration. In addition, more attention should be paid to subsoil C protection in the management of Chinese fir plantations because of low biochemical stability.
  相似文献   

9.
Soil organic matter (SOM) represents one of the largest reservoirs of carbon on the global scale. Thus, the temperature sensitivity of bulk SOM and of different SOM fractions is a key factor determining the response of the terrestrial carbon balance to climatic warming. We condense the available knowledge about the potential temperature sensitivity and the actual temperature sensitivity of decomposition in situ, which ultimately depends on substrate availability. We review and evaluate contradictory results of estimates of the temperature sensitivity of bulk SOM and of different SOM fractions. The contradictory results demonstrate a need to focus research on biological and physicochemical controls of SOM stabilisation and destabilisation processes as a basis for understanding strictly causal relationships and kinetic properties of key processes that determine pool sizes and turnover rates of functional SOM pools. The current understanding is that temperature sensitivity of SOM mineralisation is governed by the following factors: (1) the stability of SOM, (2) the substrate availability, which is determined by the balance between input of organic matter, stabilisation and mineralisation of SOM, (3) the physiology of the soil microflora, its efficiency in substrate utilisation and its temperature optima and (4) physicochemical controls of destabilisation and stabilisation processes, like pH and limitation of water, oxygen and nutrient supply. As soil microflora is functionally omnipotent and most SOM is of high age and stability, the temperature dependence of stable SOM pools is the central question that determines C stocks and stock changes under global warming.  相似文献   

10.

Purpose

Peatland soils play an important role in the global carbon (C) cycle due to their high organic carbon content. Lowering of the water table e.g. for agricultural use accelerates aerobic secondary peat decomposition and processes of earthification. Peatlands change from C sinks to C sources. We characterized soil organic matter (SOM) with special attention to human impact through drainage. Our aim was to gain knowledge of SOM quality and soil-forming processes in drained fen soils in northeastern Germany.

Materials and methods

Through techniques of representative landscape analysis, we identified two typical and representative sampling sites in different stages of land use, representing the most important hydrogenetic mire types in northeastern Germany. We adapted chemical fractionation procedures which include hot water extraction (Chwe and Nhwe) for determination of the labile fraction. Furthermore, a stepwise acid hydrolysis procedure was performed to measure the chemical recalcitrant part of SOM as it is more resistant to biodegradability.

Results and discussion

Total organic C decreased with increasing human impact and intensity of drainage. Conversely, Chwe and Nhwe concentrations increased with increasing drainage and human impact. In contrast, the more recalcitrant fractions increased with soil depth.

Conclusions

Generally, there is a lack of existing data about SOM quality and the factors controlling its stability and decomposition in fen soils. For northeastern German fen soils, the data are even more inadequate. Influence of drainage seems to overlap natural influences of site on SOM quality. The used extraction scheme was suitable for the chemical fractionation of SOM into labile and more recalcitrant parts.  相似文献   

11.
The intensity of decomposition of the organic matter in the particle-size fractions from a agrogray soil sampled in a 5-year-long field experiment on the decomposition of corn residues was determined in the course of incubation for a year. The corn residues were placed into the soil in amounts equivalent to the amounts of plant litter in the agrocenosis and in the meadow ecosystem. A combination of three methods—the particle-size fractionation, the method of 13C natural abundance by C3–C4 transition, and the method of incubation—made it possible to subdivide the soil organic matter into the labile and stable pools. The labile pool reached 32% in the soil of the agrocenosis and 42% in the meadow soil. Owing to the negative priming effect, the addition of C4 (young) carbon favored the stabilization of the C3 (old) carbon in the soil. When the young carbon was absent, destabilization or intense decomposition of the old organic matter was observed. This process was found even in the most stable fine silt and clay fractions.  相似文献   

