首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fate of the insecticidal Cry1Ab protein from crop residues (leaves and roots) of the transgenic maize variety MON810 was studied in the presence and absence of two earthworm species (Lumbricus terrestris, Aporrectodea caliginosa; separate incubations) in soil microcosms. The recombinant Cry1Ab protein was quantified using a highly sensitive ELISA. Control microcosms received corresponding non-transgenic plant material. All earthworms survived in the microcosms over a period of 5 weeks, irrespective of whether they received MON810 or non-transgenic plant material. Weight loss was observed for both earthworm species, independent of the plant material or transgenic modification. A strong decline of immunoreactive Cry1Ab in plant residues (mean initial concentration approx. 5000 ng g−1) of MON810 was observed in all treatments, but in microcosms with earthworms this decline was significantly higher with less than 10% of the initial Cry1Ab concentration remaining after 5 weeks. Cry1Ab concentrations in casts were only 0.1% of those found in remaining plant material of the respective microcosms. No immunoreactive Cry1Ab proteins were found in earthworm tissues (threshold of detection: 0.58 ng g−1 fresh weight). No further decline was found for Cry1Ab concentrations in casts of A. caliginosa during a subsequent period of 3 months of incubation in bulk soil (<0.1 ng g−1) after removal of the earthworms from the microcosms, while in casts of L. terrestris the concentration decreased from 0.4 to below 0.1 ng g−1. In conclusion, this study demonstrates that earthworms enhance the decline of immunoreactive Cry1Ab proteins from maize residues.  相似文献   

2.
A field experiment was conducted to study the effects of peat amendment and crop production system on earthworms. The experiment was established on a field previously cultivated with oats and with silt as the main soil type. Perennial crops strawberry, timothy and caraway, and annual crops rye, turnip rape, buckwheat, onion and fiddleneck were cultivated with conventional methods. All the crops were grown with and without soil amendment with peat. Earthworms were sampled twice: 4 and 28 months after establishment of the experiment. In the former case part of the experimental plots were soil sampled and hand sorted for estimation of earthworms. In the latter case all experimental plots were sampled and both soil sampling and mustard extraction was carried out. Soil organic carbon and microbial biomass was measured at 14 and 28 months. Peat increased the abundance of juvenile Aporrectodea caliginosa by 74% in three growing seasons, but had no effect on adult numbers. Lumbricus terrestris numbers were not increased by peat treatment. Three season cultivation of caraway favoured both A. caliginosa and L. terrestris. An equal abundance of A. caliginosa was also found in plots cultivated with turnip rape and fiddleneck. Total earthworm and especially A. caliginosa numbers were very small in plastic-mulched strawberry beds. This was mainly attributed to repeated use of the insecticide endosulfan. With the strawberry plots omitted there was a significant correlation between soil microbial N measured at 14 months and juvenile Aporrectodea spp. and Lumbricus spp. numbers measured at 28 months. Adult earthworm numbers were not associated with either soil organic C or microbial biomass.  相似文献   

3.
Many ecological studies have pointed out maternal effects in plants and shown that plant maternal environment influences germination of their seed and subsequent seedling growth. However, few have tested for maternal effects induced by soil macroorganisms. We tested whether two earthworm species (Aporrectodea caliginosa and Lumbricus terrestris) trigger such maternal effects on seed germination and seedling growth of three plant species (Veronica persica, Poa annua and Cerastium glomeratum). Our results show that, through maternal effects, A. caliginosa enhanced seed germination (V. persica and P. annua) and seedling growth (C. glomeratum and P. annua) while L. terrestris reduced seed germination only in V. persica. In some cases, the increase in germination rates of seeds produced in the presence of earthworms was associated with a reduction of nitrogen content in seeds. These results show that earthworms induce maternal effects in plants and that the size and direction of these effects depend on the combination of plant and earthworm species.  相似文献   

