首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Partitioning the soil surface CO2 flux (RS) flux is an important step in understanding ecosystem-level carbon cycling, given that RS is poorly constrained and its source components may have different sensitivities to climate change. Trenched plots are an inexpensive but labor-intensive method of separating the RS flux into its root (autotrophic) and soil (heterotrophic) components. This study tested if various methods of plant suppression in trenched plots affected RS fluxes, quantified the RS response to soil temperature and moisture changes, and estimated the heterotrophic contribution to RS. It was performed in a boreal black spruce (Picea mariana) plantation, using a randomized complete block design, during the 2007 and 2008 growing seasons. Trenched plots had significantly lower RS than control plots, with differences appearing ∼100 days after trenching; spatial variability doubled immediately after trenching but then declined throughout the experiment. Most trenching treatments had significantly lower (by ∼0.5 μmol CO2 m−2 s−1) RS than the controls, and there was no significant difference in RS among the various trenching treatments. Soil temperature at 2 cm explained more RS variability than did 10-cm temperature or soil moisture. Temperature sensitivity (Q10) declined in the control plots from ∼2.6 (at 5 °C) to ∼1.6 (at 15 °C); trenched plots values were higher, from 3.1 at 5 °C to 1.9 at 15 °C. We estimated RS for the study period to be 241 ± 40 g C m−2, with live roots contributing 64% of RS after accounting for fine root decay, and 293 g C m−2 for the entire year. These findings suggest that laborious hand weeding of trenched plot vegetation may be replaced by other methods, facilitating future studies of this large and poorly-understood carbon flux.  相似文献   

2.
The variability in the net ecosystem exchange of carbon (NEE) is a major source of uncertainty in quantifying global carbon budget and atmospheric CO2. Soil respiration, which is a large component of NEE, could be strongly influential to NEE variability. Vegetation type, landscape position, and site history can influence soil properties and therefore drive the microbial and root production of soil CO2. This study measured soil respiration and soil chemical, biological and physical properties on various types of temperate forest stands in Northern Wisconsin (USA), which included ash elm, aspen, northern hardwood, red pine forest types, clear-cuts, and wetland edges. Soil respiration at each of the 19 locations was measured six times during 1 year from early June to mid-November. These data were combined with two additional data sets from the same landscape that represent two smaller spatial scales. Large spatial variation of soil respiration occurred within and among each forest type, which appeared to be from differences in soil moisture, root mass and the ratio of soil carbon to soil nitrogen (C:N). A soil climate driven model was developed that contained quadratic functions for root mass and the ratio of soil carbon to soil nitrogen. The data from the large range of forest types and site conditions indicated that the range of root mass and C:N on the landscape was also large, and that trends between C:N, root mass, and soil respiration were not linear as previously reported, but rather curvilinear. It should be noted this function appeared to level off and decline at C:N larger than 25, approximately the value where microbial nitrogen immobilization limits free soil nitrogen. Weak but significant relationships between soil water and soil C:N, and between soil C:N and root mass were observed indicating an interrelatedness of (1) topographically induced hydrologic patterns and soil chemistry, and (2) soil chemistry and root production. Future models of soil respiration should address multiple spatial and temporal factors as well as their co-dependence.  相似文献   

3.
Soil respiration is a large component of global carbon fluxes, so it is important to explore how this carbon flux varies with environmental factors and carbon inputs from plants. As part of a long-term study on the chemical and biological effects of aboveground litterfall denial, root trenching and tree-stem girdling, we measured soil respiration for three years in plots where those treatments were applied singly and in combination. Tree-stem girdling terminates the flow of carbohydrates from canopy, but allows the roots to continue water and nutrient uptake. After carbon storage below the stem girdles is depleted, the girdled trees die. Root trenching immediately terminates root exudates as well as water and nutrient uptake. Excluding aboveground litterfall removes soil carbon inputs, but allows normal root functions to continue. We found that removing aboveground litterfall and the humus layer reduced soil respiration by more than the C input from litter, a respiration priming effect. When this treatment was combined with stem girdling, root trenching or those treatments in combination, the change in soil respiration was indistinguishable from the loss of litterfall C inputs. This suggests that litterfall priming occurs only when normal root processes persist. Soil respiration was significantly related to temperature in all treatment combinations, and to soil water content in all treatments except stem girdling alone, and girdling plus trenching. Aboveground litterfall was a significant predictor of soil respiration in control, stem-girdled, trenched and stem-girdled plus trenching treatments. Stem girdling significantly reduced soil respiration as a single factor, but root trenching did not. These results suggest that in addition to temperature, aboveground carbon inputs exert strong controls on forest soil respiration.  相似文献   

