首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partitioning the soil surface CO2 flux (RS) flux is an important step in understanding ecosystem-level carbon cycling, given that RS is poorly constrained and its source components may have different sensitivities to climate change. Trenched plots are an inexpensive but labor-intensive method of separating the RS flux into its root (autotrophic) and soil (heterotrophic) components. This study tested if various methods of plant suppression in trenched plots affected RS fluxes, quantified the RS response to soil temperature and moisture changes, and estimated the heterotrophic contribution to RS. It was performed in a boreal black spruce (Picea mariana) plantation, using a randomized complete block design, during the 2007 and 2008 growing seasons. Trenched plots had significantly lower RS than control plots, with differences appearing ∼100 days after trenching; spatial variability doubled immediately after trenching but then declined throughout the experiment. Most trenching treatments had significantly lower (by ∼0.5 μmol CO2 m−2 s−1) RS than the controls, and there was no significant difference in RS among the various trenching treatments. Soil temperature at 2 cm explained more RS variability than did 10-cm temperature or soil moisture. Temperature sensitivity (Q10) declined in the control plots from ∼2.6 (at 5 °C) to ∼1.6 (at 15 °C); trenched plots values were higher, from 3.1 at 5 °C to 1.9 at 15 °C. We estimated RS for the study period to be 241 ± 40 g C m−2, with live roots contributing 64% of RS after accounting for fine root decay, and 293 g C m−2 for the entire year. These findings suggest that laborious hand weeding of trenched plot vegetation may be replaced by other methods, facilitating future studies of this large and poorly-understood carbon flux.  相似文献   

2.
Temporal and spatial variability of soil respiration (Rs) was measured and analyzed in a 74-year-old, mixedwood, boreal forest in Ontario, Canada, over a period of 2 years (August 2003–July 2005). The ranges of Rs measured during the two study years were 0.5–6.9 μmol CO2 m−2 s−1 for 2003–2004 (Year 1) and 0.4–6.8 μmol CO2 m−2 s−1 for 2004–2005 (Year 2). Mean annual Rs for the stand was the same for both years, 2.7 μmol CO2 m−2 s−1. Temporal variability of Rs was controlled mainly by soil temperature (Ts), but soil moisture had a confounding effect on Ts. Annual estimates of total soil CO2 emissions at the site, calculated using a simple empirical RsTs relationship, showed that Rs can account for about 88 ± 27% of total annual ecosystem respiration at the site. The majority of soil CO2 emissions came from the upper 12 to 20 cm organic LFH (litter–fibric–humic) soil layer. The degree of spatial variability in Rs, along the measured transect, was seasonal and followed the seasonal trend of mean Rs: increasing through the growing season and converging to a minimum in winter (coefficient of variation (CV) ranged from 4 to 74% in Year 1 and 4 to 62% in Year 2). Spatial variability in Rs was found to be negatively related to spatial variability in the C:N ratio of the LHF layer at the site. Spatial variability in Rs was also found to depend on forest tree species composition within the stand. Rs was about 15% higher in a broadleaf deciduous tree patch compared to evergreen coniferous area. However, the difference was not always significant (at 95% CI). In general, Rs in the mixedwood patch, having both deciduous and coniferous species, was dominated by broadleaf trees, reflecting changing physiological controls on Rs with seasons. Our results highlight the importance of discerning soil CO2 emissions at a variety of spatial and temporal scales. They also suggest including the LFH soil layer and allowing for seasonal variability in CO2 production within that layer, when modeling soil respiration in forest ecosystems.  相似文献   

