首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Hydrogen oxidation in soil was measured at low (1 ppmv) and high (300 ppmv) H2 concentrations to distinguish between the activities of abiontic soil hydrogenases and Knallgas bacteria, respectively. The two activities also showed distinctly different pH optima, temperature optima, and apparent activation energies. The pH optima for the soil hydrogenase activities were similar to the soil pH in situ, i.e., pH 8 in an slightly alkaline garden soil (pH 7.3) and pH 5 in an acidic cambisol (pH 4.6–5.4). Most probable number determinations in the alkaline acidic soils showed that Knallgas bacterial populations grew preferentially in neutral or acidic media, respectively. However, H2 oxidation activity by Knallgas bacteria in the acidic soil showed two distinct pH optima, one at pH 4 and a second at pH 6.4–7.0. The soil hydrogenase activities exhibited temperature optima at 35–40°C, whereas the Knallgas bacteria had optima at 50–60°C. The apparent activation energies of the soil hydrogenases were lower (11–23kJ mol-1) than those of the Knallgas bacteria (51–145 kJ mol-1). Most of the soil hydrogenase activity was located in the upper 10 cm of the acidic cambisol and changed with season. The seasonal activity changes were correlated with changes in soil moisture and soil pH.  相似文献   

2.
Though microbial activity is known to occur in frozen soils, little is known about the fate of animal manure N applied in the fall to agricultural soils located in areas with prolonged winter periods. Our objective was to examine transformations of soil and pig slurry N at low temperatures. Loamy and clay soils were either unamended (Control), amended with 15NH4-labeled pig slurry, or amended with the pig slurry and wheat straw. Soils were incubated at −6, −2, 2, 6, and 10 °C. The amounts of NH4, NO3 and microbial biomass N (MBN), and the presence of 15N in these pools were monitored. Total mineral N, NO3 and 15NO3 increased at temperature down to −2 °C in the loam soil and −6 °C in the clay soil, indicating that nitrification and mineralization proceeded in frozen soils. Nitrification and mineralization rates were 1.8-4.9 times higher in the clay than in the loamy soil, especially below freezing point (3.2-4.9), possibly because more unfrozen water remained in the clay than in the loamy soil. Slurry addition increased nitrification rates by 3-14 times at all temperatures, indicating that this process was N-limited even in frozen soils. Straw incorporation caused significant net N immobilization only at temperatures ≥2 °C in both soils; the rates were 1.4-3.4 higher in the loam than in the clay soil. Nevertheless, up to 30% of the applied 15N was present in MBN at all temperatures. These findings indicate that microbial N immobilization occurred in frozen soils, but was not strong enough to induce net immobilization below the freezing point, even in the presence of straw. The Q10 values for estimated mineralization and nitrification rates were one to two orders-of-magnitude larger below 2 °C than above this temperature (13-208 versus 1.5-6.9, respectively), indicating that these processes are highly sensitive to a small increase in soil temperature around the freezing point of water. This study confirms that net mineralization and nitrification can occur at potentially significant rates in frozen agricultural soils, especially in the presence of organic amendments. In contrast, net N immobilization could be detected essentially above the freezing point. Our results imply that fall-applied N could be at risk of overwinter losses, particularly in fine-textured soils.  相似文献   

3.
Storage can markedly influence microbial and biochemical properties in soils, yet recommendations for sample storage are based on studies of temperate soils that regularly experience extended cold periods. We assessed the influence of storage conditions on microbial phosphorus and the activity of four hydrolytic enzymes (phosphomonoesterase, phosphodiesterase, β-glucosidase, and N-acetyl-β-d-glucosaminidase) in three lowland tropical forest soils from the Republic of Panama that experience a constant warm temperature. The soils spanned a strong rainfall gradient and contained contrasting physical and chemical properties (pH 3.6-5.9; total carbon 26-50 g C kg−1; clay 33-62%; total phosphorus 0.30-0.60 g P kg−1). Storage treatments were: (i) room temperature (22 °C in the dark), (ii) refrigerated (4 °C in the dark), (iii) air-dried (10 d, 22 °C), and (iv) frozen (−35 °C). There were significant changes in enzyme activities and microbial phosphorus during refrigerated and room temperature storage, although changes were relatively small during the first two weeks. An initial marked decline in enzyme activities for one soil analyzed within 2 h of sampling was attributed to a flush of activity caused by sampling and soil preparation (sieving, etc.). For longer-term storage (>2 weeks), ambient laboratory temperature appeared preferable to freezing and cold storage, because one month of storage caused a marked decline in enzyme activities and microbial phosphorus in one soil. Freezing preserved the activities of some enzymes in some soils at rates comparable to cold or room temperature storage, but caused a marked decline in microbial phosphorus in two soils. Air-drying caused a marked decline in microbial phosphorus and the activity of all enzymes. We therefore conclude that enzyme assays and microbial phosphorus should be determined in tropical forest soils after no more than two weeks storage in the dark at ambient laboratory temperature.  相似文献   