4.
The roles of microbial biomass (MBC) and substrate supply as well as their interaction with clay content in determining soil respiration rate were studied using a range of soils with contrasting properties. Total organic C (TOC), water-soluble organic carbon, 0.5 M K2SO4-extractable organic C and 33.3 mM KMnO4-oxidisable organic carbon were determined as C availability indices. For air-dried soils, these indices showed close relationship with flush of CO2 production following rewetting of the soils. In comparison, MBC determined with the chloroform fumigation-extraction technique had relatively weaker correlation with soil respiration rate. After 7 d pre-incubation, soil respiration was still closely correlated with the C availability indices in the pre-incubated soils, but poorly correlated with MBC determined with three different techniques—chloroform fumigation extraction, substrate-induced respiration, and chloroform fumigation-incubation methods. Results of multiple regression analyses, together with the above observations, suggested that soil respiration under favourable temperature and moisture conditions was principally determined by substrate supply rather than by the pool size of MBC. The specific respiratory activity of microorganisms (CO2-C/MBC) following rewetting of air-dried soils or after 7 d pre-incubation was positively correlated with substrate availability, but negatively correlated with microbial pool size. Clay content had no significant effect on CO2 production rate, relative C mineralization rate (CO2-C/TOC) and specific respiratory activity of MBC during the first week incubation of rewetted dry soils. However, significant protective effect of clay on C mineralization was shown for the pre-incubated soils. These results suggested that the protective effect of clay on soil organic matter decomposition became significant as the substrate supply and microbial demand approached to an equilibrium state. Thereafter, soil respiration would be dependent on the replenishment of the labile substrate from the bulk organic C pool.  相似文献   

5.
Summary The influence of soil moisture on denitrification and aerobic respiration was studied in a mull rendzina soil. N2O formation did not occur below –30 kPa matric water potential (m), above 0.28 air-filled porosity (a) and below 0.55 fractional water saturation (v/PV volumetric water content/total pore volume). Half maximum rates of N2O production and O2 consumption were obtained between m = –1.2 and –12 kPa,a = 0.05 and 0.23, and v/PV = 0.63 and 0.92. No oxygen consumption was measured at v/PC 1.17. O2 uptake and denitrification occurred simultaneously arounda = 0.10 (at m = –10 kPa and v/PV = 0.81) at mean rates of 3.5 µl O2 and 0.3 µl N2 h–1g–1 soil. Undisturbed, field-moist soil saturated with nitrate solution showed constant consumption and production rates, respectively, of 0.6 µl O and 0.22 µl N2O h–1g–1 soil, whereas the rates of air-dried remoistened soil were at least 10 times these values. The highest rates obtained in remoistened soil amended with glucose and nitrate were 130 µl O2 and 27 µl N2O h–1g–1 soil.  相似文献   