4.
Negative interactions between earthworms may arise from high earthworm population densities. Under high populations in the field, niche separation or migration away from competitive pressure may help to regulate a multi-species population to a given level. This may not be possible in laboratory experiments, leading to an increase in competitive interactions which may alter earthworm growth rates and affect decomposition and nutrient mineralization processes. The objective of this experiment was to determine how growth rates of the endogeic earthworm Aporrectodea caliginosa Sav. and the anecic earthworm Lumbricus terrestris L. are affected by increasing population density and container size in both single- and multi-species cultures. Earthworm growth responses were compared in 1-L cylindrical pots containing disturbed soil and in 2.3-L PVC cores containing undisturbed soil. The relationship describing intra- and inter-specific competition was not affected by container type for both species. Nonetheless, decreasing the container size restricted the growth of L. terrestris in both single- and multi-species cultures, but only restricted the growth of A. caliginosa in multi-species cultures. For both species, a population density greater than one individual per litre reduced earthworm growth rates significantly, while weight loss in monocultures occurred when there were more than 10 A. caliginosa, and more than three L. terrestris per litre. Growth rates of both species were restricted in all population density treatments including the lowest of 0.9 individuals per litre. Further work is needed to find the population density at which growth rates are not affected and which may be used as an appropriate population in laboratory pot experiments to measure the effects of earthworms on soil processes and plant growth.  相似文献   

5.
Earthworms have been shown to influence plant growth, survival and fecundity. They can therefore affect plant demography in plant communities changing their composition. A long term mesocosm experiment was set-up to test the effects of an endogeic (Aporrectodea caliginosa) and an anecic (Lumbricus terrestris) earthworm species on assemblages of four species of annuals: one grass (Poa annua), two forbs (Veronica persica and Cerastium glomeratum) and one legume (Trifolium dubium). The number of individuals and the biomass of each species were investigated. A. caliginosa and L. terrestris affected the density of T. dubium at each of the three monitored census dates. The other plant species responded to A. caliginosa and L. terrestris at the second and third generations. The presences of A. caliginosa and L. terrestris reduced the total number of plant individuals from the second to the third generation. At harvest (3rd generation), T. dubium and V. persica had more and larger individuals in the presence of A. caliginosa. When both earthworm species were present, T. dubium had few but larger individuals. Our study confirms that earthworms affect plant demography and plant community structure. Our results also show that accurate prediction of long-term effects of earthworms on plant communities cannot be achieved using results on their short-term effects on plant growth. This is due to the poor understanding of the effects of earthworms on plant resource allocation and demography, and also the possibility that earthworms may exert the opposite effect on the short and long-term availability of nutrients.  相似文献   

6.
Earthworms and arbuscular mycorrhizal fungi (AMF) might interactively impact plant productivity; however, previous studies reported inconsistent results. We set up a three-factorial greenhouse experiment to study the effects of earthworms (Aporrectodea caliginosa Savigny and Lumbricus terrestris L.) and AMF (Glomus intraradices N.C. Schenck & G.S. Sm.) on the performance (productivity and shoot nutrient content) of plant species (Lolium perenne L., Trifolium pratense L. and Plantago lanceolata L.) belonging to the three functional groups grasses, legumes and herbs, respectively. Further, we investigated earthworm performance and plant root mycorrhization as affected by the treatments. Our results accentuate the importance of root derived resources for earthworm performance since earthworm weight (A. caliginosa and L. terrestris) and survival (L. terrestris) were significantly lower in microcosms containing P. lanceolata than in those containing T. pratense. However, earthworm performance was not affected by AMF, and plant root mycorrhization was not modified by earthworms. Although AMF effectively competed with T. pratense for soil N (as indicated by δ15N analysis), AMF enhanced the productivity of T. pratense considerably by improving P availability. Remarkably, we found no evidence for interactive effects of earthworms and AMF on the performance of the plant species studied. This suggests that interactions between earthworms and AMF likely are of minor importance.  相似文献   

