首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of endogeic earthworms (Octolasion tyrtaeum (Savigny)) on the translocation of litter-derived carbon into the upper layer of a mineral soil by fungi was investigated in a microcosm experiment. Arable soil with and without O. tyrtaeum was incubated with 13C/15N-labelled rye leaves placed on plastic rings with gaze (64 μm mesh size) to avoid incorporation of leaves by earthworms. The plastic rings were positioned either on or 3 cm above the soil surface, to distinguish between biotic and chemical/physical translocation of nutrients by fungi and leaching.Contact of leaves to the soil increased 13C translocation, whereas presence of O. tyrtaeum reduced the incorporation of 13C into the mineral soil in all treatments. Although biomass of O. tyrtaeum decreased during the experiment, more 13C and 15N was incorporated into earthworm tissue in treatments with contact of leaves to the soil. Contact of leaves to the soil and the presence of O. tyrtaeum increased cumulative 13CO2-C production by 18.2% and 14.1%, respectively.The concentration of the fungal bio-indicator ergosterol in the soil tended to be increased and that of the fungal-specific phospholipid fatty acid 18:2ω6 was significantly increased in treatments with contact of leaves to the soil. Earthworms reduced the concentration of ergosterol and 18:2ω6 in the soil by 14.0% and 43.2%, respectively. Total bacterial PLFAs in soil were also reduced in presence of O. tyrtaeum, but did not respond to the addition of the rye leaves. In addition, the bacterial community in treatments with O. tyrtaeum differed from that without earthworms and shifted towards an increased dominance of Gram-negative bacteria.The results indicate that litter-decomposing fungi translocate litter-derived carbon via their mycelial network in to the upper mineral soil. Endogeic earthworms decrease fungal biomass by grazing and disruption of fungal hyphae thereby counteracting the fungal-mediated translocation of carbon in soils.  相似文献   

2.
Previous work in our laboratory showed that several bacterial strains, either singly or in association with other bacteria (community migration), were capable of migrating together with the saprotrophic fungus Lyophyllum sp. strain Karsten through soil microcosms. A possible involvement of the type III secretion system (TTSS) in migration was indicated. In this study, we addressed the basis of the community migration, which might lie in a migration helper effect exerted by particular single-strain migrators on other members of the community. Different culturing (plating) as well as culture-independent (PCR-DGGE) methods were applied to assess the effects of putative bacterial helpers in the migration. We used, as a model, the migration-proficient Burkholderia terrae BS001 as the canonical helper strain. PCR-DGGE analysis of the soil system with or without added strain BS001, revealed that the latter consistently stimulated the migration of different bacterial species through the soil. This was observed both following introduction of the organism to a bacterial community from soil and on the basis of a similar organism that was naturally present. One strain, Dyella japonica BS003, was identified as an avid comigrator with B. terrae BS001, although it appeared to lag behind the latter strain in its migration speed. Further examination of the B. terrae BS001/D. japonica BS003 interaction at Lyophyllum sp. strain Karsten hyphae showed that the presence of the D. japonica strain did not negatively affect the growth and migration of B. terrae BS001 with the fungus. A biofilm of B. terrae BS001 was formed on the fungal hyphal front, and we postulate a role for this biofilm in the migration helper effect.  相似文献   

3.
Mecoprop-p [(R)-2-(4-chloro-2-methylphenoxy) propanoic acid) is widely used in agriculture and poses an environmental concern because of its susceptibility to leach from soil to water. We investigated the effect of soil depth on mecoprop-p biodegradation and its relationship with the number and diversity of tfdA related genes, which are the most widely known genes involved in degradation of the phenoxyalkanoic acid group of herbicides by bacteria. Mecoprop-p half-life (DT50) was approximately 12 days in soil sampled from <30 cm depth, and increased progressively with soil depth, reaching over 84 days at 70-80 cm. In sub-soil there was a lag period of between 23 and 34 days prior to a phase of rapid degradation. No lag phase occurred in top-soil samples prior to the onset of degradation. The maximum degradation rate was the same in top-soil and sub-soil samples. Although diverse tfdAα and tfdA genes were present prior to mecoprop-p degradation, real time PCR revealed that degradation was associated with proliferation of tfdA genes. The number of tfdA genes and the most probable number of mecoprop-p degrading organisms in soil prior to mecoprop-p addition were below the limit of quantification and detection respectively. Melting curves from the real time PCR analysis showed that prior to mecoprop-p degradation both class I and class III tfdA genes were present in top- and sub-soil samples. However at all soil depths only tfdA class III genes proliferated during degradation. Denaturing gradient gel electrophoresis confirmed that class III tfdA genes were associated with mecoprop-p degradation. Degradation was not associated with the induction of novel tfdA genes in top- or sub-soil samples, and there were no apparent differences in tfdA gene diversity with soil depth prior to or following degradation.  相似文献   