3.
腾格里沙漠植被重建对土壤呼吸的影响   总被引:2,自引:0,他引:2  
植被重建是防止和控制沙漠化的有效措施之一。为探讨腾格里沙漠植被重建对土壤呼吸的影响,利用Li-6400-09土壤呼吸室于2007年观测了1989年建立的植被重建区和流沙区土壤呼吸差异,并采用根系隔离法区分了植被重建区的土壤基础呼吸和根际呼吸。结果表明,植被重建18a显著影响了该区土壤CO2的释放过程,总土壤呼吸速率由流沙区的CO20.107±0.008μmolm-2s-1显著增加到植被区CO20.483±0.033μmolm-2s-1,而且出现了较为明显的季节波动。植被重建不但导致根际呼吸速率增加,而且影响了土壤基础呼吸速率。此外,植被重建区灌木的缀块状分布格局和养分的空间异质性导致了土壤呼吸的空间差异。  相似文献   

4.
The variability in the net ecosystem exchange of carbon (NEE) is a major source of uncertainty in quantifying global carbon budget and atmospheric CO2. Soil respiration, which is a large component of NEE, could be strongly influential to NEE variability. Vegetation type, landscape position, and site history can influence soil properties and therefore drive the microbial and root production of soil CO2. This study measured soil respiration and soil chemical, biological and physical properties on various types of temperate forest stands in Northern Wisconsin (USA), which included ash elm, aspen, northern hardwood, red pine forest types, clear-cuts, and wetland edges. Soil respiration at each of the 19 locations was measured six times during 1 year from early June to mid-November. These data were combined with two additional data sets from the same landscape that represent two smaller spatial scales. Large spatial variation of soil respiration occurred within and among each forest type, which appeared to be from differences in soil moisture, root mass and the ratio of soil carbon to soil nitrogen (C:N). A soil climate driven model was developed that contained quadratic functions for root mass and the ratio of soil carbon to soil nitrogen. The data from the large range of forest types and site conditions indicated that the range of root mass and C:N on the landscape was also large, and that trends between C:N, root mass, and soil respiration were not linear as previously reported, but rather curvilinear. It should be noted this function appeared to level off and decline at C:N larger than 25, approximately the value where microbial nitrogen immobilization limits free soil nitrogen. Weak but significant relationships between soil water and soil C:N, and between soil C:N and root mass were observed indicating an interrelatedness of (1) topographically induced hydrologic patterns and soil chemistry, and (2) soil chemistry and root production. Future models of soil respiration should address multiple spatial and temporal factors as well as their co-dependence.  相似文献   

5.
Soil respiration is a large component of global carbon fluxes, so it is important to explore how this carbon flux varies with environmental factors and carbon inputs from plants. As part of a long-term study on the chemical and biological effects of aboveground litterfall denial, root trenching and tree-stem girdling, we measured soil respiration for three years in plots where those treatments were applied singly and in combination. Tree-stem girdling terminates the flow of carbohydrates from canopy, but allows the roots to continue water and nutrient uptake. After carbon storage below the stem girdles is depleted, the girdled trees die. Root trenching immediately terminates root exudates as well as water and nutrient uptake. Excluding aboveground litterfall removes soil carbon inputs, but allows normal root functions to continue. We found that removing aboveground litterfall and the humus layer reduced soil respiration by more than the C input from litter, a respiration priming effect. When this treatment was combined with stem girdling, root trenching or those treatments in combination, the change in soil respiration was indistinguishable from the loss of litterfall C inputs. This suggests that litterfall priming occurs only when normal root processes persist. Soil respiration was significantly related to temperature in all treatment combinations, and to soil water content in all treatments except stem girdling alone, and girdling plus trenching. Aboveground litterfall was a significant predictor of soil respiration in control, stem-girdled, trenched and stem-girdled plus trenching treatments. Stem girdling significantly reduced soil respiration as a single factor, but root trenching did not. These results suggest that in addition to temperature, aboveground carbon inputs exert strong controls on forest soil respiration.  相似文献   