7.
Knowledge of the effects of species diversity within taxonomic groups on nutrient cycling is important for understanding the role of soil biota in sustainable agriculture. We hypothesized that earthworm species specifically affect nitrogen mineralization, characteristically for their ecological group classifications, and that earthworm species interactions would affect mineralization through competition and facilitation effects. A mesocosm experiment was conducted to investigate the effect of three earthworm species, representative of different ecological groups (epigeic: Lumbricus rubellus; endogeic: Aporrectodea caliginosa tuberculata; and anecic: Lumbricus terrestris), and their interactions on the bacterial community, and on nitrogen mineralization from 15N-labelled crop residue and from soil organic matter.Our results indicate that L. rubellus and L. terrestris enhanced mineralization of the applied crop residue whereas A. caliginosa had no effect. On the other hand, L. rubellus and A. caliginosa enhanced mineralization of the soil organic matter, whereas L. terrestris had no effect. The interactions between different earthworm species affected the bacterial community and the net mineralization of soil organic matter. The two-species interactions between L. rubellus and A. caliginosa, and L. rubellus and L. terrestris, resulted in reduced mineral N concentrations derived from soil organic matter, probably through increased immobilization in the bacterial biomass. In contrast, the interaction between A. caliginosa and L. terrestris resulted in increased bacterial growth rate and reduced total soil C. When all three species were combined, the interaction between A. caliginosa and L. terrestris was dominant. We conclude that the effects of earthworms on nitrogen mineralization depend on the ecological traits of the earthworm species present, and can be modified by species interactions. Knowledge of these effects can be made useful in the prevention of nutrient losses and increased soil fertility in agricultural systems, that typically have a low earthworm diversity.  相似文献   

8.
Common agricultural practices, e.g. soil tillage and organic amendment, may affect field earthworm communities considerably. However, there is little data to show how long the changes persist after a certain action. The effect of peat, commonly used in Finland to improve the horticultural soil structure, on key soil organisms is also largely unknown. Earthworm abundance and microbial biomass were studied in a strawberry field experiment (soil type silty clay) with a history of different crops (strawberry, timothy, caraway, rye, turnip rape, fiddleneck, onion and buckwheat) and peat treatments. Sampling was carried out after three years of perennial cropping of strawberry. Half of the area was peat-amended twice three years apart. The earthworm community consisted mainly of Aporrectodea caliginosa and Lumbricus terrestris. Soil peat amendment almost doubled the number of endogeic A. caliginosa, but had no effect on the anecic L. terrestris. The effect of cropping history on earthworms diminished after three years of strawberry cropping. Only the positive effect of caraway on juvenile Lumbricus spp. was detectable three years after its cropping had been finished. However, some crops had secondary effects on the earthworm distribution without significant influence on their numbers while they were grown, e.g. high numbers of A. caliginosa were recorded from soil with a history of timothy ley. The effect of strawberry cropping was contradictory: six years of continuous strawberry cropping decreased the number of the anecic L. terrestris, but during the last three years on strawberry, the proportion of L. terrestris increased from 6% to 40% in the experimental area with a concomitant great drop in the number of A. caliginosa. The role of different agricultural practices (no tillage, mulching, inter-row grass cover and pesticides) is discussed. The crop-induced changes persisted in the microbial biomass for three years (onion cropping reduced microbial biomass C), but soil amendment had no effect on microbes. The abundance of A. caliginosa was associated with soil organic C, but not with soil microbial biomass.  相似文献   

