首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controversial conclusions from different studies suggest that the decomposition of old soil organic matter (SOM) is either more, less, or equally temperature sensitive compared to the younger SOM. Based on chemical kinetic theory, the decomposition of more recalcitrant materials should be more temperature sensitive, unless environmental factors limit decomposition. Here, we show results for boreal upland forest soils supporting this hypothesis. We detected differences in the temperature sensitivity 1) between soil layers varying in their decomposition stage and SOM quality, and 2) inside the layers during a 495 day laboratory incubation. Temperature sensitivity increased with increasing soil depth and decreasing SOM quality. In the organic layers, temperature sensitivity of decomposition increased during the early part of a 495 day laboratory incubation, after respiration rate and SOM quality had notably decreased. This indicates that decomposition of recalcitrant compounds was more temperature sensitive than that of the labile ones. Our results imply that Q10 values for total heterotrophic soil respiration determined from short-term laboratory incubations can either underestimate or overestimate the temperature sensitivity of SOM decomposition, depending on soil layer, initial labile carbon content and temperature range used for the measurements. Using Q10 values that ignore these factors in global climate models provides erroneous estimates on the effects of climate change on soil carbon storage.  相似文献   

2.
Soil respiration (SR) is highly sensitive to future climate change, and particularly to global warming. However, considerable uncertainties remain associated with the temperature sensitivity of SR and its controlling processes. Using 384 field measurement data from 114 published papers and one book, this study quantifies the variation in the seasonal Q10 values of soil respiration, the multiplier by which respiration rates increase for a 10 °C increase in temperature, and its drivers across different sites. No significant correlation between Q10 and mean annual temperature or mean annual precipitation is found when statistically controlling seasonal changes in vegetation activity, deduced from satellite vegetation greenness index observations (normalized difference vegetation index, or NDVI). In contrast, the seasonal amplitude of NDVI is significantly and positively correlated with the apparent Q10 of SR. This result indicates that the variations of seasonal vegetation activity exert dominant control over the variations of the apparent Q10 of SR across different sites, highlighting the ecological linkage between plant physiological processes and soil processes. It further implies that the seasonal variation of vegetation activity may thus dominate the apparent seasonal temperature sensitivity. We conclude that the apparent Q10 value of SR estimated from field measurements is generally larger than the intrinsic temperature sensitivity of soil organic matter decomposition, and thus cautions should be taken when applying apparent Q10 values directly in ecosystem models. Our regression analysis further shows that when the amplitude of NDVI variation approximates 0 (and thus when the seasonality in vegetation activity is marginal), the residual Q10 of SR for soil temperature measured at 5 cm depth is about 1.5.  相似文献   

3.
Decomposer microorganisms contribute to carbon loss from the forest floor as they metabolize organic substances and respire CO2. In temperate and boreal forest ecosystems, the temperature of the forest floor can fluctuate significantly on a day-to-night or day-to-day basis. In order to estimate total respiratory CO2 loss over even relatively short durations, therefore, we need to know the temperature sensitivity (Q10) of microbial respiration. Temperature sensitivity has been calculated for microbes in different soil horizons, soil fractions, and at different depths, but we would suggest that for some forests, other ecologically relative soil portions should be considered to accurately predict the contribution of soil to respiration under warming. The floor of many forests is heterogeneous, consisting of an organic horizon comprising a few more-or-less distinct layers varying in decomposition status. We therefore determined at various measurement temperatures the respiration rates of litter, F-layer, and H-layer collected from a Pinus resinosa plantation, and calculated Q10 values for each layer. Q10 depended on measurement temperature, and was significantly greater in H-layer than in litter or F-layer between 5 and 17 °C. Our results indicate, therefore, that as the temperature of the forest floor rises, the increase in respiration by the H-layer will be disproportionate to the increase by other layers. However, change in respiration by the H-layer associated with change in temperature may contribute minimally or significantly to changes of total forest floor respiration in response to changes in temperature depending on the depth and thickness of the layer in different forest ecosystems.  相似文献   