6.
从2005年4月底到9月底对玉米农田生态系统的土壤呼吸作用进行了连续观测.结果表明: 2005年玉米生长季土壤呼吸速率均值为3.16 μmol (CO2)·m-2·s-1, 最大值为4.77 μmol (CO2)·m-2·s-1, 出现在7月28日, 最小值为1.31 μmol (CO2)·m-2·s-1, 出现在5月4日.通过建立土壤呼吸速率与玉米根系生物量的回归方程, 对土壤异养呼吸作用占土壤呼吸作用的比例进行间接估算.玉米生长季中, 土壤异养呼吸作用占土壤呼吸作用的比例在36.4%~56.9%之间波动, 均值为45.5%.假定玉米果实和秸秆中的碳在收获期间未从农田中转移走, 2005年整个生长季中玉米农田生态系统的碳收支为-1 127.0 g (C)·m-2, 碳交换速率在0.52~ -18.05 g (C)·m-2·d-1之间波动.玉米生长初期, 玉米农田生态系统表现为碳的弱源; 玉米播种后36 d一直到收获, 玉米农田生态系统表现为碳汇.  相似文献   

7.
沙漠化对科尔沁沙质草地土壤呼吸速率及碳平衡的影响   总被引:2,自引:0,他引:2  
在科尔沁沙地测定了不同类型沙漠化草地土壤呼吸速率的日进程和季节变化,以及植物碳储量和土壤有机碳储量,分析了沙漠化对沙质草地土壤呼吸速率及草地碳平衡的影响。结果表明:(1)沙漠化可导致草地土壤呼吸速率日变化幅度变小,日均土壤呼吸速率明显降低;与非沙漠化草地相比,在生长季轻度、中度、重度和严重沙漠化草地日均土壤呼吸速率依次下降6.4%、12.8%、33.0%和39.4%;(2)受沙漠化的影响草地碳储量明显下降,与非沙漠化草地相比,4种类型沙漠化草地碳储量依次下降50.3%、74.0%、86.4%和90.2%;其中,凋落物碳储量的下降幅度最大,土壤有机碳储量下降幅度次之,植物碳储量下降幅度最小;(3)沙漠化可使草地碳平衡受到严重破坏,草地一旦沙漠化,土壤呼吸消耗碳量将超过植物固定碳量,这时土壤有机碳库将作为后备碳源来弥补土壤呼吸过程中植物固碳量的不足。为了促进沙漠化草地碳库的恢复,应加强沙漠化草地的治理,促进草地植被的恢复重建。  相似文献   

8.
The roles of microbial biomass (MBC) and substrate supply as well as their interaction with clay content in determining soil respiration rate were studied using a range of soils with contrasting properties. Total organic C (TOC), water-soluble organic carbon, 0.5 M K2SO4-extractable organic C and 33.3 mM KMnO4-oxidisable organic carbon were determined as C availability indices. For air-dried soils, these indices showed close relationship with flush of CO2 production following rewetting of the soils. In comparison, MBC determined with the chloroform fumigation-extraction technique had relatively weaker correlation with soil respiration rate. After 7 d pre-incubation, soil respiration was still closely correlated with the C availability indices in the pre-incubated soils, but poorly correlated with MBC determined with three different techniques—chloroform fumigation extraction, substrate-induced respiration, and chloroform fumigation-incubation methods. Results of multiple regression analyses, together with the above observations, suggested that soil respiration under favourable temperature and moisture conditions was principally determined by substrate supply rather than by the pool size of MBC. The specific respiratory activity of microorganisms (CO2-C/MBC) following rewetting of air-dried soils or after 7 d pre-incubation was positively correlated with substrate availability, but negatively correlated with microbial pool size. Clay content had no significant effect on CO2 production rate, relative C mineralization rate (CO2-C/TOC) and specific respiratory activity of MBC during the first week incubation of rewetted dry soils. However, significant protective effect of clay on C mineralization was shown for the pre-incubated soils. These results suggested that the protective effect of clay on soil organic matter decomposition became significant as the substrate supply and microbial demand approached to an equilibrium state. Thereafter, soil respiration would be dependent on the replenishment of the labile substrate from the bulk organic C pool.  相似文献   