9.
A soil microcosm experiment was performed to assess (1) the C- and N- turnover of residues from biogas plants in soils in the presence of three earthworm species (Lumbricus terrestris, Aporrectodea longa and Aporrectodea caliginosa) and (2) the resulting changes in soil chemical and microbiological properties when using these residues as fertilizer in comparison to conventional slurry. Earthworms were exposed in soils, fertilized with an equivalent amount of 120 kg of NH4-N ha?1 from: (1) conventional cattle slurry and (2) a fermented residue derived from cattle slurry, grass (silage) and maize. Additional treatments without slurry and earthworms were used as controls.There was considerable evidence that soils fertilized by fermented slurry comprised fewer amounts of readily available nutrients for microbial C and N turnover. We observed significant stimulation of microbial biomass, basal respiration and nitrification in treatments with conventional slurry, especially in the presence of earthworms. However, the stimulation of microbial activity by manure and earthworms were significantly lower in treatments with fermented slurry. Moreover, the results showed clear interactions between different earthworm species and manures. While the biomass of the anecic species (L. terrestris and A. longa) increased in both slurry treatments, the biomass of A. caliginosa (endogeic) decreased, with a significantly stronger biomass decline in treatments with fermented slurry. The metabolic quotients revealed microbial stress metabolism in fermented slurry treatments, predominantly in treatments with A. caliginosa. We conclude that particularly A. caliginosa and soil microorganisms competed for labile C sources in treatments with fermented slurry. An application of these residues as fertilizer might result in a reduction of microbial activity in agricultural soils and in a decline of endogeic earthworms.  相似文献   

10.
The effects on two earthworm species of a gradient of metal contamination in soil collected close to a 50-year-old lead recycling factory were investigated in mesocosms filled with soil sampled at three distances from the factory (10, 30 and 60 m). After 5 weeks of exposure, earthworm litter consumption and weight change were measured. Burrow systems were analysed using X-ray tomography, and water infiltration was measured. No significant differences in earthworm weight or activity were observed between mesocosms filled with soil from 30 and 60 m. In contrast, both earthworm species significantly lost weight and burrowed less in the soil sampled at 10 m. In the cores filled with the soil collected at 10-m distance, Aporrectodea caliginosa avoided the highly contaminated first layer (0–5 cm) and burrowed deeper whereas Lumbricus terrestris burrowed relatively more in this layer. We assume that these different reactions are associated with their ecological types. Epi-anecic earthworms forage litter at the soil surface, whereas endogeic earthworms are geophagous and thus are able to forage deeper. This was further corroborated by the bioaccumulation factors measured for each species: for L. terrestris, BAF values for Pb and Cd only decreased slightly in the 10-m soil correlating with their overall reduced activity. However, BAF values for A. caliginosa were 20-fold lower compared to those observed in soil from 30 and 60 m. These modifications in burrowing behaviour in the 10-m mesocosms resulted in a significant and marked decrease in water infiltration rates but only for L. terrestris.  相似文献   

11.
The vertical distribution and activity of earthworm life stages were studied in an arable field during 0.5 m deep frost. The anecic Lumbricus terrestris L. were below the frost at the bottom of their home burrows (max. depth 1.0 m) and remained there apparently active. Their burrows were open, free of ice and water. The endogeic Aporrectodea caliginosa Sav., mainly small juveniles, were aestivating in the frost layer, which confirms freeze-tolerance in this species. Large A. caliginosa individuals were actively burrowing below the frost down to 1 m depth at soil temperatures close to +1 °C, frost evidently triggering much deeper burrowing than summer droughts. Demonstrating cold-hardiness, viable cocoons of both A. caliginosa and L. terrestris were obtained within a 0-0.25 m layer, frozen for ca. one month prior to sampling. These two common earthworms of boreal soils seem to over-winter in all life stages and remain active below the frost, potentially contributing to the maintenance of subsoil processes during the winter months.  相似文献   