4.
Understanding the sensitivity of soil respiration to temperature change and its impacting factors is an important base for accurately evaluating the response of terrestrial carbon balance to future climatic change, and thus has received much recent attention. In this study, we synthesized 161 field measurement data from 52 published papers to quantify temperature sensitivity of soil respiration in different Chinese ecosystems and its relationship with climate factors, such as temperature and precipitation. The results show that the observed Q10 value (the factor by which respiration rates increase for a 10 °C increase in temperature) is strongly dependent on the soil temperature measurement depth. Generally, Q10 significantly increased with the depth (0 cm, 5 cm, and 10 cm) of soil temperature measuring point. Different ecosystem types also exhibit different Q10 values. In response to soil temperature at the depth of 5 cm, alpine meadow and tundra has the largest Q10 value with magnitude of 3.05 ± 1.06, while the Q10 value of evergreen broadleaf forests is approximately half that amount (Q10 = 1.81 ± 0.43). Spatial correlation analysis also shows that the Q10 value of forest ecosystems is significantly and negatively correlated with mean annual temperature (R = −0.51, P < 0.001) and mean annual precipitation (R = −0.5, P < 0.001). This result not only implies that the temperature sensitivity of soil respiration will decline under continued global warming, but also suggests that such acclimation of soil respiration to warming should be taken into account in forecasting future terrestrial carbon cycle and its feedback to climate system.  相似文献   

5.
Understanding the spatial variation of temperature sensitivity (i.e. Q10) of soil respiration (Rs) and its controlling factors, is critical to improve the precision of carbon budget estimations at regional scales. In this study, data from 2-3 continuous years of Rs measurements over 15 ecosystems of ChinaFLUX were summarized to analyze the response of Rs to soil temperature. Moreover, we improved our dataset by collecting previously published Q10 values from 34 ecosystems in China. The ecosystems studied were located in the main climatic zones of China, spanning from alpine via temperate to tropical. Spatial variations of Q10 and its controlling factors were analyzed. The results showed that soil temperature at a 5 cm depth satisfactorily explained the seasonal variations in Rs of the 15 ChinaFLUX ecosystems (R2 varying from 0.37 to 0.83). Based on the overall data, the Q10 values of Rs in China ranged from 1.28 to 4.75. The spatial variations in Q10 were primarily determined by soil temperature during measurement periods, soil organic carbon (SOC) content, and ecosystem type. Ecosystems in colder regions and with higher SOC content had relatively higher Q10 values. Moreover, ecosystems of different vegetation types showed different Q10 values. A temperature- and SOC-dependent function for Q10 is suggested, which could be a valuable reference for improving the regional-scale models of Rs and ecosystem carbon cycles.  相似文献   

6.
The aim of our studies was to determine the relation between temperature and the respiration rate of the forest soil organic layer along an altitudinal gradient while controlling the effects of the soil characteristics. The respiration rate was measured in laboratory conditions at different temperatures, 0, 10, 20, and 30°C, in samples collected in the Polish part of the Western Carpathians at 600, 800, 1,000, and 1,200 m above sea level from four different mountains, which were later treated as replicates. The increase in the average respiration rate between two consecutive temperatures was expressed as Q 10 coefficients. Among the nutrients measured in the soil organic layer, only the total organic N concentration significantly increased with elevation. The temperature effect was significant for both the respiration rate and the Q 10 values. The calculated Q 10 values were highest for the temperature range between 10 and 20°C, and the lowest values were obtained from the highest temperature range (20–30°C). The altitude effect was significant for the respiration rate but not for the Q 10 values, indicating that the temperature sensitivity of the soil respiration did not change much along the studied altitudinal gradient.  相似文献   

7.
[目的]探讨不同水土保持措施对红壤坡地柑橘林土壤呼吸的影响,为科学评价水土保持生态建设在应对气候变化方面的作用提供基础数据。[方法]采用试验观测和对比分析的方法研究横坡间作+等高草带、横坡间作、顺坡间作和清耕对照4种处理对柑橘林土壤呼吸速率的动态变化及其对土壤温度、土壤水分的响应。[结果]4个不同处理的柑橘林土壤呼吸速率均呈明显的单峰曲线变化,峰值出现在7月;各处理的土壤呼吸速率季节动态变化一致,采取横坡间作+等高草带和横坡间作两种水保措施均一定程度上增加了土壤呼吸速率;土壤呼吸速率与土壤温度呈显著正相关;横坡间作+等高草带和横坡间作处理的土壤呼吸的温度敏感性指数Q10较柑橘清耕和顺坡间作处理Q10值略有增加。[结论]红壤柑橘林采取水土保持措施后,土壤呼吸速率增强,且其对温度的响应增加。  相似文献   

