首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied soil ecology》2011,47(3):450-456
Biochar holds promise as an amendment for soil quality improvement and sequestration of atmospheric carbon dioxide. However, knowledge of how biochar influences soil properties, especially soil microorganisms, is limited. Three separate studies were conducted, with two studies using Plantago lanceolata as the AMF hosting plant, and a third being conducted in the field. Each of the three studies employed a different soil type. Furthermore, a total of five different biochars, and ten different biochar application rates, were used across the three experiments. All experiments had the goal to examine biochar influences on arbuscular mycorrhizal fungal (AMF) abundance in roots and AMF abundance (hyphal lengths) in soils. AMF abundance was either decreased or remained unchanged across all biochar treatments. When AMF abundances decreased, significant changes in soil properties, primarily in soil P availability, were observed. Application of large quantities (2.0% and 4.0%, w/w) of a lodgepole pine biochar, led to significant declines in AMF abundance in roots of 58% and 73% respectively, but not in soils. These declines in AMF abundance were accompanied by significant declines (28% and 34%) in soil P availability. After addition of a peanut shell biochar produced at 360 °C, P increased by 101% while AMF root colonization and extraradical hyphal lengths deceased by 74% and 95% respectively. Field application of mango wood biochar at rates of 23.2 and 116.1 t C ha−1 increased P availabilities by 163% and 208% respectively and decreased AMF abundances in soils by 43% and 77%. These findings may have implications for soil management where the goal is to increase the services provided by AMF.  相似文献   

2.
Soil aggregation is a principal ecosystem process mediated by soil biota. Collembola and arbuscular mycorrhizal (AM) fungi are important groups in the soil, and can interact in various ways. Few studies have examined collembola effects on soil aggregation, while many have quantified AM effects. Here, we asked if collembola have any effect on soil aggregation, and if they alter AM fungi-mediated effects on soil aggregation.We carried out a factorial greenhouse study, manipulating the presence of both collembola and AM fungi, using two different plant species, Sorghum vulgare and Daucus carota. We measured root length and biomass, AMF (and non-AMF) soil hyphal length, root colonization, and collembolan populations, and quantified water stable soil aggregates (WSA) in four size classes.Soil exposed to growth of AMF hyphae and collembola individually had higher WSA than control treatments. Moreover, the interaction effects between AMF and collembola were significant, with non-additive increases in the combined application compared to the single treatments.Our findings show that collembola can play a crucial role in maintaining ecological sustainability through promoting soil aggregation, and point to the importance of considering organism interactions in understanding formation of soil structure.  相似文献   

3.
The influence of mineral fertilization on root uptake and arbuscular mycorrhizal fungi-mediated 15N capture from labeled legume (Medicago polymorpha) residue was examined in winegrapes (Vitis vinifera) in the greenhouse, to evaluate compatibility of fertilization with incorporation of cover-crop residue in winegrape production. Plants grown in marginal vineyard soil were either fertilized with 0.25× Hoagland’s solution or not. This low fertilization rate represents the deficit management approach typical of winegrape production. Access to residue in a separate compartment was controlled to allow mycorrhizal roots (roots + hyphae), hyphae (hyphae-intact), or neither (hyphae-rotated) to proliferate in the residue by means of mesh core treatments. Leaves were weekly analyzed for 15N. On day 42, plants were analyzed for 15N and biomass; roots were examined for intraradical colonization; and soils were analyzed for 15N, inorganic N, Olsen-P, X-K, and extraradical colonization. As expected, extraradical colonization of soil outside the cores was unaffected by mesh core treatment, while that inside the cores varied significantly. 15N atom% excess was highest in leaves of roots + hyphae. In comparison, leaf 15N atom% excess in hyphae-intact was consistently intermediate between roots + hyphae and hyphae-rotated, the latter of which remained unchanged over time. Fertilization stimulated host and fungal growth, based on higher biomass and intraradical colonization of fertilized plants. Fertilization did not affect hyphal or root proliferation in residue but did lower %N derived from residue in leaves and stems by 50%. Our results suggest that even low fertilization rates decrease grapevine N uptake from legume crop residue by both extraradical hyphae and roots.  相似文献   