6.
A study was conducted in a Setaria italica (L.) Beauv. cropland on the Loess Plateau in order to partition total soil respiration (Rt) into microbial respiration (Rm) and root respiration (Rr) and to determine the carbon balance of the cropland ecosystem. A trenching method with micro-pore mesh was used to create root-free soil cores. Differences between mesh and non-mesh treatments were used to determine root respiration. Similar pattern was found in the diurnal variation of Rt and Rm with the minimum values at 3:00-6:00 h and the maximum at 13:00-15:00 h. The diurnal pattern of Rr was completely different, the minimum values appeared at 11:00-13:00 h and the maximum at 0:00-3:00 h. Soil temperature exerted predominant control over the diurnal variations of Rt and Rm. The daily mean values of Rt, Rm and Rr were close to the measurements taken at 9:00 h. On the seasonal scale, Rm was strongly dependent on soil temperature, with higher correlation with 2-cm-depth temperature (r2 = 0.79, P < 0.001) than with 5-cm-depth temperature. When the effects of both soil temperature and moisture were considered, a linear model provided more accurate prediction of Rm (r2 = 0.83, P < 0.0001). Root respiration (Rr) exhibited pronounced daily variation corresponding to changes in photosynthesis and seasonal variation related to crop phenological development. The seasonal variation in Rr was strongly correlated with leaf area index (LAI) (r2 = 0.85, P < 0.05), and also positively, but marginally correlated with root biomass (RB, P = 0.073). Contribution of root respiration to total soil respiration (Rr/Rt ratio) showed pronounced diurnal and seasonal variations. The daily mean values of Rr/Rt ratios were close to the values obtained at 9:00 h. In different phenological stages, Rr/Rt ratios ranged from 22.3% to 86.6%; over the entire growing season, the mean Rr/Rt ratio was 67.3%.Total annual loss of C due to Rm in 2007 was estimated to be 121.3 g C m−2 at the study site, while the annual NPP (net primary production) was 262.1 g C m−2. The cropland system thus showed net carbon input of 140.8 g C m−2.  相似文献   

7.
The low temperature pyrolysis of organic material produces biochar, a charcoal like substance. Biochar is being promoted as a soil amendment to enhance soil quality, it is also seen as a mechanism of long-term sequestration of carbon. Our experiments tested the hypothesis that biochar is inert in soil. However, we measured an increase in CO2 production from soils after biochar amendment which increased with increasing rates of biochar. The ∂13C signature of the CO2 evolved in the first several days of the incubation was the same as the ∂13C signature of the biochar, confirming that biochar contributed to the CO2 flux. This effect diminished by day 6 of the incubation suggesting that most of the biochar C is slowly decomposing. Thus, aside from this short-term mineralization increasing soil C with young biochar may indeed be a long-term C storage mechanism.  相似文献   

8.
Soil respiration is an important component of terrestrial carbon cycling and can be influenced by many factors that vary spatially. This research aims to determine the extent and causes of spatial variation of soil respiration, and to quantify the importance of scale on measuring and modeling soil respiration within and among common forests of Northern Wisconsin. The potential sources of variation were examined at three scales: [1] variation among the litter, root, and bulk soil respiration components within individual 0.1 m measurement collars, [2] variation between individual soil respiration measurements within a site (<1 m to 10 m), and [3] variation on the landscape caused by topographic influence (100 m to 1000 m). Soil respiration was measured over a two-year period at 12 plots that included four forest types. Root exclusion collars were installed at a subset of the sites, and periodic removal of the litter layer allowed litter and bulk soil contributions to be estimated by subtraction. Soil respiration was also measured at fixed locations in six northern hardwood sites and two aspen sites to examine the stability of variation between individual measurements. These study sites were added to an existing data set where soil respiration was measured in a random, rotating, systematic clustering which allowed the examination of spatial variability from scales of <1 m to 100+ m. The combined data set for this area was also used to examine the influence of topography on soil respiration at scales of over 1000 m by using a temperature and moisture driven soil respiration model and a 4 km2 digital elevation model (DEM) to model soil moisture. Results indicate that, although variation of soil respiration and soil moisture is greatest at scales of 100 m or more, variation from locations 1 m or less can be large (standard deviation during summer period of 1.58 and 1.28 μmol CO2 m−2 s−1, respectively). At the smallest of scales, the individual contributions of the bulk soil, the roots, and the litter mat changed greatly throughout the season and between forest types, although the data were highly variable within any given site. For scales of 1-10 m, variation between individual measurements could be explained by positive relationships between forest floor mass, root mass, carbon and nitrogen pools, or root nitrogen concentration. Lastly, topography strongly influenced soil moisture and soil properties, and created spatial patterns of soil respiration which changed greatly during a drought event. Integrating soil fluxes over a 4 km2 region using an elevation dependent soil respiration model resulted in a drought induced reduction of peak summer flux rates by 37.5%, versus a 31.3% when only plot level data was used. The trends at these important scales may help explain some inter-annual and spatial variability of the net ecosystem exchange of carbon.  相似文献   