8.
Most soil respiration measurements are conducted during the growing season. In tundra and boreal forest ecosystems, cumulative winter soil CO2 fluxes are reported to be a significant component of their annual carbon budgets. However, little information on winter soil CO2 efflux is known from mid-latitude ecosystems. Therefore, comparing measurements of soil respiration taken annually versus during the growing season will improve the accuracy of ecosystem carbon budgets and the response of soil CO2 efflux to climate changes. In this study we measured winter soil CO2 efflux and its contribution to annual soil respiration for seven ecosystems (three forests: Pinus sylvestris var. mongolica plantation, Larix principis-rupprechtii plantation and Betula platyphylla forest; two shrubs: Rosa bella and Malus baccata; and two meadow grasslands) in a forest-steppe ecotone, north China. Overall mean winter and growing season soil CO2 effluxes were 0.15-0.26 μmol m−2 s−1 and 2.65-4.61 μmol m−2 s−1, respectively, with significant differences in the growing season among the different ecosystems. Annual Q10 (increased soil respiration rate per 10 °C increase in temperature) was generally higher than the growing season Q10. Soil water content accounted for 84% of the variations in growing season Q10 and soil temperature range explained 88% of the variation in annual Q10. Soil organic carbon density to 30 cm depth was a good surrogate for SR10 (basal soil respiration at a reference temperature of 10 °C). Annual soil CO2 efflux ranged from 394.76 g C m−2 to 973.18 g C m−2 using observed ecosystem-specific response equations between soil respiration and soil temperature. Estimates ranged from 424.90 g C m−2 to 784.73 g C m−2 by interpolating measured soil respiration between sampling dates for every day of the year and then computing the sum to obtain the annual value. The contributions of winter soil CO2 efflux to annual soil respiration were 3.48-7.30% and 4.92-7.83% using interpolated and modeled methods, respectively. Our results indicate that in mid-latitude ecosystems, soil CO2 efflux continues throughout the winter and winter soil respiration is an important component of annual CO2 efflux.  相似文献   

9.
To determine the sum of ‘direct’ and ‘indirect’ effects of climatic change on enchytraeid activity and C fluxes from an organic soil we assessed the influence of temperature (4, 10 and 15 °C incubations) on enchytraeid populations and soil CO2 and CH4 fluxes over 116 days. Moisture was maintained at 60% of soil dry weight during the experimental period and measurements of enchytraeid biomass and numbers, and CO2 and CH4 fluxes were made after 3, 16, 33, 44, 65, 86 and 116 days. Enchytraeid population numbers and biomass increased in all temperature treatments with the greatest increase produced at 15 °C (to over threefold initial values by day 86). Results also showed that enchytraeid activity increased CO2 fluxes by 10.7±4.5, 3.4±4.0 and 26.8±2.6% in 4, 10 and 15 °C treatments, respectively, with the greatest CO2 production observed at 15 °C for the entire 116 day incubation period (P<0.05). The soil respiratory quotient analyses at lower temperatures (i.e. 4-10 °C) gave a Q10 of 1.7 and 1.9 with and without enchytraeids, respectively. At temperatures above 10 °C (i.e. 10-15 °C) Q10 significantly increased (P<0.01) and was 25% greater in the presence of enchytraeids (Q10=3.4) than without (Q10=2.6). In contrast to CO2 production, no significant relationships were observed between net CH4 fluxes and temperature and only time showed a significant effect on CH4 production (P<0.01).Total soil CO2 production was positively linked with enchytraeid biomass and mean soil CO2-C production was 77.01±6.05 CO2-C μg mg enchytraeid tissue−1 day−1 irrespective of temperature treatment. This positive relationship was used to build a two step regression model to estimate the effects of temperature on enchytraeid biomass and soil CO2 respiration in the field. Predictions of potential CO2 production were made using enchytraeid biomass data obtained in the field from two upland grassland sites (Sourhope and Great Dun Fell at the Moor House Nature Reserve, both in the UK). The findings of this work suggest that a 5 °C increase in atmospheric temperature above mean ambient temperature could have the potential to produce a significant increase in enchytraeid biomass resulting in a near twofold increase in soil CO2 release from both soil types. The interaction between temperature and soil biology will clearly be an important determinant of soil respiration responses to global warming.  相似文献   