12.
Agroforestry systems have the potential to increase sequestration of atmospheric carbon dioxide (CO2) as soil organic carbon (SOC) because of the increased rates of organic matter addition and retention. However, few studies have characterized the relative stability of sequestered SOC in soil. We characterized SOC storage in aggregate size and chemical stability classes to estimate the relative stability of SOC pools after the addition of Leucaena-KX2 pruning residues (mulch) from 2006 to 2008 in a shaded coffee agroforestry system in Hawaii. Soil samples were separated by microaggregate isolation, density flotation and dispersion, and acid hydrolysis, resulting in five distinct fractions that differed in relative stability: coarse particulate organic matter (POM), fine POM, microaggregate-protected POM, silt + clay hydrolyzable soil organic matter (SOM), and silt + clay non-hydrolyzable SOM. With mulch addition, the fine POM fraction increased. There was also a shift in the proportion of SOC to more stable silt + clay fractions. In the absence of mulch there was no significant change in SOC fractions. Given that the turnover time of SOC in silt + clay fractions is on the order of decades to centuries, the potential benefits of active shade management and mulching compensate for the loss of C sequestration in tree biomass from pollarding.  相似文献   

13.
Although the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition has been widely studied, the estimate substantially depends on the methods used with specific assumptions. Here we compared several commonly used methods (i.e., one-pool (1P) model, two-discrete-pool (2P) model, three-discrete-pool (3P) model, and time-for-substrate (T4S) Q10 method) plus a new and more process-oriented approach for estimating Q10 of SOM decomposition from laboratory incubation data to evaluate the influences of the different methods and assumptions on Q10 estimation. The process-oriented approach is a three-transfer-pool (3PX) model that resembles the decomposition sub-model commonly used in Earth system models. The temperature sensitivity and other parameters in the models were estimated from the cumulative CO2 emission using the Bayesian Markov Chain Monte Carlo (MCMC) technique. The estimated Q10s generally increased with the soil recalcitrance, but decreased with the incubation temperature increase. Our results indicated that the 1P model did not adequately simulate the dynamics of SOM decomposition and thus was not adequate for the Q10 estimation. All the multi-pool models fitted the soil incubation data well. The Akaike information criterion (AIC) analysis suggested that the 2P model is the most parsimonious. As the incubation progressed, Q10 estimated by the 3PX model was smaller than those by the 2P and 3P models because the continuous C transfers from the slow and passive pools to the active pool were included in the 3PX model. Although the T4S method could estimate the Q10 of labile carbon appropriately, our analyses showed that it overestimated that of recalcitrant SOM. The similar structure of 3PX model with the decomposition sub-model of Earth system models provides a possible approach, via the data assimilation techniques, to incorporate results from numerous incubation experiments into Earth system models.  相似文献   

14.
The current paradigm in soil organic matter (SOM) dynamics is that the proportion of biologically resistant SOM will increase when total SOM decreases. Recently, several studies have focused on identifying functional pools of resistant SOM consistent with expected behaviours. Our objective was to combine physical and chemical approaches to isolate and quantify biologically resistant SOM by applying acid hydrolysis treatments to physically isolated silt‐ and clay‐sized soil fractions. Microaggegrate‐derived and easily dispersed silt‐ and clay‐sized fractions were isolated from surface soil samples collected from six long‐term agricultural experiment sites across North America. These fractions were hydrolysed to quantify the non‐hydrolysable fraction, which was hypothesized to represent a functional pool of resistant SOM. Organic C and total N concentrations in the four isolated fractions decreased in the order: native > no‐till > conventional‐till at all sites. Concentrations of non‐hydrolysable C (NHC) and N (NHN) were strongly correlated with initial concentrations, and C hydrolysability was found to be invariant with management treatment. Organic C was less hydrolysable than N, and overall, resistance to acid hydrolysis was greater in the silt‐sized fractions compared with the clay‐sized fractions. The acid hydrolysis results are inconsistent with the current behaviour of increasing recalcitrance with decreasing SOM content: while %NHN was greater in cultivated soils compared with their native analogues, %NHC did not increase with decreasing total organic C concentrations. The analyses revealed an interaction between biochemical and physical protection mechanisms that acts to preserve SOM in fine mineral fractions, but the inconsistency of the pool size with expected behaviour remains to be fully explained.  相似文献   