12.
Insecticidal crystal (Cry) proteins produced by transgenic Bacillus thuringiensis (Bt) rice that enter the soil via root exudation and plant residues may be harmful to non-target soil organisms. We conducted a 3-year field investigation to determine if soil nematode abundance and diversity were affected by exposure to two transgenic Bt rice cultivars, compared to their non-transgenic near isolines. Near isolines were Kemingdao (KMD-Bt) expressing the single Cry1Ab gene and its non-Bt near isoline Xiushui-11 (XSD), as well as Huahui-1 (HH-Bt) expressing the fused Cry1Ab/Cry1Ac gene and its non-Bt near isoline Minghui-63 (MH). Nematode variables including community composition, abundance, trophic groups, and most of the common genera differed significantly between the rice cultivars. However, these nematode variables were similar under transgenic Bt rice and its non-Bt near isoline, although higher Shannon’s index value and Pielou’s index value were found in soils planted with Bt rice than the non-Bt near isoline. During this 3-year field study, gene modification (single Cry1Ab gene and fused Cry1Ab/Cry1Ac gene) supports a more uniform distribution of nematode species but had no effect on soil nematode abundance and community composition. We conclude that continuous cultivation of KMD-Bt and HH-Bt rice varieties for 3 years is not detrimental to soil nematode communities under field conditions.  相似文献   

13.
Studies of earthworm species and their activity, expressed as channels, on cultivated loamy (Humic Cryaquept) and clayey soils (Typic Endoaqualf and Typic Cryaquept) were conducted in southern and central Norway before conversion from conventional to organic cropping systems. At all the three study areas: Landvik (Grimstad), Voll (Ås) and Kvithamar (Stjørdal), the earthworm species Aporrectodea caliginosa, Aporrectodea rosea, Allolobophora chlorotica and Lumbricus rubellus were found. At Landvik, where the deep-burrowing species Aporrectodea longa, A. caliginosa and Lumbricus terrestris dominated, medium (4–6 mm) and coarse (>6 mm) earthworm channels were most numerous below the plough layer. Almost no coarse pores were found at Voll and Kvithamar. The volume of earthworm channels below the plough layer was 0.6–0.8% of total soil volume at Landvik and Voll and 0.3–0.4% at Kvithamar. Earthworm channels >6 mm below the plough layer were useful to identify present and previous activity of deep-burrowing earthworms such as L. terrestris. Below the plough layer, roots were almost entirely restricted to earthworm channels and interaggregate spaces.  相似文献   

14.
A three-year experimental field study with a genetically engineered Bt maize (event MON88017) and three conventionally bred cultivars was conducted to quantify the recombinant Cry3Bb1 protein released into soil and detect effects on the diversity of soil bacteria. Protein extraction and an enzyme-linked immunosorbent assay (ELISA) allowed a threshold detection of 0.01 ng Cry3Bb1 g?1 soil. The maximum amount found in field plots with Bt maize was 1.0 ng Cry3Bb1 g?1 rhizosphere soil. Average concentrations during the growing seasons varied between years from 0.07 to 0.29 ng g?1. No accumulation of Cry3Bb1 in soil occurred over the three growing seasons. Four weeks after harvest, the major Cry3Bb1 reservoirs on the field were the remaining root stubbles, but their Cry3Bb1 concentration declined by 98.30–99.99% in the following seven months. During the three consecutive years of study there were never significant differences between the rhizosphere bacterial community structure of the Bt maize and the other cultivars, as detected by cultivation independent profiling of PCR-amplified 16S rRNA genes. The low concentrations of soil extractable Cry3Bb1, its degradation in decaying roots, and the lack of effects on rhizosphere bacteria give no indications of adverse effects of MON88017 cultivation on soil ecology.  相似文献   