9.
 Soil respiration was measured by closed chamber and gradient methods in soils under forest, sown meadow and crops. Annual total soil respiration determined with the closed chamber method ranged from 180 to 642 g CO2-C m–2 year–1 and from 145 to 382 g CO2-C m–2 year–1 determined with the CO2 profile method. Soil respiration increased in the order: cropland<sown meadow<forest. The C balance calculated as the difference between net primary production (sink) and respiration of heterotrophs (source) suggested an equilibrium between the input and output of C in the cropland, and sequestration of 135 and 387 g CO2-C m–2 year–1 in the forest and meadow, respectively. Received: 1 December 1997  相似文献   

10.
On the basis of CO2 evolution rate, O2 uptake rate, and 13C isotopic signature of respired CO2, the metabolic response to the addition of 13C labelled n-hexadecane and palmitic acid each with supplementary nitrogen was studied for two topsoils, one under continuous agricultural management and the other under beech forest. The CO2 evolution rate was immediately stimulated in the agricultural soil and the respiratory quotient (RQ) decreased from 0.8 to 0.4 mol CO2 evolution rate per mol O2 uptake rate, which was below the theoretically expected value of 0.65 and 0.70 for the degradation of n-hexadecane and palmitic acid, respectively. The microbial response was delayed in the forest soil, but developed better than in the agricultural soil throughout the subsequent 2-4 weeks. Consequently, the respiration rate returned earlier to the initial level for the beech forest soil and the δ13C of respired CO2 and RQ approached values before hydrocarbon addition. Based on the link among respiration rates, RQ and 13C-CO2 value, the added oil-analogue compounds induced a more rapid response in the agricultural soil and were degraded more completely in the forest soil. We concluded that the resilience, which we defined here as the capacity of the soil microbiota to buffer perturbance and to reorganise in response to change resulting in a more desirable system, was higher in our forest soil than for the agricultural soil.  相似文献   

11.
Dissolved organic matter (DOM), typically quantified as dissolved organic carbon (DOC), has been hypothesized to play many roles in pedogenesis and soil biogeochemical cycles, however, most research to date concerning forest soils has focussed on the high molecular weight (HMW) components of this DOM. This review aims to assess the role of low molecular weight (LMW) DOM compounds in the C dynamics of temperate and boreal forest soils focussing in particular on organic acids, amino acids and sugars. The current knowledge of concentrations, mineralization kinetics and production rates and sources in soil are summarised. We conclude that although these LMW compounds are typically maintained at very low concentrations in the soil solution (<50 μM), the flux through this pool is extremely rapid (mean residence time 1-10 h) due to continued microbial removal. Due to this rapid flux through the soil solution pool and mineralization to CO2, we calculate that the turnover of these LMW compounds may contribute substantially to the total CO2 efflux from the soil. Moreover, the production rates of these soluble transitory compounds could exceed HMW DOM production. The possible impact of climate change on the behaviour of LMW compounds in soil is also discussed.  相似文献   

12.
Based on the continuous observation of soil respiration and environmental factors in a maize ecosystem from late April to late September in 2005, the spatial and temporal variation of soil respiration and their controlling factors were analyzed. There was a significant spatial pattern for soil respiration at the plant scale and higher soil respiration rates tended to occur near the maize plant during the growing season. On one measurement moment, root biomass (B) in soil collars exerted significant influence on the spatial pattern of soil respiration under the relatively homogeneous environmental conditions. A linear relationship existed between soil respiration rate and root biomass
(1)  相似文献   