9.
Summary The influence of soil moisture on denitrification and aerobic respiration was studied in a mull rendzina soil. N2O formation did not occur below –30 kPa matric water potential (m), above 0.28 air-filled porosity (a) and below 0.55 fractional water saturation (v/PV volumetric water content/total pore volume). Half maximum rates of N2O production and O2 consumption were obtained between m = –1.2 and –12 kPa,a = 0.05 and 0.23, and v/PV = 0.63 and 0.92. No oxygen consumption was measured at v/PC 1.17. O2 uptake and denitrification occurred simultaneously arounda = 0.10 (at m = –10 kPa and v/PV = 0.81) at mean rates of 3.5 µl O2 and 0.3 µl N2 h–1g–1 soil. Undisturbed, field-moist soil saturated with nitrate solution showed constant consumption and production rates, respectively, of 0.6 µl O and 0.22 µl N2O h–1g–1 soil, whereas the rates of air-dried remoistened soil were at least 10 times these values. The highest rates obtained in remoistened soil amended with glucose and nitrate were 130 µl O2 and 27 µl N2O h–1g–1 soil.  相似文献   

10.
A study was conducted in a Setaria italica (L.) Beauv. cropland on the Loess Plateau in order to partition total soil respiration (Rt) into microbial respiration (Rm) and root respiration (Rr) and to determine the carbon balance of the cropland ecosystem. A trenching method with micro-pore mesh was used to create root-free soil cores. Differences between mesh and non-mesh treatments were used to determine root respiration. Similar pattern was found in the diurnal variation of Rt and Rm with the minimum values at 3:00-6:00 h and the maximum at 13:00-15:00 h. The diurnal pattern of Rr was completely different, the minimum values appeared at 11:00-13:00 h and the maximum at 0:00-3:00 h. Soil temperature exerted predominant control over the diurnal variations of Rt and Rm. The daily mean values of Rt, Rm and Rr were close to the measurements taken at 9:00 h. On the seasonal scale, Rm was strongly dependent on soil temperature, with higher correlation with 2-cm-depth temperature (r2 = 0.79, P < 0.001) than with 5-cm-depth temperature. When the effects of both soil temperature and moisture were considered, a linear model provided more accurate prediction of Rm (r2 = 0.83, P < 0.0001). Root respiration (Rr) exhibited pronounced daily variation corresponding to changes in photosynthesis and seasonal variation related to crop phenological development. The seasonal variation in Rr was strongly correlated with leaf area index (LAI) (r2 = 0.85, P < 0.05), and also positively, but marginally correlated with root biomass (RB, P = 0.073). Contribution of root respiration to total soil respiration (Rr/Rt ratio) showed pronounced diurnal and seasonal variations. The daily mean values of Rr/Rt ratios were close to the values obtained at 9:00 h. In different phenological stages, Rr/Rt ratios ranged from 22.3% to 86.6%; over the entire growing season, the mean Rr/Rt ratio was 67.3%.Total annual loss of C due to Rm in 2007 was estimated to be 121.3 g C m−2 at the study site, while the annual NPP (net primary production) was 262.1 g C m−2. The cropland system thus showed net carbon input of 140.8 g C m−2.  相似文献   

11.
4种农药对枇杷园土壤磷酸酶活性及微生物呼吸的影响   总被引:4,自引:0,他引:4  
应用室内培养方法研究了甲基托布津、代森锰锌、杀灭菊酯、阿维菌素4种农药对枇杷园土壤磷酸酶活性及微生物呼吸的影响,并对4种农药进行了安全性评价。结果表明,经杀菌剂甲基托布津和代森锰锌处理的土壤,磷酸酶活性受到明显抑制,且抑制效果未见恢复。经杀灭菊酯和阿维菌素处理的土壤,磷酸酶活性变化呈现"抑制-恢复-激活"趋势;抑制作用随农药浓度的升高而增强;但7d后磷酸酶活性受到了一定程度的激活,35d达到最高值;高浓度杀灭菊酯和低浓度阿维菌素显示出较强的激活作用。农药对土壤微生物呼吸作用的影响初期表现为轻微激活,5d后出现抑制作用,12d后基本恢复正常,接近对照水平。通过安全性评价可知,供试4种农药对土壤微生物的危害较小,为无毒害或无实际危害的农药。  相似文献   