4.
The aim of this work was to assess the effect of the presence of ash on maximum temperature reached (MTR) estimation using near infrared reflectance (NIR) spectroscopy. The degree of combustion (ash produced by heating to 100, 300, 500 and 700 °C), the type (ash from Pinus halepensis and Rosmarinus officinalis), and different quantities of ash (0–20% in 2% interval) were evaluated in a soil heated at seven different temperatures (100 °C–700 °C). Results showed that the estimation of MTR on samples with ash, using partial least squares (PLS) models constructed with samples without ash, could be erroneous. Both, ash quantity and degree of combustion affected the estimation of MTR. However, using discriminant analysis, a good classification of samples (> 97% correctly classified) according to the heating temperature classes (unheated, 100, 200, 300, 400, 500, 600 and 700 °C) was obtained despite the presence of ash.  相似文献   

5.
A radiocarbon approach was used to investigate the roles of temperature and soil fauna activity in the turnover of ‘old’ non-labile carbon in a peatland ecosystem. We investigated the impacts of enchytraeids on carbon turnover in two different soil layers, with different incorporation of the ‘bomb’ peak, when incubated at two different temperatures. Results showed that, in agreement with previous studies, warmer temperatures promoted reproduction rates of enchytraeids, with the top layer supporting higher animal densities and biomass. With independence of the animal treatment, soil respiration in the top 5 cm was four times higher than in the deeper layer suggesting that decomposition was greater in the upper layer, with the response being greater at the highest temperature treatment. Furthermore, independent of temperature, the presence of enchytraeids in the top layer significantly enhanced the release of non-labile C as DOC. Similarly, at the bottom layer, ‘older’ C sources were mobilised in response to warming and a greater amount of pre-bomb carbon was released into the soil solution at 20 °C when the worms were present. A strong positive link between the ages of the C assimilated by the animals and released through mineralization suggests an important role of soil biology in the mobilisation of the older C pools in soils and should be taken into account in developing global C models to predict the response of soil C dynamics to climate change.  相似文献   

6.
We investigated the effects of soil temperature (15 °C, 25 °C, 35 °C), water content (20%, 33%, 50%) and pH (4.5, 7.0, 9.0) on the degradation of Cry1Ab protein released from the straw of Bt corn varieties 34B24 and 1246 × 1482 both expressing Cry1Ab protein. Our results showed that Cry1Ab protein released from both 34B24 and 1246 × 1482 straw was degraded in a similar way in all treatments, which demonstrated a rapid decline in the early stage but a slow decline in the middle and late stages. In the late stage (180 days after the experiment commenced) 0.03%-1.51% and 0.02%-0.91% of initial Cry1Ab protein released from 34B24 and 1246 × 1482 straw was detected in soil. In addition, degradation dynamics of Cry1Ab protein under different environmental conditions was well described by the shift-log model. DT50 of Cry1Ab protein released from 34B24 and 1246 × 1482 straw was 0.97-9.97 d and 0.75-10.89 d, respectively, and DT90 was 4.66-162.45 d and 6.44-57.46 d, respectively. The results suggested that soil temperature had significant effects on the degradation of Cry1Ab protein, with a higher degradation rate at higher temperature, but soil water content and pH had no obvious effects on the degradation of Cry1Ab protein.  相似文献   