4.
In terrestrial ecosystems, plants are frequently in symbiosis with arbuscular mycorrhizal fungi (AMF) with mineral nutrients and photosynthesis carbon exchanges in between. This research sought to identify the effects of phosphorus (P) levels on the nitrogen (N) uptake via extraradical mycelium (ERM) and the mycorrhizal growth response (MGR) of maize plants within the AMF symbiosis. Pots were separated into root compartments and hyphae compartments (HCs) with two layers of a 30‐μm mesh membrane and an air gap in between, where only hyphae could pass through, to avoid both N diffusion and root growth effects. Maize plants were inoculated with Rhizophagus irregularis with different N fertilization in HCs under two different P fertilization levels. Our results indicated that a strong increase in MGR with low‐P fertilization. The same tendency was not observed with high‐P fertilization, although both had a large increase in P concentration as a potential source of growth in shoot tissue of mycorrhizal plants. Substantial effects (10.5% more N) were observed in the case of high‐P availability for the host plants from ERM fed with N, whereas under low‐P conditions ERM may prioritize P uptake rather than N uptake. The AM fungi increase the uptake of N and P, which are most limiting in the soil with fewer forces from soil resources. In addition, there was still more P accumulated than N due to the high N for ERM with high‐P supply. Low N in HCs corresponded with a lower colonization rate in roots but with high hyphae density in HCs; this result suggest that N and P availability might change the ratio of extraradical to intraradical hyphae length.  相似文献   

5.
《Applied soil ecology》2000,14(3):201-211
Culturing in soils from degraded ecosystems significantly influenced the effectiveness of indigenous arbuscular mycorrhizal fungi (AMF) isolated from disturbed and undisturbed soils. The AMF isolates from degraded or artificially created habitats (acid rain polluted site, power station fly ash deposits, spoil banks, pyrite deposit), were not, in most cases, more effective than those from undisturbed soils, when grown in symbiosis with maize in the disturbed soils. Significant effects of soil or substrate on plant growth were found, while the influence of the AMF inoculant was much less pronounced. The development of AMF isolates was reduced in soils with more adverse chemical properties irrespective of the isolate origin. The length of extraradical mycelium of AMF and NADH-diaphorase activity of the mycelium were good indicators of negative effects of stress factors in the soil.  相似文献   

6.
秦华  白建峰  徐秋芳  李永春 《土壤》2015,47(4):704-710
以摩西球囊霉(Glomus mosseae)为供试菌种,在光照培养箱内利用分室根箱研究丛枝菌根真菌菌丝对多氯联苯(polychlorinated biphenyls,PCBs)污染土壤的修复效应及其机理。试验设置接种丛枝菌根真菌的处理以及不接种的对照,选用美国南瓜(Cucurbita pepo L.)为供试植物,在南瓜生长40天后将接种菌根真菌处理的菌丝室土壤从尼龙网向外水平分为4层取样,测定PCBs及磷脂脂肪酸含量。结果表明:菌丝可以穿越尼龙网影响菌丝室土壤,且距离尼龙网越远菌丝量越低;菌丝显著促进了土壤微生物量(P0.05),并改变了不同土层土壤微生物群落结构;接种菌根真菌处理各土层PCBs降解率为35.67%~57.39%,均显著高于对照的17.31%,相关分析结果表明土壤三氯、四氯联苯以及PCBs总量与菌丝量呈极显著负相关(P0.01);菌丝际土壤微生物量,特别是细菌生物量与土壤三氯联苯含量呈显著负相关(P0.05)。可见,菌丝通过影响菌丝际土壤微生物群落结构及生物量,促进三氯及四氯联苯降解,从而提高土壤PCBs修复效率。  相似文献   