12.
The low temperature pyrolysis of organic material produces biochar, a charcoal like substance. Biochar is being promoted as a soil amendment to enhance soil quality, it is also seen as a mechanism of long-term sequestration of carbon. Our experiments tested the hypothesis that biochar is inert in soil. However, we measured an increase in CO2 production from soils after biochar amendment which increased with increasing rates of biochar. The ∂13C signature of the CO2 evolved in the first several days of the incubation was the same as the ∂13C signature of the biochar, confirming that biochar contributed to the CO2 flux. This effect diminished by day 6 of the incubation suggesting that most of the biochar C is slowly decomposing. Thus, aside from this short-term mineralization increasing soil C with young biochar may indeed be a long-term C storage mechanism.  相似文献   

13.
孟磊  丁维新  何秋香  蔡祖聪 《土壤》2008,40(5):725-731
为阐明施肥对农田土壤呼吸的影响,于2002年6月至2003年6月在河南封丘潮土上进行的长期试验地上测定了玉米/冬小麦轮作系统下的土壤呼吸,分析了土壤呼吸与土壤水分和温度的关系,并利用统计分析方法研究了土壤呼吸各组分的贡献。土壤呼吸变化与作物生长发育规律一致,施肥通过影响作物的生长发育而对土壤呼吸产生影响。不同作物生长期,根际呼吸、土壤原有机质以及前作根茬和有机肥中碳对土壤呼吸的贡献不同。玉米期土壤有机质、根际呼吸、前作根茬和有机肥中的碳对土壤呼吸的平均贡献率分别为70.19%、19.43%和10.37%;而小麦生长期则分别为23.75%、62.26%和14.11%。由于不同施肥处理的作物生长量、土壤有机质含量以及前作根茬和有机肥施入而进入的有机碳量不同,造成土壤呼吸个体上存在着较大差异。土壤有机质的消耗主要发生在玉米生长阶段。  相似文献   

14.
Near-infrared spectroscopy and soil physicochemical determinations (pHH2O, organic matter content, total C content, NH inf4 sup+ , total N content, cation-exchange capacity, and base saturation) were used to characterize fire-or wood ash-treated humus samples. The spectroscopic and the soil physicochemical analysis data from the humus samples were used separately to explain observed variations in soil respiration and microbial biomass C by partial least-square regression. The first regression component obtained from the physicochemical and spectroscopic characterization explained 10–12% and 60–80% of the biological variation, respectively. This suggests that information on organic material collected from near-infrared spectra is very useful for explaining biological variations in forest humus.  相似文献   

15.
Soil respiration is an important component of terrestrial carbon cycling and can be influenced by many factors that vary spatially. This research aims to determine the extent and causes of spatial variation of soil respiration, and to quantify the importance of scale on measuring and modeling soil respiration within and among common forests of Northern Wisconsin. The potential sources of variation were examined at three scales: [1] variation among the litter, root, and bulk soil respiration components within individual 0.1 m measurement collars, [2] variation between individual soil respiration measurements within a site (<1 m to 10 m), and [3] variation on the landscape caused by topographic influence (100 m to 1000 m). Soil respiration was measured over a two-year period at 12 plots that included four forest types. Root exclusion collars were installed at a subset of the sites, and periodic removal of the litter layer allowed litter and bulk soil contributions to be estimated by subtraction. Soil respiration was also measured at fixed locations in six northern hardwood sites and two aspen sites to examine the stability of variation between individual measurements. These study sites were added to an existing data set where soil respiration was measured in a random, rotating, systematic clustering which allowed the examination of spatial variability from scales of <1 m to 100+ m. The combined data set for this area was also used to examine the influence of topography on soil respiration at scales of over 1000 m by using a temperature and moisture driven soil respiration model and a 4 km2 digital elevation model (DEM) to model soil moisture. Results indicate that, although variation of soil respiration and soil moisture is greatest at scales of 100 m or more, variation from locations 1 m or less can be large (standard deviation during summer period of 1.58 and 1.28 μmol CO2 m−2 s−1, respectively). At the smallest of scales, the individual contributions of the bulk soil, the roots, and the litter mat changed greatly throughout the season and between forest types, although the data were highly variable within any given site. For scales of 1-10 m, variation between individual measurements could be explained by positive relationships between forest floor mass, root mass, carbon and nitrogen pools, or root nitrogen concentration. Lastly, topography strongly influenced soil moisture and soil properties, and created spatial patterns of soil respiration which changed greatly during a drought event. Integrating soil fluxes over a 4 km2 region using an elevation dependent soil respiration model resulted in a drought induced reduction of peak summer flux rates by 37.5%, versus a 31.3% when only plot level data was used. The trends at these important scales may help explain some inter-annual and spatial variability of the net ecosystem exchange of carbon.  相似文献   