10.
In the long term, all CO2 produced in the soil must be emitted by the surface and soil CO2 efflux (FCO2) must correspond to soil respiration (Rsoil). In the short term, however, the efflux can deviate from the instantaneous soil respiration, if the amount of CO2 stored in the soil pore-space (SCO2) is changing. We measured FCO2 continuously for one year using an automated chamber system. Simultaneously, vertical soil profiles of CO2 concentration, moisture, and temperature were measured in order to assess the changes in the amount of CO2 stored in the soil. Rsoil was calculated as the sum of the rate of change of the CO2 storage over time and FCO2. The experiment was split into a warm and a cold season. The dependency of soil respiration and soil efflux on soil temperature and on soil moisture was analyzed separately. Only the moisture-driven model of the warm season was significantly different for FCO2 and Rsoil. At our site, a moisture-driven soil-respiration model derived from CO2 efflux data would underestimate the importance of soil moisture. This effect can be attributed to a temporary storage of CO2 in the soil pore-space after rainfalls where up to 40% of the respired CO2 were stored.  相似文献   

11.
Grazing intensity may alter the soil respiration rate in grassland ecosystems. The objectives of our study were to (1) determine the influence of grazing intensity on temporal variations in soil respiration of an alpine meadow on the northeastern Tibetan Plateau; and (2) characterise the temperature response of soil respiration under different grazing intensities. Diurnal and seasonal soil respiration rates were measured for two alpine meadow sites with different grazing intensities. The light grazing (LG) meadow site had a grazing intensity of 2.55 sheep ha−1, while the grazing intensity of the heavy grazing (HG) meadow site, 5.35 sheep ha−1, was approximately twice that of the LG site. Soil respiration measurements showed that CO2 efflux was almost twice as great at the LG site as at the HG site during the growing season, but the diurnal and seasonal patterns of soil respiration rate were similar for the two sites. Both exhibited the highest annual soil respiration rate in mid-August and the lowest in January. Soil respiration rate was highly dependent on soil temperature. The Q10 value for annual soil respiration was lower for the HG site (2.75) than for the LG site (3.22). Estimates of net ecosystem CO2 exchange from monthly measurements of biomass and soil respiration revealed that during the period from May 1998 to April 1999, the LG site released 2040 g CO2 m−2 y−1 to the atmosphere, which was about one third more than the 1530 g CO2 m−2 y−1 released at the HG site. The results suggest that (1) grazing intensity alters not only soil respiration rate, but also the temperature dependence of soil CO2 efflux; and (2) soil temperature is the major environmental factor controlling the temporal variation of soil respiration rate in the alpine meadow ecosystem.  相似文献   

12.
In a 122-day incubation experiment with two soil types under four temperature treatments, we examined whether the temperature sensitivity of soil organic carbon (SOC) decomposition differed between constant and diurnally-varying soil temperature regimes. We calculated the Q10 values after accounting for changes in substrate availability and quality among treatments over time. The Q10 values under constant temperature regime were consistently and significantly higher than those under diurnally-varying temperature regime, particularly in the later stages of decomposition (by up to 30%). This result indicated that different temperature regime was one of the important factors causing the current controversy about the temperature sensitivity of SOC decomposition in published reports.  相似文献   

13.
Soil organic matter(SOM)in boreal forests is an important carbon sink.The aim of this study was to assess and to detect factors controlling the temperature sensitivity of SOM decomposition.Soils were collected from Scots pine,Norway spruce,silver birch,and mixed forests(O horizon)in northern Finland,and their basal respiration rates at five different temperatures(from 4 to 28℃)were measured.The Q_(10) values,showing the respiration rate changes with a 10℃ increase,were calculated using a Gaussian function and were based on temperature-dependent changes.Several soil physicochemical parameters were measured,and the functional diversity of the soil microbial communities was assessed using the MicroResp?method.The temperature sensitivity of SOM decomposition differed under the studied forest stands.Pine forests had the highest temperature sensitivity for SOM decomposition at the low temperature range(0–12℃).Within this temperature range,the Q_(10) values were positively correlated with the microbial functional diversity index(H'_(mic))and the soil C-to-P ratio.This suggested that the metabolic abilities of the soil microbial communities and the soil nutrient content were important controls of temperature sensitivity in taiga soils.  相似文献   