7.
The objective of this study was to test whether soil types can be characterized by their arbuscular mycorrhizal fungal (AMF) communities. To answer this question, a well-defined study area in the temperate climatic zone of Central Europe was chosen with a large spectrum of soils and parent materials. Representative soil samples were taken from three soil types (Cambisol, Fluvisol and Leptosol) at in total 16 sites differing in agricultural land use intensity (9 grasslands and 7 arable lands). AMF spores were isolated and morphologically identified directly from field soils and after reproduction in trap cultures. AMF diversity and community composition strongly depended on soil type and land use intensity, and several AMF species were characteristic for a specific soil type or a specific land use type and hence had a specific niche. In contrast, other AM fungi could be considered as ‘generalists’ as they were present in each soil type investigated, irrespective of land use intensity. An estimated 53% of the 61 observed AMF species could be classified as ‘specialists’ as (almost) exclusively found in specific soil types and/or under specific land use intensities; 28% appeared to be ‘generalists’ and 19% could not be classified. Plant species compositions (either natural or planted) had only a subordinate influence on the AMF communities. In conclusion, land use intensity and soil type strongly affected AMF community composition as well as the presence and prevalence of many AM fungi. Future work should examine how the differences in AMF species compositions affect important ecosystem processes in different soils and to which extent the loss of specific groups of AM fungi affect soil quality.  相似文献   

8.
Arbuscular mycorrhizal (AM) fungi are key organisms of the soil/plant system, influencing soil fertility and plant nutrition, and contributing to soil aggregation and soil structure stability by the combined action of extraradical hyphae and of an insoluble, hydrophobic proteinaceous substance named glomalin-related soil protein (GRSP). Since the GRSP extraction procedures have recently revealed problems related to co-extracting substances, the relationship between GRSP and AM fungi still remains to be verified. In this work the hypothesis that GRSP concentration is positively correlated with the occurrence of AM fungi was tested by using Medicago sativa plants inoculated with different isolates of Glomus mosseae and Glomus intraradices in a microcosm experiment. Our results show that (i) mycorrhizal establishment produced an increase in GRSP concentration - compared to initial values - in contrast with non-mycorrhizal plants, which did not produce any change; (ii) aggregate stability, evaluated as mean weight diameter (MWD) of macroaggregates of 1-2 mm diameter, was significantly higher in mycorrhizal soils compared to non-mycorrhizal soil; (iii) GRSP concentration and soil aggregate stability were positively correlated with mycorrhizal root volume and weakly correlated with total root volume; (iv) MWD values of soil aggregates were positively correlated with values of total hyphal length and hyphal density of the AM fungi utilized.The different ability of AM fungal isolates to affect GRSP concentration and to form extensive and dense mycelial networks, which may directly affect soil aggregates stability by hyphal enmeshment of soil particles, suggests the possibility of selecting the most efficient isolates to be utilized for soil quality improvement and land restoration programs.  相似文献   

9.
A comprehensive knowledge on the relationship between soil salinity and arbuscular mycorrhizal fungi (AMF) is vital for a deeper understanding of ecosystem functioning under salt stress conditions. The objective of this study was to determine the effects of soil salinity on AMF root colonization, spore count, glomalin related soil protein (GRSP) and community structure in Saemangeum reclaimed land, South Korea. Soil samples were collected and grouped into five distinct salt classes based on the electrical conductivity of soil saturation extracts (ECse). Mycorrhizal root colonization, spore count and GRSP were measured under different salinity levels. AMF community structure was studied through three complementary methods; spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Results revealed that root colonization (P < 0.01), spore count (P < 0.01) and GRSP (P < 0.01) were affected negatively by soil salinity. Spore morphology and T-RFLP data showed predominance of AMF genus Glomus in Saemangeum reclaimed land. T-RFLP and DGGE analysis revealed significant changes in diversity indices between non (ECse < 2 dS/m) and extremely (ECse > 16 dS/m) saline soil and confirmed dominance of Glomus caledonium only in soils with ECse < 8 dS/m. However, ribotypes of Glomus mosseae and Glomus proliferum were ubiquitous in all salt classes. Combining spore morphology, T-RFLP and DGGE analysis, we could show a pronounced effect in AMF community across salt classes. The result of this study improve our understanding on AMF activity and dominant species present in different salt classes and will substantially expand our knowledge on AMF diversity in reclaimed lands.  相似文献   