7.
The effects of temperature on the growth rate and metal toxicity in soil bacterial communities extracted from unpolluted and polluted soils were investigated using the thymidine and leucine incorporation techniques. An agricultural soil, which was contaminated in the laboratory with Cu, Cd, Zn, Ni or Pb, and an uncontaminated forest soil were used. Measurements were made at 0°C and 20°C. Leucine incorporation was found to be as sensitive to heavy metals as thymidine incorporation in the short-term trial used to indicate heavy metal tolerance. Similar IC50 values (the log of the metal concentration that reduced incorporation to 50%) were also obtained at 0 and 20°C, independently of the technique used. Metal tolerance could thus be measured using both techniques at any temperature in the range 0–20°C. In the long-term experiment different temperature-growth relationships were obtained on the basis of the rate of thymidine or leucine incorporation into bacterial assemblages from unpolluted and polluted soils, as judged from the minimum temperature values. This could not be attributed to the metal addition alone since different patterns were observed when different metals were added to the soil. Thus, the minimum temperature for thymidine incorporation was similar in Cu-polluted and unpolluted soil, while in soils polluted with Cd and Zn the minimum temperature increased by 2°C, and Ni and Pb additions increased the minimum temperature by 4°C compared to the unpolluted soil. This suggested that heavy metal pollution led to bacterial communities showing different temperature characteristics to those in the corresponding unpolluted soil. Similar observations were deduced from the minimum temperatures required for leucine incorporation. Three groups of bacterial communities were distinguished according to the growth response to temperature in polluted soils, one group in Cu-polluted soil, a second group in soil polluted with Zn and Cd, and a third group in soils polluted with Ni and Pb.  相似文献   

8.
Two complementary experimental approaches were utilized to examine the extent to which free soil hydrogenases and H2-oxidizing bacteria contribute to the soil uptake of atmospheric H2. First, high affinity hydrogenase activity and H2-oxidizing bacteria were fractionated in non-axenic soil and axenic soil colonized with the high affinity H2-oxidizing bacterium Streptomyces sp. PCB7. Non-axenic soil was fractionated by buoyant density centrifugation. High affinity H2 oxidation activity measured in individual fractions was proportional to the copy number of hhyL gene, specifying the large subunit of putative high affinity [NiFe]-hydrogenases. 2.5% of the hydrogenase activity was recovered in bacteria-free soil extract. Similarly, sequential centrifugation and wet filtrations of strain PCB7-colonized soil dispersed in solubilization buffer caused a loss of the activity, at a ratio proportional to the number of living cells removed. No abiontic hydrogenase activity was detected in bacteria-free fractions. The second experimental approach was designed to verify whether or not the [NiFe]-hydrogenase of strain PCB7 retains high affinity H2 oxidation activity in soil, under the abiontic state. H2 oxidation rates of crude enzyme extract of strain PCB7 measured under aerobic and anaerobic conditions were indistinguishable, indicating that the high affinity hydrogenase of strain PCB7 is oxygen-tolerant. The hydrogenase activity of sterile soil spiked with as much as 0.14 mg(protein) g(soil-dw)−1 was equivalent to the H2-oxidation activity of only 106-107 CFU of strain PCB7 g(soil-dw)−1. Taken together, our results indicate that high affinity hydrogenase activity is proportional to the abundance of H2-oxidizing bacteria in soil and, that abiontic hydrogenases contribute only a few percent of the total high affinity H2 oxidation activity detected in soil.  相似文献   

9.
Laboratory incubation experiments were conducted to compare the effects of the nitrification inhibitors 3,4-dimethylpyrazole phosphate (DMPP) and 2-Chloro-6-(trichloromethyl)-pyridine (N-serve) on nitrification and nitrous oxide (N2O) emission from a Vertosol from southern Australia, under controlled moisture and temperature. Nitrification rates in the control soil were strongly influenced by the temperature and moisture, increasing by a factor of 3.6 for each 10 °C increase between 5 and 25 °C. DMPP inhibited nitrification effectively for 42 days at 5-15 °C and 40-60% water filled pore space (WFPS). DMPP also slowed nitrification appreciably at 25 °C when the soil was at 40% WFPS, but was less effective at 60% water filled pore space. N-serve inhibited nitrification effectively for 42 days under all test conditions. Emissions of N2O from the urea treatment (no inhibitors) significantly increased with increasing temperature and moisture. The ratio of total N2O emission to total nitrification was not constant and varied from around 0.03% at 5 °C and 40% WFPS to 0.12% at 25 °C and 60% WFPS. DMPP and N-serve reduced cumulative N2O emission over 42 days by more than 65% under all the imposed conditions.  相似文献   

