首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzyme activities and microbial biomass in coastal soils of India   总被引:1,自引:0,他引:1  
Soil salinity is a serious problem for agriculture in coastal regions, wherein salinity is temporal in nature. We studied the effect of salinity, in summer, monsoon and winter seasons, on microbial biomass carbon (MBC) and enzyme activities (EAs) of the salt-affected soils of the coastal region of the Bay of Bengal, Sundarbans, India. The average pH of soils collected from different sites, during different seasons varied from 4.8 to 7.8. The average organic C (OC) and total N (TN) content of the soils ranged between 5.2-14.1 and 0.6-1.4 g kg−1, respectively. The electrical conductivity of the saturation extract (ECe) of soils, averaged over season, varied from 2.2 to 16.3 dSm−1. The ECe of the soils increased five fold during the summer season (13.8 dSm−1) than the monsoon season (2.7 dSm−1). The major cation and anion detected were Na+ and Cl, respectively. Seasonality exerted considerable effects on MBC and soil EAs, with the lowest values recorded during the summer season. The activities of β-glucosidase, urease, acid phosphatase and alkaline phosphatase were similar during the winter and monsoon season. The dehydrogenase activity of soils was higher in monsoon than in winter. Average MBC, dehydrogenase, β-glucosidase, urease, acid phosphatase and alkaline phosphatase activities of the saline soils ranged from 125 to 346 mg kg−1 oven dry soil, 6-9.9 mg triphenyl formazan (TPF) kg−1 oven dry soil h−1, 18-53 mg p-nitro phenol (PNP) kg−1 oven dry soil h−1, 38-86 mg urea hydrolyzed kg−1 oven dry soil h−1, 213-584 mg PNP kg−1 oven dry soil h−1 and 176-362 mg PNP g−1 oven dry soil h−1, respectively. The same for the non-saline soils were 274-446 mg kg−1 oven dry soil, 8.8-14.4 mg TPF kg−1 oven dry soil h−1, 41-80 mg PNP kg−1 oven dry soil h−1, 89-134 mg urea hydrolyzed kg−1 oven dry soil h−1, 219-287 mg PNP kg−1 oven dry soil h−1 and 407-417 mg PNP kg−1 oven dry soil h−1, respectively. About 48%, 82%, 48%, 63%, 40% and 48% variation in MBC, dehydrogenase activity, β-glucosidase activity, urease activity, acid phosphatase activity and alkaline phosphatase activity, respectively, could be explained by the variation in ECe of saline soils. Suppression of EAs of the coastal soils during summer due to salinity rise is of immense agronomic significance and needs suitable interventions for sustainable crop production.  相似文献   

2.
Changes in land use frequently modify the capacity of ecosystems to provide services. The purpose of this study was to investigate the effects of a specific land-use change, i.e. from meadows to pine plantations under temperate climate, on soil enzyme activities. To this aim, the variation of five key soil enzyme activities (dehydrogenase, β-glucosidase, arylsulphatase, acid phosphatase and urease) was evaluated in different sites located in the Urdaibai Reserve of the Biosphere (northern Spain). Lower values of dehydrogenase [effect size, computed as 100 × (1 − mean value from pine plantations/mean value from meadows), was 82.9%], β-glucosidase (52.9%) and urease (52.5%) activity were observed in soils from pine plantations versus meadows. Acid phosphatase and arylsulphatase activity showed a pattern of variation that was not dependent on land-use. The largest variation in enzyme activity values was due to changes at the small scale, not between the studied sites, an encouraging finding for the suitability of enzyme activities as bioindicators of the impact of land-use changes on soil functioning. Our results suggest that nutrient cycling (as reflected by the values of soil enzyme activities) might have been modified as a consequence of replacing meadows by pine plantations.  相似文献   