10.
Arbuscular mycorrhizal fungi (AMF) differ in their rate and extent of colonization of both plant roots and soil but the mechanism responsible for these differences is unclear. We compared the external mycelium of three AMF isolates (Glomus intraradices, Glomus etunicatum and Gigaspora gigantea) during early colonization of plant roots. We investigated whether an AMF with the most rapid colonization would have higher numbers of infective structures (i.e., infection hyphae and contact points), an AMF with extensive root colonization would have more infection units, and (3) AMF with extensive soil colonization would have large numbers of all external features (including absorptive hyphae, runner hyphae and hyphal bridges). Using specially designed soil and root observation chambers, we followed the development of the external mycelium for 7 weeks. We found that rapid colonization rate was due, in part, to the presence of more infective structures, in particular more infection hyphae and root contact points. Second, the extensive root colonizer had more, larger infection units. Third, data did not support the hypothesis that the extensive soil colonizer had more external structures. These results show that differences in the architecture of the external mycelium are responsible, in part, for variation in the colonization strategy of AMF.  相似文献   

11.
以菲和芘为多环芳烃(PAHs)代表物,以紫花苜蓿(Medicago sativa L.)为宿主植物,选用幼套球囊霉(Glomus etunicatum, Ge)、摩西球囊霉(Glomus mosseae,Gm)和层状球囊霉(Glomus lamellosum,Gla)3种丛枝菌根真菌(AMF),研究了接种AMF下土壤中AMF菌丝密度、球囊霉素含量与PAHs去除率的关系。35~75 d,接种Ge、Gm、Gla处理的土壤中菌丝密度、总球囊霉素含量、易提取球囊霉素含量均随时间延长而显著增大,与不接种对照相比,75 d时接种Ge、Gm、Gla处理的土壤中易提取球囊霉素含量提高了48.58%、55.99%和50.23%,总球囊霉素含量则提高了38.75%、50.95%和46.12%。接种AMF促进了土壤中菲和芘的去除,随着时间(35~75 d)延长,接种Ge、Gm、Gla处理的土壤中菲去除率分别高达83.4%~92.7%、82.1%~93.8%、86.9%~93.4%,芘去除率达42.2%~63.5%、43.7%~69.2%、44.6%~66.4%。接种Ge、Gm和Gla处理土壤中AMF菌丝密度、总球囊霉素含量均与土壤中菲和芘的去除率之间存在极显著正相关关系,表明接种AMF提高了土壤中AMF菌丝密度和总球囊霉素含量,并促进了土壤中PAHs的去除。研究结果为阐明丛枝菌根修复PAHs污染土壤的规律及机理提供了依据。  相似文献   

12.
张立丹  张俊伶  李晓林 《土壤》2011,43(3):426-432
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)能够与大多数陆地植物互惠共生,促进植物对养分的吸收,提高植物对各种生物和非生物胁迫的抗逆性,对植物健康生长有重要的作用。在土壤中丛枝菌根真菌与植物寄生性线虫共同依靠寄主植物根系完成生命循环,但二者对寄主植物作用完全相反,引起研究者广泛兴趣,成为菌根研究的热点和焦点之一。本文分析了丛植菌根真菌与植物寄生线虫的相互作用,并探讨了菌根提高植物对线虫抗性的可能机制:菌根真菌改善植物的生长和营养状况、改变植物根系形态结构、影响根系分泌物和根际微生物区系、诱导寄主植物产生防御反应等,旨在深入挖掘丛枝菌根真菌的生物学功能,进一步发挥其在农业生产中的应用潜力。  相似文献   