16.
保护性耕作下大豆农田土壤呼吸及影响因素分析   总被引:6,自引:3,他引:6  
为了探讨保护性耕作对旱作农田土壤呼吸的影响,采用LI6400-09仪器(LI6400便携式光合作用系统连接6400-09呼吸室)在重庆北碚西南大学试验农场对平作(T)、垄作(R)、平作+覆盖(TS)、垄作+覆盖(RS)、平作+覆盖+秸秆速腐剂(TSD)、垄作+覆盖+秸秆速腐剂(RSD)6种处理下的西南紫色土丘陵区小麦/玉米/大豆套作体系中大豆生长季节的土壤呼吸及其水、热、生物因子进行测定和分析,探讨西南丘陵区保护性耕作下大豆农田土壤呼吸及其影响因素。结果表明,大豆整个生育期内土壤呼吸先缓慢增强,到开花期开始增长迅速,成熟期明显下降。不同处理土壤呼吸速率存在差异,表现为TTSD>TS、R>RSD>RS,土壤呼吸的土温敏感指标Q10值排序为TS>TSD>RS=R>T>RSD。秸秆覆盖处理的土壤呼吸对于土壤温度敏感性较高,垄作则降低了土壤温度敏感性。5 cm土层的土壤含水量高低排序为TSD>RSD>TS>RS>T>R。本研究中土壤呼吸与土壤水分呈抛物线函数关系,垄作处理下土壤呼吸与土壤水分正相关,达到显著水平;其他处理均表现负相关,其中TS达到极显著水平。在大豆农田生态系统中优势类群有弹尾目、螨目和双翅目,干漏斗法、陷阱法捕获的土壤动物与土壤呼吸均没有显著的相关关系,两种方法所得土壤动物数量加总与土壤呼吸进行相关分析,发现处理T相关系数达到显著水平,r=0.901,P=0.037。  相似文献   

17.
Nitrogen (N) deposition to semiarid ecosystems is increasing globally, yet few studies have investigated the ecological consequences of N enrichment in these ecosystems. Furthermore, soil CO2 flux – including plant root and microbial respiration – is a key feedback to ecosystem carbon (C) cycling that links ecosystem processes to climate, yet few studies have investigated the effects of N enrichment on belowground processes in water-limited ecosystems. In this study, we conducted two-level N addition experiments to investigate the effects of N enrichment on microbial and root respiration in a grassland ecosystem on the Loess Plateau in northwestern China. Two years of high N additions (9.2 g N m−2 y−1) significantly increased soil CO2 flux, including both microbial and root respiration, particularly during the warm growing season. Low N additions (2.3 g N m−2 y−1) increased microbial respiration during the growing season only, but had no significant effects on root respiration. The annual temperature coefficients (Q10) of soil respiration and microbial respiration ranged from 1.86 to 3.00 and 1.86 to 2.72 respectively, and there was a significant decrease in Q10 between the control and the N treatments during the non-growing season but no difference was found during the growing season. Following nitrogen additions, elevated rates of root respiration were significantly and positively related to root N concentrations and biomass, while elevated rates of microbial respiration were related to soil microbial biomass C (SMBC). The microbial respiration tended to respond more sensitively to N addition, while the root respiration did not have similar response. The different mechanisms of N addition impacts on soil respiration and its components and their sensitivity to temperature identified in this study may facilitate the simulation and prediction of C cycling and storage in semiarid grasslands under future scenarios of global change.  相似文献   