14.
Knowledge of seasonal trends and controls of soil CO2 emissions to the atmosphere is important for simulating atmospheric CO2 concentrations and for understanding and predicting the global carbon cycle. This is particularly the case for high arctic soils subject to extreme fluctuating environmental conditions. Based on field measurements of soil CO2 efflux, temperature, water content, pore gas composition in soil and frozen cores as well as detailed temperature experiments performed in the laboratory, we evaluated seasonal controls of CO2 effluxes from a well-drained tundra heath site in NE-Greenland. During the growing season, near-surface temperatures correlated well with observed CO2 effluxes (r2>0.9). However, during intensive thawing of near-surface layers we observed up to 1.5-fold higher effluxes than expected due to temperature alone. These high rates were consistent with high CO2 concentrations in frozen soil (>10% CO2) and suggested a spring burst event during soil thawing and a corresponding trapping of produced CO2 during winter. Laboratory experiments revealed that microbial soil respiration continued down to a least −18 °C and that up to 80% of the produced CO2 was trapped in soil at temperatures between 0 and −9 °C. The trapping of CO2 in frozen soil was positively correlated with soil moisture (r2=0.85) and led to an abrupt change of the temperature sensitivity (Q10) observed for soil CO2 release at 0 °C with Q10 values below 0 °C being up to 100-fold higher than above 0 °C. The results of sub-zero CO2 production allowed us to predict the microbial soil respiration throughout the year and to evaluate to what extent burst events during thawing can be explained by the release of CO2 being produced and trapped during winter. Taking only the upper 20 cm of the soil into account, winter soil respiration accounted for about 40% of the annual soil respiration. At least 14% of the winter CO2 production was trapped during the winter 2000-2001 and observed to be released upon thawing. Thus, the site-specific winter soil respiration is an important part of the annual C cycle and CO2 trapping should be accounted for in future field and modelling studies of soil respiration dynamics in arctic ecosystems. In conclusion, we have discovered a soil moisture dependent uncoupling of CO2 production and release in frozen soils with important implications for future field studies of Arctic C cycling.  相似文献   

15.
Soil heterotrophic respiration and its temperature sensitivity are affected by various climatic and environmental factors.However,little is known about the combined effects of concurrent climatic and environmental changes,such as climatic warming,changing precipitation regimes,and increasing nitrogen(N)deposition.Therefore,in this study,we investigated the individual and combined effects of warming,wetting,and N addition on soil heterotrophic respiration and temperature sensitivity.We incubated soils collected from a temperate forest in South Korea for 60 d at two temperature levels(15 and 20℃,representing the annual mean temperature of the study site and 5℃warming,respectively),three moisture levels(10%,28%,and 50%water-filled pore space(WFPS),representing dry,moist,and wet conditions,respectively),and two N levels(without N and with N addition equivalent to 50 kg N ha-1year-1).On day 30,soils were distributed across five different temperatures(10,15,20,25,and 30℃)for 24 h to determine short-term changes in temperature sensitivity(Q10,change in respiration with 10℃increase in temperature)of soil heterotrophic respiration.After completing the incubation on day 60,we measured substrate-induced respiration(SIR)by adding six labile substrates to the three types of treatments.Wetting treatment(increase from 28%to 50%WFPS)reduced SIR by 40.8%(3.77 to 2.23μg CO2-C g-1h-1),but warming(increase from 15 to 20℃)and N addition increased SIR by 47.7%(3.77 to 5.57μg CO2-C g-1h-1)and 42.0%(3.77 to 5.35μg CO2-C g-1h-1),respectively.A combination of any two treatments did not affect SIR,but the combination of three treatments reduced SIR by 42.4%(3.70 to 2.20μg CO2-C g-1h-1).Wetting treatment increased Q10by 25.0%(2.4 to 3.0).However,warming and N addition reduced Q10by 37.5%(2.4 to 1.5)and 16.7%(2.4 to 2.0),respectively.Warming coupled with wetting did not significantly change Q10,while warming coupled with N addition reduced Q10by 33.3%(2.4 to 1.6).The combination of three treatments increased Q10by 12.5%(2.4 to 2.7).Our results demonstrated that among the three factors,soil moisture is the most important one controlling SIR and Q10.The results suggest that the effect of warming on SIR and Q10can be modified significantly by rainfall variability and elevated N availability.Therefore,this study emphasizes that concurrent climatic and environmental changes,such as increasing rainfall variability and N deposition,should be considered when predicting changes induced by warming in soil respiration and its temperature sensitivity.  相似文献   