10.
Nitric oxide (NO) is an important component of biogeochemical cycling of nitrogen, produced via biologically mediated processes of nitrification and denitrification in soils. The production and consumption processes of NO in black soils are not fully understood. We established how moisture and temperature affect NO dynamics for black soil samples of maize land in the temperate zone of northeastern China. The optimum soil moisture for the maximum NO production and emission was determined to be 41% water-filled pore space (WFPS), based on laboratory experiments and modeling. For a given moisture, NO fluxes increased exponentially with soil temperature at any given soil moisture. The optimum soil moisture for the maximum NO emission was constant and independent of soil temperature. The NO consumption rate constant (k) in the studied soil (range 9.31 × 10−6-15.1 × 10−6 m3 kg−1 s−1) was in the middle of the range of similar k values published to date. The maximum NO emission potential for black soils at 25 °C and 15 °C were about 18.6 and 9.0 ng N m−2 s−1, respectively. Based on laboratory results and field monitoring data of soil water content and soil temperature, the average NO fluxes from black soils in the region were estimated to be 10.7 ng N m−2 s−1 for an entire plant growth period. NO emissions likely occur principally in July, associated with optimum soil moisture. The present study suggests that NO fluxes from black soil are much lower than the previous reports from cropland in southern parts of China.  相似文献   

11.
Most climate change scenarios predict that the variability of weather conditions will increase in coming decades. Hence, the frequency and intensity of freeze-thaw cycles in high-latitude regions are likely to increase, with concomitant effect on soil carbon biogeochemistry and associated microbial processes. To address this issue we sampled riparian soil from a Swedish boreal forest and applied treatments with variations in four factors related to soil freezing (temperature, treatment duration, soil water content and frequency of freeze-thaw cycles), at three levels in a laboratory experiment, using a Central Composite Face-centred (CCF) experimental design. We then measured bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth, basal respiration, soil microbial phospholipid fatty acid (PLFA) composition, and concentration of dissolved organic carbon (DOC). Fungal growth was higher in soil exposed to freeze-thawing perturbations and freezing temperatures of −6 °C and −12 °C, than under more constant conditions (steady 0 °C). The opposite pattern was found for bacteria, resulting in an increasing fungal-to-bacterial growth ratio following more intensive winter conditions. Soil respiration increased with water content, decreased with treatment duration and appeared to mainly be driven by treatment-induced changes in the DOC concentration. There was a clear shift in the PLFA composition at 0 °C, compared with the two lower temperatures, with PLFA markers associated with fungi as well as a number of unsaturated PLFAs being relatively more common at 0 °C. Shifts in the PLFA pattern were consistent with those expected for phenotypic plasticity of the cell membrane to low temperatures. There were small declines in PLFA concentrations after freeze-thawing and with longer durations. However, the number of freeze-thaw events had no effect on the microbiological variables. The findings suggest that the higher frequency of freeze-thaw events predicted to follow the global warming will likely have a limited impact on soil microorganisms.  相似文献   

12.
Summary Changes in the content of C, N, P, and S in the soil biomass and in phosphatase, urease, protease, deaminase, and arylsulphatase activity, induced by amendment with municipal solid-waste compost, were determined in a clay loam soil during 1 year of incubation at 25° and 35°C.In the unenriched soil (control) decreasing trends in biomass C, biomass N, and biomass S were observed at both temperatures. In the enriched soil, these values increased, reaching a maximum after 1 month. Biomass P, probably due to a slower process of P immobilization, showed different trends. Alkaline phosphomonoesterase, phosphodiesterase, and deaminase activity remained constant after reaching maximum values (3–5 months). Arylsulphatase, urease, and protease activity tended to return to baseline after reaching a maximum (2–3 months).Atrazine, though applied at a dose that was 10 times higher than the recommended field rate, did not modify the chemical and biochemical properties of either the control or the enriched soil.Significant positive and negative correlations between changes in biomass values and changes in enzyme activity were found. The negative correlations are attributed to the delay in the enzymatic response compared with the changes in microbial biomass.  相似文献   