4.
The distinct rhizomorphic mats formed by ectomycorrhizal Piloderma fungi are common features of the organic soil horizons of coniferous forests of the Pacific Northwest. These mats have been found to cover 25-40% of the forest floor in some Douglas-fir stands, and are associated with physical and biochemical properties that distinguish them from the surrounding non-mat soils. In this study, we examined the fungal and bacterial communities associated with Piloderma mat and non-mat soils. Each mat and non-mat area was repeatedly sampled at four times throughout the year. Characterization of the mat activity and community was achieved using a combination of N-acetylglucosaminidase (NAGase) enzyme assays, and molecular analysis of fungal and bacterial communities using T-RFLP profiles, clone libraries, and quantitative PCR. Piloderma mats had consistently greater NAGase activity across all dates, although the magnitude of the difference varied by season. Furthermore, we found distinct fungal and bacterial communities associated with the Piloderma mats, yet the size of the microbial populations differed little between the mat and non-mat soils. Significant temporal variation was seen in the NAGase activity and in the sizes of the fungal and bacterial populations, but the community composition remained stable through time. Our results demonstrate the presence of two distinct microbial communities occupying the forest floor of Douglas-fir stands, whose populations and activities fluctuate seasonally but with little change in composition, which appears to be related to the physiochemical nature of mat and non-mat habitats.  相似文献   

5.
The objective of this study was to simplify the procedure for evaluation of legume nodulation, by examining if there is a relationship between the nodulation of the whole root system and at the crown region. Roots of peanut, soybean and common bean plants growing in soils were split in two parts (crown and bottom) and assessed for nodulation (nodule number and dry weight). In general, most nodules were concentrated at the crown, and crown nodulation was generally positively correlated with total nodulation of all three legume crops. The results are highly applicable in studies such as strain selection for inoculants and assessment of inoculation technologies, among others, and is an important contribution to help reduce the time and labor required for the evaluation of nodulation parameters.  相似文献   

6.
Fertilizer costs are a major component of corn production. The use of biofertilizers may be one way of reducing production costs. In this study we present isolation and identification of three plant growth promoting bacteria that were identified as Enterobacter cloacae (CR1), Pseudomonas putida (CR7) and Stenotrophomonas maltophilia (CR3). All bacterial strains produced IAA in the presence of 100 mg l−1 of tryptophan and antifungal metabolites to several soilborne pathogens. S. maltophilia and E. cloacae had broad spectrum activity against most Fusarium species. The only strain that was positive for nitrogen fixation was E. cloacae and it, and P. putida, were also positive for phosphate solubilization. These bacteria and the corn isolate Sphingobacterium canadense CR11, and known plant growth promoting bacterium Burkholderia phytofirmans E24 were used to inoculate corn seed to examine growth promotion of two lines of corn, varieties 39D82 and 39M27 under greenhouse conditions. When grown in sterilized sand varieties 39M27 and 39D82 showed significant increases in total dry weights of root and shoot of 10-20% and 13-28% and 17-32% and 21-31% respectively. Plants of the two varieties grown in soil collected from a corn field had respective increases in dry weights of root and shoot of 10-30% and 12-35% and 11-19% and 10-18%. In sand, a bacterial mixture was highly effective whereas in soil individual bacteria namely P. putida CR7 and E. cloacae CR1 gave the best results with 39M27 and 39D82 respectively. These isolates and another corn isolate, Azospirillum zeae N7, were tested in a sandy soil with a 55 and 110 kg ha−1 of nitrogen fertility at the Delhi research Station of Agriculture and Agri-Food Canada over two years. Although out of seven bacterial treatments, no treatment provided a statistically significant yield increase over control plots but S. canadense CR11 and A. zeae N7 provided statistically significant yield increase as compared to other bacteria. The 110 kg rate of nitrogen provided significant yield increase compared to the 55 kg rate in both years.  相似文献   