16.
The annual and seasonal variations in the temperature sensitivity of soil respiration (Rs) were assessed through continuous measurements during the 2004-2006 growing seasons using chamber-based techniques in two sub-alpine forest ecosystems in the Eastern Qinghai-Tibet Plateau, China. The study sites were 40-year-old spruce plantations (Picea asperata) (FSPF) and Faxon Fir Primary Forest (FPF). Our results showed that Q10, regardless of site origin, exhibited a strong seasonal and annual variation pattern, and decreased with soil temperature increase. Estimated Q10 values ranged between 1.16 and 24.3. The maximum, annual, mean Q10 values remained consistent over 3 years, while the highest Q10 values (7.01 in FSPF and 6.39 in FPF) occurred in 2005 (for all sites). There was no significant difference observed among Q10 values between the two forest types in each year (2004-2006) (p = 0.07). Q10 values were fitted well with data of soil temperature using linear regression models, while the correlation between Q10 and soil moisture was not significant (p > 0.1). This study suggested that soil temperature was the dominant factor influencing Q10 values, while soil moisture was a potential contributor to the annual and seasonal variations of Q10 in a sub-alpine forest. Due to the complexity of correlation between Rs and soil moisture, Q10 values derived from annual and seasonal patterns of RS should be used with caution when predicting future soil CO2 emissions under conditions of global warming.  相似文献   

17.
The emission of CO2 from Galician (NW Spain) forest, grassland and cropped soils was studied in a laboratory experiment, at different temperatures (10-35 °C) and at moisture contents of 100% and 160% of the field capacity (FC) of each soil (the latter value corresponds to saturated conditions, and represents between 120% and 140% of the water holding capacity, depending on the soil). In the forest soil, respiration in the flooded samples at all temperatures was lower than that at 100% field capacity. In the agricultural (grassland and cropped) soils the emission was higher (particularly at the highest incubation temperatures) in the soils wetted to 160% of the field capacity than in those wetted to 100% of the field capacity. In all cases the emission followed first order kinetics and the mineralization constants increased exponentially with temperature. In the forest soil, the Q10 values were almost the same in the soils incubated at the two moisture contents. The grassland and cropped soils displayed different responses, as the Q10 values were higher in the soils at 160% than in those at 100% of field capacity. In addition, and particularly at the highest temperatures, the rate of respiration increased sharply 9 and 17 days after the start of the incubation in the grassland and in the cropped soil, respectively. The above-mentioned anomalous response of the grassland and cropped soils under flooding conditions may be related to the agricultural use of the soils and possibly to the intense use of organic fertilizers in these soils (more than 150 kg N ha−1 year−1 added as cattle slurry or manure, respectively, in the grassland and cropped soils). The observed increase in respiration may either be related to the development of thermophilic facultative anaerobic microbes or to the formation during the incubation period of a readily metabolizable substrate, possibly originating from the remains of organic fertilizers, made accessible by physicochemical processes that occurred during incubation under conditions of high moisture.  相似文献   