13.
Temperature fluctuations are a fundamental entity of the soil environment in the temperate zone and show fast (diurnal) and slow (seasonal) dynamics. However, responses of soil ecosystem engineers, such as earthworms, to annual temperature dynamics are virtually unknown. We studied growth, mortality and cocoon production of epigeic earthworm species (Lumbricus rubellus and Dendrobaena octaedra) exposed to temperature fluctuations in root-free soil of a mid-European beech-oak forest. Both earthworm species (3 + 3 individuals of each species) were kept in microcosms containing soil stratified into L, F + H and Ah horizons. In the field, earthworm responses to smoothing of diurnal temperature fluctuations were studied, simulating possible global change. In the laboratory, earthworm responses to seasonal (±5 °C of the annual mean) and diurnal temperature fluctuations (±5 °C of the seasonal levels) were analyzed in a two-factorial design. Both experiments lasted 12 months to differentiate between seasonal and diurnal responses. In the third experiment overwintering success of both earthworm species was investigated by comparing effects of constant temperature regime (+2 °C), and daily or weekly temperature fluctuations (2 °C ± 5 °C).Temperature regime strongly affected population performance of the earthworms studied. In the field, smoothed temperature fluctuations beneficially affected population development of both earthworm species (higher biomass, faster maturity and reproduction, lower mortality). Consequently, density of both species increased faster at smoothed than at ambient temperature conditions. In the laboratory, responses of L. rubellus and D. octaedra to temperature treatments differed; however, in general, earthworms benefited from the absence of diurnal fluctuations. Total earthworm numbers were at a maximum at constant temperature and lowest in the treatment with both diurnal and seasonal temperature fluctuations. However, after one year L. rubellus tended to dominate irrespective of the temperature regime. In the overwintering experiment L. rubellus sensitively responded to even short-term winter frost and went extinct after one week of frost whereas D. octaedra much better tolerated frost conditions. Earthworms of both species which survived frosts were characterized by a significant body weight decrease during the period of frosts and fast recovery in spring suggesting a different pattern of individual resource expenditure as compared with constant +2 °C winter regime. Contrasting trends in the population dynamics of L. rubellus and D. octaedra during the frost-free period and during winter suggest that in the long-term temperature fluctuations contribute to the coexistence of decomposer species of similar trophic position in the forest litter. The results are discussed in context of consequences of climate change for the functioning of soil systems.  相似文献   

14.
Grazing by large ungulates, such as reindeer (Rangifer tarandus L.), in subarctic tundra exerts a considerable effect on the soil microclimate. Because of higher insulation by the aboveground vegetation in light versus heavily grazed areas, soil temperatures during the growing season are considerably higher under heavy grazing. Here, we hypothesized that these grazer-induced changes in soil microclimate affect the temperature sensitivity of soil microbial activity. To test this hypothesis, we conducted soil incubations at different temperatures (4 °C, 9 °C and 14 °C) for six weeks using soils from sites with contrasting long-term grazing intensities. Microbial respiration at low temperature (4 °C) was significantly higher in soils under light grazing than in soils under heavy grazing; however, grazing intensity did not affect respiration rates at 9 °C and 14 °C. In soils under light grazing, post-incubation β-glucosidase (BG) activity at 4 °C was higher in soils that had been incubated at 4 °C than in soils incubated at 14 °C, suggesting functional adaptation of the soil microbial community to low temperature. Similar adaptation was not detected in soils under heavy grazing. Ion Torrent sequencing of bacterial 16S rRNA genes showed major differences in the bacterial community composition in soils incubated at different temperatures. Overall, our results indicate that tundra soil microorganisms may be more cold-adapted under low than high grazing intensity. Due to this difference in temperature adaptation, the consequences of climate warming on soil microbial processes may be dependent on the grazing intensity.  相似文献   