7.
We have investigated whether decomposer fungi translocate litter-derived C into the underlying soil while simultaneously translocating soil-derived inorganic N up into the litter layer. We also located and quantified where the translocated C is deposited within the soil aggregate structure. When 13C-labeled wheat straw was decomposed on the surface of soil amended with 15N-labeled inorganic N, we found that C and N were reciprocally transferred by fungi, with a significant quantity (121-151 μg C g−1 whole soil) of litter-derived C being deposited into newly formed macroaggregates (>250 μm sized aggregates). Fungal inhibition reduced fungal biomass and the bidirectional C and N flux by approximately 50%. The amount of litter-derived C found in macroaggregates was positively correlated with litter-associated fungal biomass. This fungal-mediated litter-to-soil C transfer, which to our knowledge has not been demonstrated before for saprophytic fungi, may represent an important mechanism by which litter C enters the soil and becomes stabilized as soil organic matter within the macroaggregate structure.  相似文献   

8.
The transport of the spores of Pasteuria penetrans was studied in three contrasted textured soils (a sandy, a sandy-clay and a clay soils), cultivated with tomato, inoculated with juveniles of Meloidogyne javanica and watered with 25 or 150 mm day−1. One month after inoculation of the nematodes, 53% of the spores inoculated were leached by water flow in the sandy soil but only 14% in the sandy-clay soil and 0.1% in the clay soil. No nematodes survived in the clay soil, while the population was multiplied both in the sandy and in the sandy-clay soils. But juveniles of M. javanica were more infected by P. penetrans in the sandy-clay soil than in the sandy soil. Comparing different combinations of bare soils containing 1.1-57% of clay showed that the best spore percolation and retention balance occurred in soils amended with 10-30% clay. However, the spore recoveries decreased when the soil was enriched with more than 30% clay. The role of clay particles on the extractability of spores and on their availability to attach to the nematode cuticle in the soil is discussed.  相似文献   

9.
Cellulose and lignin degradation dynamics was monitored during the leaf litter decomposition of three typical species of the Mediterranean area, Cistus incanus L., Myrtus communis L. and Quercus ilex L., using the litter bag method. Total N and its distribution among lignin, cellulose and acid-detergent-soluble fractions were measured and related to the overall decay process. The litter organic substance of Cistus and Myrtus decomposed more rapidly than that of Quercus. The decay constants were 0.47 year−1, 0.75 year−1 and 0.30 year−1 for Cistus, Myrtus and Quercus, respectively. Lignin and cellulose contents were different as were their relative amounts (34 and 18%, 15 and 37%, 37 and 39% of the overall litter organic matter before exposure, for Cistus, Myrtus and Quercus, respectively). Lignin began to decrease after 6 and 8 months of exposure in Cistus and Myrtus, respectively, while it did not change significantly during the entire study period in Quercus. The holocellulose, in contrast, began to decompose in Cistus after 1 year, while in Quercus and Myrtus immediately. Nitrogen was strongly immobilized in all the litters in the early period of decay. Its release began after the first year in Cistus and Myrtus and after 2 years of decomposition in Quercus. These litters still contained about 60, 20 and 90% of the initial nitrogen at the end of the experiment (3 years). Prior to litter exposure nitrogen associated with the lignin fraction was 65, 54 and 37% in Cistus, Myrtus and Quercus, while that associated with the cellulose fraction was 30, 24 and 28%. Although most of the nitrogen was not lost from litters, its distribution among the litter components changed significantly during decomposition. In Cistus and Myrtus the nitrogen associated with lignin began to decrease just 4 months after exposure. In Quercus this process was slowed and after 3 years of decomposition 8% of the nitrogen remained associated with lignin or lignin-like substances. The nitrogen associated with cellulose or cellulose-like substances, in contrast, began to decrease from the beginning of cellulose decomposition in all three species. At the end of the study period most of the nitrogen was not associated to the lignocellulose fraction but to the acid-detergent-soluble substance (87, 88 and 84% of the remaining litter nitrogen).  相似文献   