3.
The bioaccumulation of phthalate acid esters (PAEs) from industrial products and their mutagenic action has been suggested to be a potential threat to human health. The effects of the most frequently identified PAE, Di-n-butyl phthalate (DBP), and its biodegradation, were examined by comparison of two small scale plots (SSP) of integrated vertical-flow constructed wetlands. The influent DBP concentration was 9.84 mg l−1 in the treatment plot and the control plot received no DBP. Soil enzymatic activities of dehydrogenase, catalase, protease, phosphatase, urease, cellulase, β-glucosidase, were measured in the two SSP after DBP application for 1 month and 2 months, and 1 month after the final application. Both treatment and control had significantly higher enzyme activity in the surface soil than in the subsurface soil (P<0.001) and greater enzyme activity in the down-flow chamber than in the up-flow chamber (P<0.05). In the constructed wetlands, DBP enhanced the activities of dehydrogenase, catalase, protease, phosphatase and inhibited the activities of urease, cellulase and β-glucosidase. However, urease, cellulase, β-glucosidase activities were restored 1 month following the final DBP addition. Degradation of DBP was greater in the surface soil and was reduced in sterile soil, indicating that this process may be mediated by aerobic microorgansims. DBP degradation fitted a first-order model, and the kinetic equation showed that the rate constant was 0.50 and 0.17 d−1, the half-life was 1.39 and 4.02 d, and the r2 was 0.99 and 0.98, in surface and subsurface soil, respectively. These results indicate that constructed wetlands are able to biodegrade organic PAEs such as DBP.  相似文献   

4.
Pre-plant fumigation of agricultural soils with a combination of methyl bromide (MeBr) and chloropicrin (CP) to control nematodes, soil-borne pathogens and weeds has been a common practice in strawberry (Fragaria X ananassa Duchesne) production since the 1960s. MeBr will be phased out by 2005, but little is known about the impacts of alternative fumigants on soil microbial processes. We investigated the response of microbial biomass and enzyme activities in soils fumigated over two years with MeBr+CP and the alternatives propargyl bromide (PrBr), InLine, Midas and CP. Results were compared to control soils, which were not fumigated for the last 4-5 years for Watsonville and Oxnard, respectively, but had a 10 year history of MeBr+CP fumigation (history soils). Soil samples (0-15 cm) were taken from two sites in the coastal areas of California, USA, in Watsonville and Oxnard, at peak strawberry production after two years of repeated application. In addition to the soil enzymes, the activities of purified reference enzymes of β-glucosidase, acid phosphatase and arylsulfatase were assayed before and after fumigation with MeBr+CP and alternative biocides. At the Oxnard site, microbial respiration significantly decreased in soils fumigated with MeBr+CP (P=0.036), while microbial biomass C and N showed no response to fumigation at both sites. These results may indicate that fumigation promotes the growth of resistant species or that soil microorganisms had recovered at the time of sampling. Repeated soil fumigation with MeBr+CP significantly decreased the activities of β-glucosidase and acid phosphatase at the Watsonville site, and dehydrogenase activity at the Oxnard site. Although, enzyme activities in soils fumigated with PrBr, InLine, Midas and CP were lower compared to the control soil, effects were, in general, not significant. Fumigation with MeBr+CP and alternatives reduced the activities of purified reference enzymes by 13, 76 and 28% for acid phosphatase, β-glucosidase and arylsulfatase, respectively. Mean enzyme protein concentrations in fumigated agricultural soils were 2.93, 0.105, and 2.95 mg protein kg−1 soil for acid phosphatase, β-glucosidase and arylsulfatase, respectively, all lower than in control soils. Organic matter turnover and nutrient cycling, and thus, the long-term productivity of agricultural soils seem unaffected in soils repeatedly fumigated with PrBr, InLine, Midas and CP.  相似文献   