18.
The thermodynamic parameters of the enzymes catalase, dehydrogenase, casein-protease, α-N-benzoyl-l-argininamide (BAA)-protease, urease, Carboxymethyl (CM)-cellulase, invertase, β-glucosidase and arylsulphatase, were investigated in grassland soils from a European temperate-humid zone (Galicia, NW Spain). The effect of temperature on enzyme activity was determined at 5, 18, 27, 37, 57 and 70 °C. The temperature-dependence of the rate of substrate hydrolysis varied depending on the enzyme and soil. In general, the soil containing the least amount of organic matter (OM) showed the lowest enzyme activity for all temperatures and enzymes, whereas soils with similar OM contents showed similar levels of activity for the entire temperature range. Temperature had a noteworthy effect on the activity of oxidoreductases. Product formation in the reaction catalyzed by dehydrogenase increased with increasing temperature until 70 °C, which was attributed to chemical reduction of iodonitrotetrazolium violet (INT) at high temperatures. Catalase activity was not affected above 37 °C, which may be explained either by non-enzymatic decomposition of hydrogen peroxide or by the fact that catalase has reached kinetic perfection, and is therefore not saturated with substrate.The Arrhenius equation was used to determine the activation energy (Ea) and the temperature coefficient (Q10) for all enzymes. The values of Ea and Q10 for each enzyme differed among soils, although in general the differences were small, especially for those enzymes that act on substrates of low molecular weight. In terms of the values of Ea and Q10 and the differences established among soils, the results obtained for those enzymes that act on substrates of high molecular weight differed most from those corresponding to the other enzymes. Thus the lowest Ea and Q10 values corresponded to BAA-protease, and the highest values to CM-cellulase and casein-protease. Except for catalase in one of the soils, the values of Ea and Q10 for the oxidoreductases were similar to those of most of the hydrolases. In general, the effect of temperature appeared to be more dependent on the type of enzyme than on the characteristics of the soil.  相似文献   

19.
The effect of temperature on soil respiration at field moisture holding capacity was assessed for 100 sites representing 21 habitats on sub-Antarctic Marion Island (47°S, 38 °E). Respiration rates were compared across habitats and related to soil chemistry, soil microrganism counts and botanical characteristics. Median Q10 across the 100 sites was 2.0, in the lower part of the range reported for soils elsewhere. Q10 did not differ with temperature between 5 and 20 °C, indicating a mixed community of soil microorganisms having different responses to temperature. Respiration rates are about an order of magnitude higher than those reported at the same temperature for surface soils from Northern Hemisphere tundra. Edaphic richness (high concentrations of available P, inorganic N and total N), associated with large soil microbial populations and substantial relative covers of nitrophilous or coprophilous plants and caused by manuring by seals and seabirds, is the main determinant of soil respiration rate. The island's habitats were originally defined on the basis of canonical correspondence analysis of structural (vegetation and soil chemistry) variables. Since habitat-mean soil respiration rate correlated highly positively with the mean positions of the habitats on a canonical axis interpreted as representing a gradient in the intensity of animal influence, it is concluded that the habitat classification reflects differences in at least one ecosystem functional attribute, soil respiration.  相似文献   

20.
Extensive research has focused on the temperature sensitivity of soil respiration. However, in Mediterranean ecosystems, soil respiration may have a pulsed response to precipitation events, especially during prolonged dry periods. Here, we investigate temporal variations in soil respiration (Rs), soil temperature (T) and soil water content (SWC) under three different land uses (a forest area, an abandoned agricultural field and a rainfed olive grove) in a dry Mediterranean area of southeast Spain, and evaluate the relative importance of soil temperature and water content as predictors of Rs. We hypothesize that soil moisture content, rather than soil temperature, becomes the major factor controlling CO2 efflux rates in this Mediterranean ecosystem during the summer dry season. Soil CO2 efflux was measured monthly between January 2006 and December 2007 using a portable soil respiration instrument fitted with a soil respiration chamber (LI-6400-09). Mean annual soil respiration rates were 2.06 ± 0.07, 1.71 ± 0.09, and 1.12 ± 0.12 μmol m−2 s−1 in the forest, abandoned field and olive grove, respectively. Rs was largely controlled by soil temperature above a soil water content threshold value of 10% at 0-15 cm depth for forest and olive grove, and 15% for abandoned field. However, below those thresholds Rs was controlled by soil moisture. Exponential and linear models adequately described Rs responses to environmental variables during the growing and dry seasons. Models combining abiotic (soil temperature and soil rewetting index) and biotic factors (above-ground biomass index and/or distance from the nearest tree) explained between 39 and 73% of the temporal variability of Rs in the forest and olive grove. However, in the abandoned field, a single variable - either soil temperature (growing season) or rewetting index (dry season) - was sufficient to explain between 51 and 63% of the soil CO2 efflux. The fact that the rewetting index, rather than soil water content, became the major factor controlling soil CO2 efflux rates during the prolonged summer drought emphasizes the need to quantify the effects of rain pulses in estimates of net annual carbon fluxes from soil in Mediterranean ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号