10.
11.
Colonization and survival of the inoculated bacteria in rhizosphere of maize were investigated in field and pot experiments conducted for 3 consecutive years under rainfed conditions of Himalayan region. The effect of bacterial inoculations on growth and yield related parameters of maize were also evaluated. While three bacterial species, viz. Bacillus megaterium, Bacillus subtilis and Pseudomonas corrugata were tested in 1st year experiments, P. corrugata (based on the 1st year results) was chosen for inoculation in the subsequent experiments. All the three bacterial inoculants showed good rhizosphere competence giving high inoculum numbers (log10 11.13-11.34 cfu g−1). The bacterial inoculations by B. megaterium, B. subtilis and P. corrugata resulted in an increment in grain yield of maize up to 122.4%, 135.2% and 194.3%, respectively, as compared to respective control. In 1st year, the antibiotic marked (Nalr Rifr) inoculant P. corrugata resulted in the highest increase in grain yield, statistically significant (P<0.05) as compared to control, B. megaterium and B. subtilis. In 2nd and 3rd year experiments, P. corrugata increased the grain yield up to 147.28% and 149.93%, respectively, as compared to control. The best performance and consistent trend of P. corrugata to increase plant yields was credited to its initial isolation from rhizosphere of maize growing under temperate conditions. The overall beneficial effects of bacterial inoculations on maize were contributed to (1) the colonization and survival of the introduced bacteria, and (2) stimulation of the indigenous microflora in the rhizosphere. Based on the comprehensive results obtained in this study, P. corrugata may be recommended as suitable bioinoculant for maize fields of temperate climate grown under rainfed conditions.  相似文献   

12.
Cutover peatlands are often rapidly colonised by pioneer plant species, which have the potential to affect key ecosystem processes such as carbon (C) turnover. The aim of this study was to investigate how plant cover and litter type affect fungal community structure and litter decomposition in a cutover peatland. Intact cores containing Eriophorum vaginatum, Eriophorum angustifolium, Calluna vulgaris and bare soil were removed and a mesh bag with litter from only one of each of these species or fragments of the moss Sphagnum auriculatum was added to each core in a factorial design. The presence or absence of live plants, regardless of the species, had no effect on mass loss, C, nitrogen (N) or phosphorus (P) concentrations of the litter following 12 months of incubation. However, there was a very strong effect of litter type on mass loss and concentrations of C, N and P between most combinations of litter. Similarly, plant species did not affect fungal community structure but litter type had a strong effect, with significant differences between most pairs of litter types. The data suggest that labile C inputs via rhizodeposition from a range of plant functional types that have colonised cutover bogs for 10-15 years have little direct effect on nutrient turnover from plant litter and in shaping litter fungal community structure. In contrast, the chemistry of the litter they produce has much stronger and varied effects on decomposition and fungal community composition. Thus it appears that there is distinct niche differentiation between the fungal communities involved in turnover of litter versus rhizodeposits in the early phases of plant succession on regenerating cutover peatlands.  相似文献   

13.
We show that Pseudomonas fluorescens strain P13, a plant growth-promoting bacterium, enhanced the growth of corn in uncontaminated soil but not in contaminated soil, perhaps because of its inability to reduce phytotoxicity. Another bacterial strain, Pseudomonas aeruginosa strain SZH16, showed in situ phenol-degrading activity and contained a plasmid loaded with a gene encoding for catechol 2, 3-dioxygenase, an important enzyme in the degradation pathway of aromatic compounds. We implanted this biodegradation ability into strain P13, using horizontal gene transfer techniques using strain SZH16 as the donor and P13 as the recipient, to generate a phenol-degrading transconjugant which obtained the effective plasmid from strain SZH16. Introduction of the transconjugant P13 strain into an artificially phenol-spiked soil promoted the growth of corn and in situ phenol degradation, and the increase in plant biomass correlated with the decrease in soil phenol content. Furthermore, the transconjugant P13 strain was also found to stimulate corn growth and reduce phenol concentration in water containing phenol and in historically contaminated field soils, indicating that the transconjugant strain could promote plant growth in both contaminated and uncontaminated environments. The transconjugant P13 strain was more efficient than either strain P13 or SZH16, and shows how plant growth-promoting bacteria which show no, or only limited, ability to degrade organic pollutants may be modified. This technique is attractive for many environmental remediation and agronomic applications.  相似文献   