13.
It has widely been acknowledged that the diversity of arbuscular mycorrhizal fungi (AMF) is greatly affected by climate, land use intensity, and soil parameters. The objective of this study was to investigate AMF diversity in multiple agricultural soils (154 sites; 92 grasslands and 62 croplands) distributed over all agricultural regions in Switzerland and differing in a number of soil parameters (e.g., land use type and intensity, and altitude). We highlighted the main factors responsible for major AMF community shifts and documented specific distribution patterns for each AMF species. AMF spores were morphologically identified and counted for each species. In total, 17,924 spores were classified and 106 AMF species were identified. In general, AMF species richness (SR) was higher in grasslands than in croplands. In croplands, SR increased with altitude but this trend was not observed in grasslands. Some species occurred at virtually all sites, while others were rarely detected, and for others, species-specific distribution patterns were revealed. Some species were affected by land use type or intensity, or related factors like soil organic matter, soil microbial biomass and respiration or nutrient availability. Other species were more affected by soil pH and related parameters like base saturation and carbonate contents, by soil texture, or by altitude, or by a combination of two to several of all these parameters. We conclude that a high number of AMF species may serve as indicator species for specific habitats and land use. These species might deliver certain ecosystem services at their habitats and deserve further investigation about their functional diversity.  相似文献   

14.
Communities of arbuscular mycorrhizal fungi (AMF) are strongly affected by land use intensity and soil type. The impact of tillage practices on AMF communities is still poorly understood, especially in organic farming systems. Our objective was to investigate the impact of soil cultivation on AMF communities in organically managed clay soils of a long-term field experiment located in the Sissle valley (Frick, Switzerland) where two different tillage (reduced and conventional mouldboard plough tillage) and two different types of fertilization (farmyard manure & slurry, or slurry only) have been applied since 2002. In addition, a permanent grassland and two conventionally managed croplands situated in the neighborhood of the experiment were analyzed as controls. Four different soil depths were studied including top-soils (0–10 and 10–20 cm) of different cultivation regimes and undisturbed sub-soils (20–30 and 30–40 cm). The fungi were directly isolated from field soil samples, and additionally spores were periodically collected from long-term trap culture (microcosm) systems. In total, >50,000 AMF spores were identified on the species level, and 53 AMF species were found, with 38 species in the permanent grassland, 33 each in the two reduced till organic farming systems, 28–33 in the regularly plowed organic farming systems, and 28–33 in the non-organic conventional farming systems. AMF spore density and species richness increased in the top-soils under reduced tillage as compared to the ploughed plots. In 10–20 cm also the Shannon–Weaver AMF diversity index was higher under reduced tillage than in the ploughed plots. Our study demonstrates that AMF communities in clay soils were affected by land use type, farming system, tillage as well as fertilization strategy and varying with soil depth. Several AMF indicator species especially for different land use types and tillage strategies were identified from the large data set.  相似文献   

15.
Aspergillus niger-treated dry olive cake (DryOC) can be used as a soil organic amendment and the aim of this work was to study the effectiveness of this amendment and a Cd-adapted arbuscular mycorrhizal (AM) fungus in improving Trifolium repens growth and nutrition in Cd-contaminated soil. In a compartmentalized growth system, consisting of a root compartment (RC) and two hyphal compartments (HCs), we investigated the influence of the amendment on intraradical and extraradical AM fungi development. In addition, we studied the viability and infectivity of the detached extraradical mycelium in plants, designated as receptor plants, grown in the HC after removal of the RC. Both the amendment and the AM fungus increased shoot and root biomass and nodulation in both the non-contaminated and Cd-contaminated soils. The positive interaction between the microbiologically treated DryOC and the AM fungus resulted in the highest plant yield, which can be explained by enhanced nutrient acquisition and arbuscular richness as well as by the immobilisation of Cd in amended soils. However, A. niger-treated DryOC had no effect on the extraradical mycorrhizal mycelium development. Although Cd decreased AM hyphal length density, symbiotic infectivity was similar in receptor plants grown in non-contaminated and contaminated soil, thus confirming the AM fungal inoculum potential.The combination of the AM fungus and A. niger-treated DryOC increased plant tolerance to Cd in terms of plant growth and nutrition and can be regarded as an important strategy for reclaiming Cd-contaminated soils.  相似文献   