13.
The effects of abiotic and biotic drivers on soil respiration (Rs) were studied in four grassland and one forest sites in Hungary in field measurement campaigns (duration of studies by sites 2-7 years) between 2000 and 2008. The sites are within a 100 km distance of each other, with nearly the same climate, but with different soils and vegetation. Soil respiration model with soil temperature (Ts) and soil water content (SWC) as independent variables explained larger part of variance (range 0.47-0.81) than the Lloyd and Taylor model (explained variance: 0.31-0.76). Direct effect of SWC on Rs at much smaller temporal and spatial scale (1.5 h, and a few meters, respectively) was verified.Soil water content optimal for Rs (SWCopt) was shown to significantly (positively) depend on soil clay content, while parameter related to activation energy (E0) was significantly (negatively) correlated to the total organic carbon content (TOC) in the upper 10 cm soil layer. Dependence of model parameters on soil properties could easily be utilized in models of soil respiration. The effect of current (a few hours earlier) assimilation rates on soil respiration after removing the effect of abiotic covariates (i.e. temperature and water supply) is shown. The correlation maximum between the Rs residuals (Rs_res, from the Rs (SWC, Ts) model) and net ecosystem exchange (NEE) was found at 13.5 h time lag at the sandy grassland. Incorporating the time-lagged effect of NEE on Rs into the model of soil respiration improved the agreement between the simulated vs. measured Rs data. Use of SWCopt and E0 parameters and consideration of current assimilation in soil respiration models are proposed.  相似文献   

14.
The annual and seasonal variations in the temperature sensitivity of soil respiration (Rs) were assessed through continuous measurements during the 2004-2006 growing seasons using chamber-based techniques in two sub-alpine forest ecosystems in the Eastern Qinghai-Tibet Plateau, China. The study sites were 40-year-old spruce plantations (Picea asperata) (FSPF) and Faxon Fir Primary Forest (FPF). Our results showed that Q10, regardless of site origin, exhibited a strong seasonal and annual variation pattern, and decreased with soil temperature increase. Estimated Q10 values ranged between 1.16 and 24.3. The maximum, annual, mean Q10 values remained consistent over 3 years, while the highest Q10 values (7.01 in FSPF and 6.39 in FPF) occurred in 2005 (for all sites). There was no significant difference observed among Q10 values between the two forest types in each year (2004-2006) (p = 0.07). Q10 values were fitted well with data of soil temperature using linear regression models, while the correlation between Q10 and soil moisture was not significant (p > 0.1). This study suggested that soil temperature was the dominant factor influencing Q10 values, while soil moisture was a potential contributor to the annual and seasonal variations of Q10 in a sub-alpine forest. Due to the complexity of correlation between Rs and soil moisture, Q10 values derived from annual and seasonal patterns of RS should be used with caution when predicting future soil CO2 emissions under conditions of global warming.  相似文献   

15.
Distinguishing between root and non-root derived CO2 efflux is important when determining rates of soil organic matter turnover, however, in practice they remain difficult to separate. Our aim was to evaluate two methods for determining the component of below-ground respiration not dependent on plant roots (i.e., basal soil respiration; Rb). The first approach estimated Rb indirectly from the y-intercept of linear regressions between below-ground respiration (BGR) and root biomass. The second approach involved direct measurements of soil respiration from bare plots. To compare the contrasting approaches, BGR and crop biomass measurements were collected throughout the year in a range of agricultural systems. We found that both methods were very closely correlated with each other. Values of Rb determined by the intercept approach, however, were slightly higher than those determined by measurement of bare plots. Both approaches showed a seasonal trend with estimates of Rb lowest in winter months at 0.02 t C ha−1 month−1 for the y-intercept approach and 0.11 t C ha−1 month−1 for the bare plots approach, even after the data had been corrected for the influence of soil temperature. Highest rates of Rb occurred from the height to the end of the crop growing season (0.8-1.5 t C ha−1 month−1). The annual CO2 efflux due to Rb was estimated to be 8.1 t C ha−1 y−1 from the y-intercept approach and 6.8 t C ha−1 y−1 from bare plots. Annual BGR was 12.1 t C ha−1 y−1. We conclude that both methods provide similar estimates of Rb, however, logistically the bare plots approach is much easier to undertake than the y-intercept approach.  相似文献   