14.
The knowledge of the survival of inoculated beneficial fungal and bacterial strains in the field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developing. The aim of this study was to monitor, 4 years after plantation into the field site, the effects of Douglas fir (Pseudotsuga menziesii) co-inoculation with the mycorrhiza helper bacterial strain Pseudomonas fluorescens BBc6R8 and/or the fungal strain Laccaria bicolor S238N on seedling growth and on the indigenous bacterial and ectomycorrhizal communities using quantitative and qualitative approaches. The field persistence of the inoculated strains was also monitored. The seedling shoot volume estimate was statistically significantly higher in the fungal inoculated plots in comparison to the non-inoculated plots but no treatment-related changes in the quantitave or qualitative microbial measurements were observed and the inoculated strains could not be detected after 4 years.  相似文献   

15.
Ecological overlap may increase the risks of microbial exchange between humans and wild non-human primates. Escherichia coli bacteria were collected from chimpanzees and humans in Kibale National Park, western Uganda, in May and June 2004, in order to examine whether interaction between humans and apes in the wild might affect gastrointestinal bacterial communities in the two species. Chimpanzees harbored bacteria genetically more similar to those of humans employed in chimpanzee-directed research and tourism than to those of humans from a local village. Most humans (81.6%) and 4.4% of chimpanzees harbored at least one isolate resistant to locally available antibiotics. In isolates from both humans and chimpanzees, resistance was higher to five of these antibiotics than to Ceftiofur, an antibiotic not available in the region. These data indicate that humans and apes interacting in the wild can share genetically and phenotypically similar gastrointestinal bacteria, presumably originating from common environmental sources. Strategies to limit transmission of pathogens between humans and primates, whether that transmission is direct or indirect, would benefit both human health and primate conservation.  相似文献   

16.
Bacteria, isolated from canola and soybean plants, produced antifungal organic volatile compounds. These compounds inhibited sclerotia and ascospore germination, and mycelial growth of Sclerotinia sclerotiorum, in vitro and in soil tests. Ascospore germination in cavity slides was inhibited 54-90% by the volatile producers. When mycelial plugs or the sclerotia, exposed to these volatiles, were transferred to fresh agar plates, the pathogen could not grow, indicating the fungicidal nature of the volatiles. Head space volatiles, produced by bacteria, were trapped with activated charcoal, by passing nitrogen continuously over shake cultures for 48 h. The compounds were eluted from the charcoal with methylene chloride and identified using Gas Chromatography-Mass Spectrometry (GC-MS). The volatile compounds included aldehydes, alcohols, ketones and sulfides. Of the 23 compounds assayed for antifungal activity in divided Petri plates, with filter-disks soaked with these compounds (100 and 150 μl), only six compounds completely inhibited mycelial growth or sclerotia formation, suggesting their potential role in biological control. The compounds are benzothiazole, cyclohexanol, n-decanal, dimethyl trisulfide, 2-ethyl 1-hexanol, and nonanal. Volatiles may play an important role in the inhibition of sclerotial activity, limiting ascospore production, and reducing disease levels. Studies are under way to understand this phenomenon under field conditions. This is the first report on the identification and use of bacterial antifungal organic volatiles in biocontrol.  相似文献   

17.
The effects of excessive addition of excreta from the Great Cormorant Phalacrocorax carbo, a colonial piscivorous bird, on the growth and the ability of fungi to decompose needle litter of Chamaecyparis obtusa were examined by a pure-culture test. Colony growth rate, mass loss of needle litter, and utilization patterns of lignin and carbohydrates were investigated and compared for 22 species in basidiomycetes, ascomycetes, and zygomycetes. Colony growth rate of basidiomycetes decreased on medium supplemented with excreta (excreta medium) as compared to control medium without excreta, whereas such a difference was not found for ascomycetes. Mass loss of needle litter caused by basidiomycetes was generally higher than those caused by ascomycetes and zygomycetes. Basidiomycetes decomposed both lignin and carbohydrates in various proportions, whereas ascomycetes and zygomycetes decomposed carbohydrates selectively. Mass loss of litter caused by basidiomycetes and ascomycetes was lower when incubated on excreta medium than on control medium. Mass loss of lignin and nitrogen caused by basidiomycetes was lower on excreta medium than on control medium, whereas such differences were not found for ascomycetes. Mass loss of carbohydrate was not different between the media for basidiomycetes or ascomycetes.  相似文献   