15.
Accurate prediction of soil N availability requires a sound understanding of the effects of environmental conditions and management practices on the microbial activities involved in N mineralization. We determined the effects of soil temperature and moisture content and substrate type and quality (resulting from long-term pasture management) on soluble organic C content, microbial biomass C and N contents, and the gross and net rates of soil N mineralization and nitrification. Soil samples were collected at 0–10 cm from two radiata pine (Pinus radiata D. Don) silvopastoral treatments (with an understorey pasture of lucerne, Medicago sativa L., or ryegrass, Lolium perenne L.) and bare ground (control) in an agroforestry field experiment and were incubated under three moisture contents (100, 75, 50% field capacity) and three temperatures (5, 25, 40 °C) in the laboratory. The amount of soluble organic C released at 40 °C was 2.6- and 2.7-fold higher than the amounts released at 25 °C and 5 °C, respectively, indicating an enhanced substrate decomposition rate at elevated temperature. Microbial biomass C:N ratios varied from 4.6 to 13.0 and generally increased with decreasing water content. Gross N mineralization rates were significantly higher at 40 °C (12.9 g) than at 25 °C (3.9 g) and 5 °C (1.5 g g–1 soil day–1); and net N mineralization rates were also higher at 40 °C than at 25 °C and 5 °C. The former was 7.5-, 34-, and 29-fold higher than the latter at the corresponding temperature treatments. Gross nitrification rates among the temperature treatments were in the order 25 °C >40 °C >5 °C, whilst net nitrification rates were little affected by temperature. Temperature and substrate type appeared to be the most critical factors affecting the gross rates of N mineralization and nitrification, soluble organic C, and microbial biomass C and N contents. Soils from the lucerne and ryegrass plots mostly had significantly higher gross and net mineralization and nitrification rates, soluble organic C, and microbial biomass C and N contents than those from the bare ground, because of the higher soil C and N status in the pasture soils. Strong positive correlations were obtained between gross and net rates of N mineralization, between soluble organic C content and the net and gross N mineralization rates, and between microbial biomass N and C contents.  相似文献   

16.
To better understand the factors that control forest soil CO2 efflux and the effects of rewetting on efflux, we measured soil CO2 efflux in adjacent deciduous, coniferous, and mixed forests in the central part of the Korean Peninsula over the course of one year. We also conducted laboratory rewetting experiments with soil collected from the three sites using three different incubation temperatures (4 °C, 10 °C, and 20 °C). Soil moisture (SM), soil organic matter (SOM), and total root mass values of the three sites were significantly different from one another; however, soil temperature (ST), observed soil CO2 efflux and sensitivity of soil CO2 efflux to ST (i.e., Q10 = 3.7 ± 0.1) were not significantly different among the three sites. Soil temperature was a dominant control factor regulating soil CO2 efflux during most of the year. We infer that soil CO2 efflux was not significantly different among the sites due to similar ST and Q10. Though a significant increase in soil CO2 efflux following rewetting of dry soil was observed both in the field observations (60-170%) and laboratory incubation experiments (100-1000%), both the increased rates of soil CO2 efflux and the magnitude of change in SM were not significantly different among the sites. The increased rates of soil CO2 efflux following rewetting depended on the initial SM before rewetting. During drying phase after rewetting, a significant correlation between SM and soil CO2 efflux was found, but the effect of ST on increased soil CO2 efflux was not clear. Cumulative peak soil CO2 efflux (11.3 ± 0.7 g CO2 m−2) following rewetting in the field was not significantly different among the sites. Those evidences indicate that the observed similar rewetting effects on soil CO2 efflux can be explained by the similar magnitude of change in SM after rewetting at the sites. We conclude that regardless of vegetation type, soil CO2 efflux and the effect of rewetting on soil CO2 efflux do not differ among the sites, and ST is a primary control factor for soil CO2 efflux while SM modulates the effect of rewetting on soil CO2 efflux. Further studies are needed to quantify and incorporate relationship of initial dryness of the soil and the frequency of the dry-wet cycle on soil CO2 efflux into models describing carbon (C) processes in forested ecosystems.  相似文献   

17.
Summary A study was undertaken to investigate arylsulphatase activity in 15 soils cropped to cocoa (Theobroma cacao) and coffee (Coffea canephora var. robusta) in Ghana. The arylsulphatase activity was correlated positively and significantly with organic C, total N, and cation exchange capacity, and correlated negatively with acetate soluble sulphate. The enzyme was deactivated at an incubation temperature of over 60°C. Preheating and oven-drying of soils decreased arylsulphatase activity. Addition of 1.0 ml toluene during the assay resulted in a sharp decline in arylsuphatase activity. The addition of trace elements at a concentration of 1 ppm caused a reduction in soil arylsulphatase activity compared with that of the untreated samples.  相似文献   