16.
Chamber measurements of total ecosystem respiration (TER) in a native Canadian grassland ecosystem were made during two study years with different precipitation. The growing season (April–September) precipitation during 2001 was less than one-half of the 30-year mean (1971–2000), while 2002 received almost double the normal growing season precipitation. As a consequence soil moisture remained higher in 2002 than 2001 during most of the growing season and peak aboveground biomass production (253.9 g m−2) in 2002 was 60% higher than in 2001. Maximum respiration rates were approximately 9 μmol m−2 s−1 in 2002 while only approximately 5 μmol m−2 s−1 in 2001. Large diurnal variation in TER, which occurred during times of peak biomass and adequate soil moisture, was primarily controlled by changes in temperature. The temperature sensitivity coefficient (Q10) for ecosystem respiration was on average 1.83 ± 0.08, and it declined in association with reductions in soil moisture. Approximately 94% of the seasonal and interannual variation in R10 (standardized rate of respiration at 10 °C) data was explained by the interaction of changes in soil moisture and aboveground biomass, which suggested that plant aboveground biomass was good proxy for accounting for variations in both autotrophic and heterotrophic capacity for respiration. Soil moisture was the dominant environmental factor that controlled seasonal and interannual variation in TER in this grassland, when variation in temperature was held constant. We compared respiration rates measured with chambers and that determined from nighttime eddy covariance (EC) measurements. Respiration rates measured by both techniques showed very similar seasonal patterns of variation in both years. When TER was integrated over the entire growing season period, the chamber method produced slightly higher values than the EC method by approximately 4.5% and 13.6% during 2001 and 2002, respectively, much less than the estimated uncertainty for both measurement techniques. The two methods for calculating respiration had only minor effects on the seasonal-integrated estimates of net ecosystem CO2 exchange and ecosystem gross photosynthesis.  相似文献   

17.
Our objective was to assess the effect of anaerobic conditioning in the presence of acetylene on subsequent aerobic respiration and N2O emission at the scale of soil aggregates. Nitrous oxide production was measured in intact soil aggregates Δ (compacted aggregates without visible porosity) and Γ (aggregates with visible porosity) incubated under oxic conditions, with or without anaerobic conditioning for 6 d. N2O emissions were much higher in aggregates that had been submitted to anaerobic conditioning than in aggregates that did not experience this conditioning, although very little NO3 remained in soil after the anaerobic period. 15N isotope tracing technique was used to check whether N2O came from nitrification or denitrification. The results showed that denitrification was the major process responsible for N2O emissions. The aerobic CO2 production rate was also measured in intact soil aggregates. It was greater in aggregates submitted to anaerobic conditioning than in those that were not, suggesting that the anaerobic conditioning lead to an accumulation of small compounds including fatty acids that are readily available for microbial decomposition in aerobic conditions. This process increases the aerobic CO2 production and favours the N2O emissions through denitrification.  相似文献   

18.
Continuous half-hourly measurements of soil CO2 efflux made between January and December 2001 in a mature trembling aspen stand located at the southern edge of the boreal forest in Canada were used to investigate the seasonal and diurnal dependence of soil respiration (Rs) on soil temperature (Ts) and water content (θ). Daily mean Rs varied from a minimum of 0.1 μmol m−2 s−1 in February to a maximum of 9.2 μmol m−2 s−1 in mid-July. Daily mean Ts at the 2-cm depth was the primary variable accounting for the temporal variation of Rs and no differences between Arrhenius and Q10 response functions were found to describe the seasonal relationship. Rs at 10 °C (Rs10) and the temperature sensitivity of Rs (Q10Rs) calculated at the seasonal time scale were 3.8 μmol m−2 s−1 and 3.8, respectively. Temperature normalization of daily mean Rs (RsN) revealed that θ in the 0–15 cm soil layer was the secondary variable accounting for the temporal variation of Rs during the growing season. Daily RsN showed two distinctive phases with respect to soil water field capacity in the 0–15 cm layer (θfc, 0.30 m3 m−3): (1) RsN was strongly reduced when θ decreased below θfc, which reflected a reduction in microbial decomposition, and (2) RsN slightly decreased when θ increased above θfc, which reflected a restriction of CO2 or O2 transport in the soil profile.Diurnal variations of half-hourly Rs were usually out of phase with Ts at the 2-cm depth, which resulted in strong diurnal hysteresis between the two variables. Daily nighttime Rs10 and Q10Rs parameters calculated from half-hourly nighttime measurements of Rs and Ts at the 2-cm depth (when there was steady cooling of the soil) varied greatly during the growing season and ranged from 6.8 to 1.6 μmol m−2 s−1 and 5.5 to 1.3, respectively. On average, daily nighttime Rs10 (4.5 μmol m−2 s−1) and Q10Rs (2.8) were higher and lower, respectively, than the values obtained from the seasonal relationship. Seasonal variations of these daily parameters were highly correlated with variations of θ in the 0–15 cm soil layer, with a tendency of low Rs10 and Q10Rs values at low θ. Overall, the use of seasonal Rs10 and Q10Rs parameters led to an overestimation of daily ranges of half-hourly RsRs) during drought conditions, which supported findings that the short-term temperature sensitivity of Rs was lower during periods of low θ. The use of daily nighttime Rs10 and Q10Rs parameters greatly helped at simulating ΔRs during these periods but did not improve the estimation of half-hourly Rs throughout the year as it could not account for the diurnal hysteresis effect.  相似文献   