15.
Elevated CO2 may increase nutrient availability in the rhizosphere by stimulating N release from recalcitrant soil organic matter (SOM) pools through enhanced rhizodeposition. We aimed to elucidate how CO2-induced increases in rhizodeposition affect N release from recalcitrant SOM, and how wild versus cultivated genotypes of wheat mediated differential responses in soil N cycling under elevated CO2. To quantify root-derived soil carbon (C) input and release of N from stable SOM pools, plants were grown for 1 month in microcosms, exposed to 13C labeling at ambient (392 μmol mol−1) and elevated (792 μmol mol−1) CO2 concentrations, in soil containing 15N predominantly incorporated into recalcitrant SOM pools. Decomposition of stable soil C increased by 43%, root-derived soil C increased by 59%, and microbial-13C was enhanced by 50% under elevated compared to ambient CO2. Concurrently, plant 15N uptake increased (+7%) under elevated CO2 while 15N contents in the microbial biomass and mineral N pool decreased. Wild genotypes allocated more C to their roots, while cultivated genotypes allocated more C to their shoots under ambient and elevated CO2. This led to increased stable C decomposition, but not to increased N acquisition for the wild genotypes. Data suggest that increased rhizodeposition under elevated CO2 can stimulate mineralization of N from recalcitrant SOM pools and that contrasting C allocation patterns cannot fully explain plant mediated differential responses in soil N cycling to elevated CO2.  相似文献   

16.
One of the main advantages of using biochar for agricultural purposes is its ability to store carbon (C) in soil for a long-term. Studies of labile and stable fractions of soil organic matter (SOM) may be a good indicator of the dynamics of biochar in soils. This study evaluated the effects of applying sewage sludge biochar (SSB) in combination with mineral fertilizer on fractions of SOM. To conduct this evaluation, 15 Mg ha?1 of SSB combined or not with mineral fertilizer (NPK) was applied to the soil in two cropping seasons. Apart from total organic C (TOC), the labile and stable fractions of SOM were also determined. The combined use of SSB and NPK resulted in higher TOC, a 22% to 40% increase compared to the control and to the NPK treatments, respectively. The SSB produced at a lower temperature increased the labile fractions of SOM, especially the microbial biomass C, showing its capacity to supply nutrients in the short-term. The stable pools of SOM are increased after adding SSB produced at a higher temperature. It was concluded that pyrolysis temperature is a key-factor that determines the potential of SSB to accumulate C in labile and stable fractions of SOM.  相似文献   

17.
No consensus exists regarding soil organic carbon (SOC) lability and the temperature sensitivity of its decomposition. This lack of clear understanding limits the accuracy in predicting the long-term impacts of climate change on soil carbon (C) storage. In this study, we determined the temperature responses of labile and recalcitrant organic carbon (LOC vs. ROC) by comparing the time required to decompose a given amount of C at different incubation temperatures along an elevational gradient in the Wuyi Mountains in southeastern China. Results showed that the temperature sensitivity increased with increasing SOC recalcitrance (Q10-labile = 1.39 ± 0.04 vs. Q10-recalcitrant = 3.94 ± 0.30). Q10-labile and Q10-recalcitrant values significantly increased with increasing soil depth. The effect of elevational vegetation change was significant for Q10-recalcitrant but not for Q10-labile, though they increased along the elevational gradient. The response of ROC pools to changes in temperature would accelerate the soil-stored C losses in the Wuyi Mountains. Kinetic theory suggested that SOC decomposition was both temperature- and quality-dependent due to an increased temperature. This would promote more CO2 release from recalcitrant soil organic matter (SOM) in cold regions, resulting in a greater positive feedback to global climate change than previously expected. Moreover, the response of ROC to changes in temperature will determine the magnitude of the positive feedback due to its large storage in soils.  相似文献   