15.
Energy crops are increasingly cultivated in agricultural management systems world-wide. A substitution of food crops (e.g. cereals) by energy crops may generally alter the biological activity and litter decomposition in soil due to their varying structural and chemical composition and subsequently modify soil functioning. A soil microcosm experiment was performed to assess the decomposition and microbial mineralization of different energy crop residues in soil compared to a food crop, with or without earthworms. Residues of the energy crops winter rape (Brassica napus), maize (Zea mays), miscanthus (Miscanthus giganteus) and the food crop oat (Avena sativa) were each provided as food source for a mixed earthworm population, each consisting of one individual of Lumbricus terrestris, Aporrectodea caliginosa, and Octolasion tyrtaeum. After 6 weeks, the rate of litter loss from the soil surface, earthworm biomass, microbial biomass-C and -N, microbial activity, and enzyme activities were determined. The results emphasized, that litter loss and microbial parameters were predominantly promoted by earthworms and were additionally influenced by the varying structural and chemical composition of the different litter. Litter decay by earthworms was highest in N-rich maize litter treatment (C-N ratio 34.8) and lowest in the case of miscanthus litter (C-N ratio 134.4). As a consequence, the microbial biomass and basal respiration in soils with maize litter were higher, relative to other litter types. MBC-MBN ratio in soil increased when earthworms were present, indicating N competition between earthworms and microorganisms. Furthermore, enzyme activities responded in different ways on the varying types of litter and earthworm activity. Enzymes involved in the N-cycle decreased and those involved in the C-cycle tended to increase in the presence of earthworms, when litter with high C-N ratio was provided as a food source. Especially in the miscanthus treatments, less N might remain for enzymatic degradation, indicating that N competition between earthworms and microorganisms may vary between different litter types. Especially, an expansion of miscanthus in agricultural management systems might result in a reduced microbial activity and a higher N deficit for microorganisms in soil.  相似文献   

16.
Laboratory and greenhouse studies on transgenic Bacillus thuringiensis (Bt) maize have drawn attention to the persistence and activity of the Cry proteins in soil and their potential effects on soil microorganisms, but there have been few field assessments that evaluate the effects of Bt maize with those of insecticides on soil microbial populations. This study was conducted to determine the effects of Cry3Bb Bt maize with those of the insecticide tefluthrin on soil microbial biomass and activity in the field over a 3-year cropping cycle. The recently commercialized maize variety YieldGard® Rootworm (MON863), which produces the Cry3Bb protein, was grown along with a non-Bt isoline with and without tefluthrin applied at planting. Microbial biomass, nitrogen (N) mineralization potential, short-term nitrification rate, and respiration rate were measured in rhizosphere and bulk soil samples collected from three replicate field plots just before planting, at anthesis, and at harvest in each year. There were clear seasonal effects on microbial biomass and activity in the field soils—as represented by the consistent changes in all measured variables across years and sampling times. Differences in the measured variables were also sometimes observed between bulk and rhizosphere soil. However, there were no adverse effects of either the Bt or non-Bt maize with insecticide applied compared to the non-Bt controls; on the contrary, microbial biomass and soil respiration data suggested a stimulatory effect of the Bt genotype, particularly in comparison to the non-Bt isoline. Although ‘higher’ does not necessarily mean ‘better’, the higher microbial biomass and respiration rates observed in the Bt and insecticide-applied soils compared to non-Bt soils does allay concerns that either the Bt protein or the tefluthrin typically used to control the corn rootworm reduce microbial biomass or its respiratory activity in field soils. Similarly, the higher N mineralization potential and nitrification rates observed in some soil samples from the Bt and tefluthrin-treated plots indicate higher activity of N-mineralizing microorganisms, a potentially positive consequence as both ammonium and nitrate are effective N sources for maize during grain filling. Our data suggest that cropping MON863 Bt maize is unlikely to adversely affect soil ecology in the short term. Longer-term monitoring of transgenic cropping systems should assure that the biotic functioning of the soil is maintained as a part of studies on overall ecosystem integrity.  相似文献   

17.
Artificially packed soil columns were inoculated with individuals of different earthworm species (Lumbricus terrestris, Aporrectodea giardi or Aporrectodea caliginosa) and placed under controlled conditions in the laboratory. At the end of the incubation period, which lasted 8 months, three-dimensional reconstructions of the burrow system of each species were obtained using X-ray computed tomography. The particular features of the three burrow systems and the differences between them are discussed in terms of density, orientation and distribution of the burrows and the complexity of the network in relation to variations in soil depth and soil density. Received: 5 February 1997  相似文献   

