首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Genetically modified crops, that produce Cry insecticidal crystal proteins (Cry) from Bacillus thuringiensis (Bt), release these toxins into soils through root exudates and upon decomposition of residues. The fate of these toxins in soil has not yet been clearly elucidated. Persistence can be influenced by biotic (degradation by microorganisms) and abiotic factors (physicochemical interactions with soil components, especially adsorption). The aim of this study was to follow the fate of Cry1Aa Bt toxin in contrasting soils subjected to different treatments to enhance or inhibit microbial activity, in order to establish the importance of biotic and abiotic processes for the fate of Bt toxin. The toxin was efficiently extracted from each soil using an alkaline buffer containing a protein, bovine serum albumin, and a nonionic surfactant, Tween 20. The marked decline of extractable toxin after incubation of weeks to months was soil-dependent. The decrease of extractable toxin with incubation time was not related to microbial degradation but mainly to physicochemical interactions with the surfaces that may decrease immunochemical detectability or enhance protein fixation. Hydrophobic interactions may play an important role in determining the interaction of the toxin with surfaces.  相似文献   

2.
The interactions of genetically modified (GM) crops with soil species and ecosystems is complex, requiring both specific and broad spectrum assessments. In the ECOGEN project we undertook experiments at three scales of increasing complexity, using Bt maize expressing the Cry1Ab protein from Bacillus thuringiensis as an example. Test species were selected for laboratory-scale experiments to represent taxonomic groups that we could also monitor at glasshouse and field scales (e.g., nematodes, protozoa, micro-arthropods, earthworms, and snails). In the laboratory, single species were exposed to purified Cry1Ab protein or to Bt maize leaf powder incorporated into simplified diets under controlled conditions. In the glasshouse, multiple test species and soil microbial communities taken from ECOGEN's field sites were exposed to Bt maize plants growing under glasshouse or mesocosm conditions. In the field, evaluations were conducted on our selected indicator groups over multiple sites and growing seasons. Field evaluation included assessment of effects due to the local environment, crop type, seasonal variation and conventional crop management practice (tillage and pesticide use), which cannot be assessed in the glasshouse. No direct effects of Cry1Ab protein or Bt leaf residues were detected on our laboratory test organisms, but some significant effects were detected in the glasshouse. Total nematode and protozoan numbers increased in field soil under Bt maize relative to conventional maize, whilst microbial community structure and activity were unaffected. Field results for the abundance of nematodes and protozoa showed some negative effects of Bt maize, thus contradicting the glasshouse results. However, these negative results were specific to particular field sites and sampling times and therefore were transient. Taking the overall variation found in maize ecosystems at different sites into account, any negative effects of Bt maize at field scale were judged to be indirect and no greater than the impacts of crop type, tillage and pesticide use. Although the ECOGEN results were not predictive between the three experimental scales, we propose that they have value when used with feedback loops between the scales. This holistic approach can used to address questions raised by results from any level of experimentation and also for putting GM crop risk:benefit into context with current agricultural practices in regionally differing agro-ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号