16.
The significance of arbuscular mycorrhizal fungi (AMF) in soil remediation has been widely recognized because of their ability to promote plant growth and increase phytoremediation efficiency in heavy metal (HM) polluted soils by improving plant nutrient absorption and by influencing the fate of the metals in the plant and soil. However, the symbiotic functions of AMF in remediation of polluted soils depend on plant–fungus–soil combinations and are greatly influenced by environmental conditions. To better understand the adaptation of plants and the related mycorrhizae to extreme environmental conditions, AMF colonization, spore density and community structure were analyzed in roots or rhizosphere soils of Robinia pseudoacacia. Mycorrhization was compared between uncontaminated soil and heavy metal contaminated soil from a lead–zinc mining region of northwest China. Samples were analyzed by restriction fragment length polymorphism (RFLP) screening with AMF-specific primers (NS31 and AM1), and sequencing of rRNA small subunit (SSU). The phylogenetic analysis revealed 28 AMF group types, including six AMF families: Glomeraceae, Claroideoglomeraceae, Diversisporaceae, Acaulosporaceae, Pacisporaceae, and Gigasporaceae. Of all AMF group types, six (21%) were detected based on spore samples alone, four (14%) based on root samples alone, and five (18%) based on samples from root, soil and spore. Glo9 (Rhizophagus intraradices), Glo17 (Funneliformis mosseae) and Acau3 (Acaulospora sp.) were the three most abundant AMF group types in the current study. Soil Pb and Zn concentrations, pH, organic matter content, and phosphorus levels all showed significant correlations with the AMF species compositions in root and soil samples. Overall, the uncontaminated sites had higher species diversity than sites with heavy metal contamination. The study highlights the effects of different soil chemical parameters on AMF colonization, spore density and community structure in contaminated and uncontaminated sites. The tolerant AMF species isolated and identified from this study have potential for application in phytoremediation of heavy metal contaminated areas.  相似文献   

17.
【目的】蚯蚓和丛枝菌根真菌处于不同的营养级,但在促进植物生长和提高土壤肥力等方面却都发挥着积极作用。研究蚯蚓菌根互作及其对玉米吸收土壤中的氮、磷养分的影响,可为提升土壤生物肥力及促进农业的可持续发展提供理论依据。【方法】本研究采用田间盆栽方式,以玉米为供试作物,研究蚯蚓(Eisenia fetida)与丛枝菌根真菌(Glomus intraradices)互作及其对玉米养分吸收的影响。试验设置P 25和175 mg/kg两个水平。每个磷水平进行接种与不接种菌根真菌以及添加与不添加蚯蚓,共8个处理。调查了玉米生长、养分吸收以及真菌浸染和土壤养分的有效性。【结果】两个磷水平下,蚯蚓和菌根在增加玉米地上部和根系生物量方面有显著正交互作用(P0.05)。接种菌根真菌的各处理显著增加了玉米的侵染率及泡囊丰度、根内菌丝丰度等菌根指标。同时添加蚯蚓和接种菌根真菌的处理(AM+E)显著提高了菌根的侵染率、菌丝密度、丛枝丰度和根内菌丝丰度但是泡囊丰度有所下降。两种磷水平下,AM+E处理玉米地上部和地下部含氮量和含磷量均显著高于其他三个处理。在低磷条件下,地上部氮磷总量的增加分别是添加蚯蚓和接菌的作用;而地下部磷总量的增加主要是菌根真菌的作用。在高磷条件下,单加蚯蚓显著增加玉米氮磷的总量,而接种菌根真菌对玉米氮磷吸收的影响未达显著性水平。在高磷条件下,单加蚯蚓的处理显著提高玉米地上地下部生物量(P0.05),而单接菌的处理效应不显著,蚯蚓菌根互作通过提高土壤微生物量碳、氮实现对玉米生长和养分吸收的调控。在低磷条件下,单接菌显著提高了玉米的生物量(P0.05),单加蚯蚓的处理具有增加玉米生物量的趋势。菌根真菌主要促进玉米对磷的吸收,蚯蚓主要矿化秸秆和土壤中的氮磷养分增加土壤养分的有效性,蚯蚓菌根互作促进了玉米根系对土壤养分的吸收并形成氮磷互补效应。【结论】无论在高磷还是低磷水平下,蚯蚓菌根相互作用都提高了玉米地上地下部生物量、氮磷吸收量同时提高了土壤微生物量碳、氮。蚯蚓菌根相互作用对植物生长的影响取决于土壤养分条件。在高磷条件下(氮相对不足),蚯蚓菌根互作通过调控土壤微生物量碳、氮调控玉米生长和养分吸收。低磷条件下,菌根主要发挥解磷作用,蚯蚓主要矿化秸秆和土壤中的氮素,蚯蚓和菌根互补调控土壤中氮、磷,从而促进植物的生长和养分吸收。  相似文献   