18.
Salinity and sodicity effects on respiration and microbial biomass of soil   总被引:2,自引:2,他引:2  
An understanding of the effects of salinity and sodicity on soil carbon (C) stocks and fluxes is critical in environmental management, as the areal extents of salinity and sodicity are predicted to increase. The effects of salinity and sodicity on the soil microbial biomass (SMB) and soil respiration were assessed over 12weeks under controlled conditions by subjecting disturbed soil samples from a vegetated soil profile to leaching with one of six salt solutions; a combination of low-salinity (0.5dSm−1), mid-salinity (10dSm−1), or high-salinity (30dSm−1), with either low-sodicity (sodium adsorption ratio, SAR, 1), or high-sodicity (SAR 30) to give six treatments: control (low-salinity low-sodicity); low-salinity high-sodicity; mid-salinity low-sodicity; mid-salinity high-sodicity; high-salinity low-sodicity; and high-salinity high-sodicity. Soil respiration rate was highest (56–80mg CO2-C kg−1 soil) in the low-salinity treatments and lowest (1–5mg CO2-C kg−1 soil) in the mid-salinity treatments, while the SMB was highest in the high-salinity treatments (459–565mg kg−1 soil) and lowest in the low-salinity treatments (158–172mg kg−1 soil). This was attributed to increased substrate availability with high salt concentrations through either increased dispersion of soil aggregates or dissolution or hydrolysis of soil organic matter, which may offset some of the stresses placed on the microbial population from high salt concentrations. The apparent disparity in trends in respiration and the SMB may be due to an induced shift in the microbial population, from one dominated by more active microorganisms to one dominated by less active microorganisms.  相似文献   

19.
陆地生态系统土壤呼吸的影响因素研究综述   总被引:4,自引:1,他引:3       下载免费PDF全文
土壤呼吸是陆地生态系统碳循环中的一个重要过程,也是陆地生态系统最大的二氧化碳释放源,对全球气候和环境变化产生重要影响。对国内外关于陆地生态系统土壤呼吸影响因素的研究进行综述,分析了温度、水分、土壤性质等非生物因素,植被、土壤微生物、土壤动物等生物因素以及人类活动等对土壤呼吸产生的影响。最后分析了目前有关土壤呼吸研究中存在的问题,并提出了今后努力的方向:改进和创新土壤呼吸的测量方法,拓宽土壤呼吸的研究范围,加强土壤呼吸组分的区分研究,重视人类活动对土壤呼吸影响的研究。  相似文献   

20.
不同施肥管理措施对土壤碳含量及基础呼吸的影响   总被引:12,自引:0,他引:12       下载免费PDF全文
连续7年试验研究了施用15t/hm2和7.5t/hm2有机肥(包括EM堆肥、EM鸡粪肥和传统堆肥)、化肥和对照处理对土壤碳含量与基础呼吸的影响,结果表明:随有机肥施用量的提高,土壤可溶性碳、总有机碳、微生物生物量碳和土壤的基础呼吸随之增加。施用化肥可一定程度提高土壤可溶性碳、总有机碳、微生物生物量碳和土壤的基础呼吸。不同施肥措施对土壤有机碳、微生物生物量碳和土壤基础呼吸的影响趋势为EM堆肥处理>传统堆肥处理>化肥处理>对照,施肥对土壤微生物代谢商的影响趋势为EM堆肥处理<传统堆肥处理<化肥处理<对照。土壤微生物生物量碳与可溶性碳、总有机碳及土壤基础呼吸之间呈极显著正相关。土壤微生物代谢商与土壤可溶性碳、总有机碳、微生物生物量碳及基础呼吸之间呈极显著负相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号