18.
This study is aimed at quantifying organic carbon (C) and total nitrogen (N) dynamics associated with physically separated soil fractions in a grassland-cultivation sequence in the Qinghai-Tibetan plateau. Concentrations of organic C and N of soil, free and occluded particulate organic matter (OM), and aggregate- and mineral-associated OM in different land uses are increased in the following order: 50 years cultivation < 12 years cultivation ≤ native grassland. The prolonged cropping of up to 50 years markedly affected the concentrations of free and occluded particulate OM and mineral-associated OM. After wet-sieving, 43% of native grassland soil mass was found in >1−10 mm water-stable aggregates that stored 40% of bulk soil organic C and N; only 16% and 7% of soil mass containing 16% and 7% of bulk soil organic C and N was >1−10 mm water-stable aggregates of soils cultivated for 12 years and 50 years, respectively. This indicated that losses of soil organic C and N following cultivation of native grassland would be largely related to disruption of >1–10 mm size aggregates and exposure of intra-aggregate OM to microbial attack. Organic C and N concentrations of soil aggregates were similar among aggregate size fractions (>0.05−10 mm) within each land use, suggesting that soil aggregation process of these soils did not follow the hierarchy model. The increase of the C-to-N ratio of free and occluded particulate fractions in the cultivated soils compared to the grassland soil indicated a greater loss of N than C.  相似文献   

19.
Soil microbial communities mediate the decomposition of soil organic matter (SOM). The amount of carbon (C) that is respired leaves the soil as CO2 (soil respiration) and causes one of the greatest fluxes in the global carbon cycle. How soil microbial communities will respond to global warming, however, is not well understood. To elucidate the effect of warming on the microbial community we analyzed soil from the soil warming experiment Achenkirch, Austria. Soil of a mature spruce forest was warmed by 4 °C during snow-free seasons since 2004. Repeated soil sampling from control and warmed plots took place from 2008 until 2010. We monitored microbial biomass C and nitrogen (N). Microbial community composition was assessed by phospholipid fatty acid analysis (PLFA) and by quantitative real time polymerase chain reaction (qPCR) of ribosomal RNA genes. Microbial metabolic activity was estimated by soil respiration to biomass ratios and RNA to DNA ratios. Soil warming did not affect microbial biomass, nor did warming affect the abundances of most microbial groups. Warming significantly enhanced microbial metabolic activity in terms of soil respiration per amount of microbial biomass C. Microbial stress biomarkers were elevated in warmed plots. In summary, the 4 °C increase in soil temperature during the snow-free season had no influence on microbial community composition and biomass but strongly increased microbial metabolic activity and hence reduced carbon use efficiency.  相似文献   

20.
The activity of heterotrophic soil microorganisms is usually limited by the availability and quality of carbon (C). Adding organic substances will thus trigger a microbial response. We studied the response in bacterial growth and respiration after the addition of low amounts of glucose. First we determined if additions of glucose, at concentrations which did not result in an exponential increase in respiration after the lag phase, still stimulated bacterial growth. The second aim was to determine the threshold concentration of glucose needed to induce bacterial growth. Adding glucose-C at 1000 μg g−1 soil resulted in an increased respiration rate, which was stable during 12 h, and then decreased without showing any exponential increase in respiration. Bacterial growth, determined as leucine incorporation, did not change compared to an unamended control during the first 12 h, but then increased to levels 5 times higher than in the control. Thus, after the lag phase, a period with increasing bacterial growth, but at the same time decreasing respiration rates, was found. Similar results, but with a more modest increase in bacterial growth, were found using 500 μg glucose-C g−1 soil. Adding 50–700 μg glucose-C g−1 resulted in increased respiration during 24 h correlating with the addition rate. In contrast, bacterial growth after 24 h was only stimulated by glucose additions >200 μg C g−1 soil. Thus, there was a threshold concentration of added substrate for inducing bacterial growth. Below the threshold concentration growth and respiration appear to be uncoupled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号