19.
Humus chemistry and respiration rate, ATP, ergosterol, and muramic acid concentration as measures of chemical properties, microbial activity, biomass, and indicators of fungal and bacterial biomass were studied in a long-term acid rain experiment in the far north of Finnish Lapland. The treatments used in this study were dry control, irrigated control (spring water, pH 6), and two levels of simulated acid rain (pH 4 and pH 3). Originally (1985–1988), simulated acid rain was prepared by adding both H2SO4 and HNO3 (1.9:1 by weight). In 1989 the treatments were modified as follows. In subarea 1 the treatments continued unchanged (H2SO4+HNO3 in rain to pH 4 and pH 3), but in subarea 2 only H2SO4 was applied. The plots were sampled in 1992. The acid application affected humus chemistry by lowering the pH, cation exchange capacity, and base saturation (due to a decrease in Ca and Mg) in the treatment with H2SO4+HNO3 to pH 4 (total proton load over 8 years 2.92 kmol ha-1), whereas the microbial variables were not affected at this proton load, and only the respiration rate decreased by 20% in the strongest simulated acid rain treatment (total proton load 14.9 kmol ha-1). The different ratios of H2SO4+HNO3 in subareas 1 and 2 did not affect the results.  相似文献   

20.
A field experiment was conducted during 2003–2005 and 2004–2006 at the Indian Institute of Sugarcane Research, Lucknow, India to study the effect of Trichoderma viride inoculation in ratoon sugarcane with three trash management practices, i.e. trash mulching, trash burning and trash removal. Trichoderma inoculation with trash mulch increased soil organic carbon and phosphorus (P) content by 5.08 Mg ha−1 and 11.7 kg ha−1 over their initial contents of 15.75 Mg ha−1 and 12.5 kg ha−1, respectively. Soil compaction evaluated as bulk density in 0- to 15-cm soil layer, increased from 1.48 Mg m−3 at ratoon initiation (in April) to 1.53 Mg m−3 at harvest (in December) due to trash burning and from 1.42 Mg m−3 at ratoon initiation (in April) to 1.48 Mg m−3 at harvest (in December) due to trash mulching. The soil basal respiration was the highest during tillering phase and then decreased gradually, thereafter with the advancement of crop growth. On an average, at all the stages of crop growth, Trichoderma inoculation increased the soil basal respiration over no inoculation. Soil microbial biomass increased in all plots except in the plots of trash burning/removal without Trichoderma inoculation. The maximum increase (40 mg C kg−1 soil) in soil microbial biomass C, however, was observed in the plots of trash mulch with Trichoderma inoculation treatment which also recorded the highest uptake of nutrient and cane yield. On an average, Trichoderma inoculation with trash mulch increased N, P and K uptake by 15.9, 4.68 and 23.6 kg ha−1, respectively, over uninoculated condition. The cane yield was increased by 12.8 Mg ha−1 with trash mulch + Trichoderma over trash removal without Trichoderma. Upon degradation, trash mulch served as a source of energy for enhanced multiplication of soil bacteria and fungi and provided suitable niche for plant–microbe interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号