18.
Much of metapopulation theory assumes that the persistence of individual populations in a metapopulation, and persistence of the metapopulation as a whole, is best modeled by the area of habitat patches and their isolation. Estimates of isolation typically include a measure of geographic distance and a measure of either population size or patch area. This “area and isolation paradigm” assumes a functional relationship between the area of a patch and its extinction probability, and between isolation of a patch and its colonization probability. Although these assumptions are fundamental to use of incidence function models of metapopulation dynamics, the assumptions have been validated in only a small number of studies. We tested the ability of area and isolation to predict extinction and colonization patterns using multiple-year occupancy data for 10 species from three taxonomic groups (butterflies, amphibians, and birds). We examined 13 potential models of metapopulation dynamics. All models included four basic parameters: occupancy during the first year of the survey, probability of extinction, probability of colonization, and single-visit detection probability. In eight models, each parameter was either constant or time-dependent. Five models included a patch-level covariate of extinction probability (patch area or population size), colonization probability (connectivity, the inverse of isolation), or both. Extinction patterns generally were predicted more effectively as a function of local population size than as a function of patch area, a constant probability of extinction, or a time-dependent probability of extinction. In most cases, inclusion of connectivity as a patch-level covariate did not improve predictions of colonization patterns. We estimated single-visit detection probabilities for all species in our analyses, thus providing evidence-based guidelines for the refinement of future monitoring protocols.  相似文献   

19.
To explore the potential of trees and shrubs on farmlands on traditional systems in southern Ethiopia, mineralization of macronutrients and loss of organics from leaves of Cordia africana and Albizia gummifera were studied under shaded-coffee and agricultural land-uses during the dry season. Leaves in litterbags were incorporated at 15 cm depth in soil under both land uses and residues were recovered after 2, 4, 8, 12 and 16 weeks. Contents of macronutrients and organics in initial and recovered residues were measured. Single- or double-exponential decay or quadratic functions were fitted to describe patterns of decay or release of various leaf constituents. The two species differed significantly (P<0.05) with respect to contents of ash, N, P, K, cellulose (CEL), lignin (LG), total soluble polyphenols (PL), and condensed tannins (CT). Cordia had higher content of ash, K, P, CEL, LG and a higher C-to-N ratio while Albizia had higher contents of N, PL, CT and a higher C-to-P ratio. Albizia had significantly greater mass loss, N loss and release of CT than Cordia. N was immobilized for the first 4 weeks in most treatments. Across land uses and species, mass loss rates varied from −0.023 week−1 in Cordia to −0.034 week−1 in Albizia (R2>0.70). Higher rate of release of CT seems to have facilitated decomposition in Albizia despite higher initial PL and CT in the leaves of this species. There was no significant land-use effect on any of the variables considered. It was concluded that under drier conditions, tree cover might not affect decomposition, and that organic residues with high content of polyphenols, particularly condensed tannins could decompose faster than those with lower content. This suggests that indigenous tree species with high concentrations of tannins, supposedly considered to be of ‘poor quality’, might still be quite useful as an organic input for improving soil fertility and productivity in the tropics.  相似文献   

20.
Several sites that are contaminated with isomers of the chlorinated insecticide hexachlorocyclohexane (HCH) are present across the globe and cause toxicity. For their bioremediation, we studied the degradation of HCH-isomers in contaminated soils by an isolate Pseudomonas aeruginosa ITRC-5. The degradation is optimal at 2 mg technical-HCH (t-HCH)/g soil, 15% water content, pH 8.0, temperature 28 °C and inoculum density 106 colony forming unit/g soil. Under these conditions, from 5 kg soil, >98% α- and γ-HCH, 17% β-HCH and 76% δ-HCH are degraded after 15 days of incubation, which is accompanied with the release of 600 μg chloride/mg t-HCH. Concomitant to the degradation, a four-fold reduction in the toxicity of HCH-isomers to earthworm, Eisenia foetida, is also observed. Addition of ITRC-5 enhanced the degradation of soil-applied HCH-isomers in ‘open field’ conditions as well, and 97%, 43%, 94% and 77% of α-, β-, γ- and δ-HCH, respectively, are degraded after 12 weeks of incubation. Thus, the bacterium causes microbial degradation and detoxification of HCH-isomers, and can be used for the bioremediation of contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号