18.
It is difficult to obtain non-destructive information on the seasonal dynamics of earthworms in northern forest soils. To overcome this, we used a Rhizotron facility to compile 7 years of data on the activity of anecic (Lumbricus terrestris) and endogeic (Aporrectodea caliginosa complex) earthworms in two contrasting soil/plant community types. We hypothesized that L. terrestris burrows would be used for longer than a typical L. terrestris lifetime, and that the distribution and activity pattern of the two earthworm species would respond differently to changes in soil moisture and temperature. For 7 years we recorded earthworm distribution and activity state bi-weekly to a depth of 1.5 m, tracked L. terrestris burrows using images captured annually, and measured soil temperature and moisture. Activity and vertical distribution of earthworms was closely linked to earthworm species and soil temperature in the fall, winter and spring. Lumbricus terrestris typically remained active through the winter, whereas the A. caliginosa complex was more likely to enter an aestivation period. Activity of all earthworms decreased substantially in July and August when soil temperature was at its highest and soil moisture at its lowest for the year. Most L. terrestris burrows were used continuously and moved very little during the 7-year study, likely creating spatiotemporally stable hotspots of soil resources. The different patterns of response of these species to soil temperature and moisture suggests that endogeic earthworms are more likely than anecic earthworms to adjust activity states in response to climate change mediated shifts in soil moisture and temperature.  相似文献   

19.
Earthworm casts and digestive tract contents were simultaneously examined, using the same methods, in a recently formed humus profile in a mountain spruce forest. Earthworm species had distinct diets and an earthworm foodweb could be distinguished. Lumbricus terrestris and Aporrectodea icterica were distinct from the other species examined: the former to some extent as a litter consumer, and both species because they excavated mineral material which was deposited within new top layers of the mull humus. Aporrectodea nocturna and Aporrectodea caliginosa both had a non-specific soil feeding mode. Most of the species enriched the humus profile with amorphous organic matter finely incorporated within a mineral matrix. Besides different food selection, a network of burrows was produced as a consequence of the different burrowing behaviour of each earthworm species. Received: 2 January 1997  相似文献   

20.
A field experiment was conducted to elucidate ecosystem services provided by earthworms on the repression of phytopathogenic and toxinogenic fungi. The study focussed on decomposing Fusarium culmorum-infected and deoxynivalenol (DON)-contaminated wheat straw remaining on the soil surface as part in conservation tillage. Mesocosms were established in the topsoil of a winter wheat field located in Northern Germany, where conservation tillage has been practised for 20 years. Besides a non-earthworm treatment, two earthworm species were inoculated in the mesocosms either separately or combined: Lumbricus terrestris (anecic, detritivorous) and Aporrectodea caliginosa (endogeic, geophagous). The earthworms were exposed either to artificially Fusarium-infected wheat straw highly contaminated with DON or to non-infected straw serving as a control. The experiment was conducted during an eight week period after harvest from mid August to mid October. For both species, the artificially Fusarium-infected and DON-contaminated wheat straw was a more attractive food source than the non-infected control. In contrast to A. caliginosa, L. terrestris incorporated infected straw faster into the soil compared to control straw. Furthermore, the reduction of Fusarium biomass and DON concentration in wheat straw was significantly higher in the presence of L. terrestris than in treatments with A. caliginosa and without earthworms. Here, no significant differences could be measured between the Fusarium biomass and DON concentration in wheat straw. A. caliginosa seems not to be relevant for the reduction of Fusarium biomass and DON concentration. We concluded that amongst earthworms, anecic detritivorous species are the drivers to compensate possible negative consequences (like crop infection) of conservation tillage. They take an important role in the control of phytopathogenic and toxinogenic fungi surviving on plant residues and in the degradation of their mycotoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号