18.
Evaluation of the performance of inoculants in undisturbed and unsterilized soils, where diverse communities of microorganisms are present, is a necessary step before using arbuscular mycorrhizal fungi (AMF) in agricultural technology. The effects of inoculation with Glomus mosseae on arbuscular mycorrhizal colonization, growth, and nitrogen (N) uptake of wheat plants in unsterilized tilled and untilled soils from the Argentinean Pampas with different levels of N fertilization were assessed. The fertilization and inoculation effects depended on the tillage treatments. In no-tillage, the colonization was greater than in conventional tillage, but it was reduced by the N fertilization. In conventional tillage, the inoculation with G. mosseae increased colonization. Both conventional tillage and N fertilization promoted wheat root growth. Inoculation did not affect root growth but enhanced N concentration in roots when fertilizer was not applied.  相似文献   

19.
The role of edaphic factors in driving the relationship between plant community structure and ecosystem processes is a key issue of the current debate on functional implications of biodiversity. In this study, we draw a direct link between aboveground/belowground relationships, vegetation structure, and aboveground management. We used ground nesting ants and arbuscular mycorrhizal fungi (AMF) as an example for quantifying the role of biotic interactions in soil. Although both groups are known to have a major impact on grasslands, the interactive effect of these taxa on vegetation structure and its sensitivity to grassland management is poorly understood. We show that the ant Lasius flavus increases the root arbuscular mycorrhizal colonization (AMC) of grasses by modifying biotic and abiotic soil properties. As a possible consequence, the shoot length of grass growing on ant mounds was shorter and shoot N and P concentrations were higher than in grass growing off of the mounds. In addition, management affected ant nest architecture and soil and, in turn, AMC. These results emphasize the need to consider the interactions between plants, soil microorganisms, soil fauna, and aboveground management to increase the understanding of the drivers of biodiversity and ecosystem functioning in grasslands both aboveground and belowground.  相似文献   

20.
Phosphorus (P) is an essential element for plant growth but is often limiting in ecosystems; therefore, improving the P fertilizer use efficiency is important. Biochar and arbuscular mycorrhizal fungi (AMF) may enhance P cycling in paddy soils that contain high content of total P but low content of available P (AP). In this study, the effects of biochar addition and Rhizophagus irregularis inoculation on the organic and inorganic P contents and phosphatase activities in paddy soils, rice seedling growth, and AMF colonization were investigated. Compared with no biochar addition, biochar addition enhanced the percentage of spore germination at day 7, hyphal length, most probable number, and mycorrhizal colonization rate of R.irregularis by 32%, 662%, 70%, and 28% on average, respectively. Biochar and R. irregularis altered soil P cycling and availability. Biochar and R. irregularis, either individually or in combination, increased soil AP content by 2%-48%. Rice seedlings treated with biochar and R. irregularis produced greater biomass, improved root morphology, and increased nutrient uptake compared with those of the control without biochar and R. irregularis. The results suggest that combined application of biochar and R. irregularis is beneficial to rice cultivation in paddy soils with high content of total P but low content of AP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号