18.
Soil minerals are known to influence the biological stability of soil organic matter (SOM). Our study aimed to relate properties of the mineral matrix to its ability to protect organic C against decomposition in acid soils. We used the amount of hydroxyl ions released after exposure to NaF solution to establish a reactivity gradient spanning 12 subsoil horizons collected from 10 different locations. The subsoil horizons represent six soil orders and diverse geological parent materials. Phyllosilicates were characterized by X-ray diffraction and pedogenic oxides by selective dissolution procedures. The organic carbon (C) remaining after chemical removal of an oxidizable fraction of SOM with NaOCl solution was taken to represent a stable organic carbon pool. Stable organic carbon was confirmed as older than bulk organic carbon by a smaller radiocarbon (14C) content after oxidation in all 12 soils. The amount of stable organic C did not depend on clay content or the content of dithionite–citrate-extractable Fe. The combination of oxalate-extractable Fe and Al explained the greatest amount of variation in stable organic C (R2 = 0.78). Our results suggest that in acid soils, organic matter is preferentially protected by interaction with poorly crystalline minerals represented by the oxalate-soluble Fe and Al fraction. This evidence suggests that ligand exchange between mineral surface hydroxyl groups and negatively charged organic functional groups is a quantitatively important mechanism in the stabilization of SOM in acid soils. The results imply a finite stabilization capacity of soil minerals for organic matter, limited by the area density of reactive surface sites.  相似文献   

19.
Feedbacks to global warming may cause terrestrial ecosystems to add to anthropogenic CO2 emissions, thus exacerbating climate change. The contribution that soil respiration makes to these terrestrial emissions, particularly from carbon-rich soils such as peatlands, is of significant importance and its response to changing climatic conditions is of considerable debate. We collected intact soil cores from an upland blanket bog situated within the northern Pennines, England, UK and investigated the individual and interactive effects of three primary controls on soil organic matter decomposition: (i) temperature (5, 10 and 15 °C); (ii) moisture (50 and 100% field capacity – FC); and (iii) substrate quality, using increasing depth from the surface (0–10, 10–20 and 20–30 cm) as an analogue for increased recalcitrance of soil organic material. Statistical analysis of the results showed that temperature, moisture and substrate quality all significantly affected rates of peat decomposition. Q10 values indicated that the temperature sensitivity of older/more recalcitrant soil organic matter significantly increased (relative to more labile peat) under reduced soil moisture (50% FC) conditions, but not under 100% FC, suggesting that soil microorganisms decomposing the more recalcitrant soil material preferred more aerated conditions. Radiocarbon analyses revealed that soil decomposers were able to respire older, more recalcitrant soil organic matter and that the source of the material (deduced from the δ13C analyses) subject to decomposition, changed depending on depth in the peat profile.  相似文献   

20.
《Soil biology & biochemistry》2012,44(12):2432-2440
Feedbacks to global warming may cause terrestrial ecosystems to add to anthropogenic CO2 emissions, thus exacerbating climate change. The contribution that soil respiration makes to these terrestrial emissions, particularly from carbon-rich soils such as peatlands, is of significant importance and its response to changing climatic conditions is of considerable debate. We collected intact soil cores from an upland blanket bog situated within the northern Pennines, England, UK and investigated the individual and interactive effects of three primary controls on soil organic matter decomposition: (i) temperature (5, 10 and 15 °C); (ii) moisture (50 and 100% field capacity – FC); and (iii) substrate quality, using increasing depth from the surface (0–10, 10–20 and 20–30 cm) as an analogue for increased recalcitrance of soil organic material. Statistical analysis of the results showed that temperature, moisture and substrate quality all significantly affected rates of peat decomposition. Q10 values indicated that the temperature sensitivity of older/more recalcitrant soil organic matter significantly increased (relative to more labile peat) under reduced soil moisture (50% FC) conditions, but not under 100% FC, suggesting that soil microorganisms decomposing the more recalcitrant soil material preferred more aerated conditions. Radiocarbon analyses revealed that soil decomposers were able to respire older, more recalcitrant soil organic matter and that the source of the material (deduced from the δ13C analyses) subject to decomposition, changed depending on depth in the peat profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号