5.
The effectiveness of adding two organic wastes (cotton gin crushed compost, CGCC, and poultry manure, PM) to a saline soil (Salorthidic Fluvaquent) in dryland conditions near Seville (Guadalquivir Valley, Andalusia, Spain) was studied during a period of 5 years. Organic wastes were applied at rates of 5 and 10 t organic matter ha−1. One year after the assay began, spontaneous vegetation had appeared in the treated plots, particularly in that receiving a high PM dose. After 5 years the plant cover in this treated plot was around 80% (compared with the 8% of the control soil). The effect on the soils physical and chemical properties, soil microbial biomass, and six soil enzymatic activities (dehydrogenase, urease, protease, β-glucosidase, arylsulfatase, and phosphatase activities) were ascertained. Both added organic wastes had a positive effect on the physical, chemical and biological properties of the soil, although at the end of the experimental period, the soil physical properties, such as bulk density, increased more significantly in the CGCC-amended soils (23%) and the exchangeable sodium percentage (ESP) decreased more significantly in the CGCC-amended soils (50%) compared to the unamended soil. Water soluble carbohydrates and soil biochemical properties were higher in the PM-amended soils compared to the CGCC-amended soils (by 70% for water soluble carbohydrates, and by 34, 18, 37, 39, 40 and 30% for urease, protease, β-glucosidase, phosphatase, arylsulfatase and dehydrogenase activities, respectively). After 5 years, the percentage of plant cover was >50% in all treated plots and 8% in the control soil.  相似文献   

6.
This study focused on the potential of using soil enzyme activities and general microbiological rates (respiration, N-mineralisation, nitrification) to evaluate the quality of soils affected by a pyrite mud spill which contained high concentrations of heavy metals. The quality of soils after restoration was estimated by comparing enzyme activities and general microbiological rates in three different types of experimental field plots: (i) non-polluted, (ii) polluted but restored, and (iii) polluted but un-restored soils. Non-polluted soils showed the highest levels of enzyme activity. Significant differences were detected for acid phosphatase, β-glucosidase and urease activities between all types of plots. However, arylsulfatase and alkaline phosphatase activities showed no significant differences between the restored plots and polluted but un-restored plots. Geometric mean statistics were used as an index of soil quality in terms of overall: (i) bioavailable heavy metal concentrations, (ii) assayed enzyme activities, and (iii) general microbiological rates, in order to compare plots differing in the degree of pyritic mud pollution. The results indicate that it is important to consider these three criteria in to estimate the soil quality of heavy-metal contaminated soils. Typically, enzyme activities were negatively correlated with bioavailable Cd, Cu and Zn concentrations, but positively with soil pH values. In contrast, pH values were negatively correlated with bioavailable concentrations of Cd, Cu and Zn. It is unclear if the generalised lower enzyme activities found in restored soils, compared to non-polluted soils, is promoted by pH or bioavailable heavy metals concentrations, or a combination of both.  相似文献   

7.
Alkaline and acid phosphomonoesterase, β-glucosidase, arylsulfatase, protease and urease activities, CO2-C evolution and ATP content were monitored in long-term Cd-contaminated (0-40 mg Cd kg−1 dry weight soil) sandy soils, kept under maize or ‘set aside’ regimes, amended with plant residues. The organic matter input increased soil respiration, ATP contents and hydrolase activities in all soils. However, the Cd-contaminated soils had significantly higher metabolic quotients (qCO2), as calculated by the CO2-to-ATP ratio, and significantly lower hydrolase activities and hydrolase activity-to-ATP ratios for alkaline phosphomonoesterase, arylsulfatase and protease activities, compared with the respective uncontaminated soils. The ratios between acid phosphomonoesterase, β-glucosidase and urease activities and ATP were unaffected. A significantly higher qCO2/μ ratio, an expression of maintenance energy, was observed in most of the contaminated soils, indicating that more energy was required for microbial synthesis in the presence of high Cd concentrations. It was concluded that exposure to high Cd concentrations led to a less efficient metabolism, which was responsible for lower enzyme activity and synthesis and lower hydrolase activity-to-ATP ratios observed in these Cd-contaminated soils.  相似文献   

8.
Municipal solid waste (MSW) composts have been used to maintain the long-term productivity of agroecosystems and to protect the soil environment from overcropping, changes in climatic conditions and inadequate management; they also have the additional benefit of reducing waste disposal costs. Since MSW may contain heavy metals and other toxic compounds, amendments cannot only influence soil fertility, but may also affect the composition and activity of soil microorganisms. The effects of MSW compost and mineral N amendments in a 6-year field trial on some physical-chemical properties, enzyme activities and bacterial genetic diversity of cropped plots (Beta vulgaris-Triticum turgidum rotation) and uncropped plots were investigated. The compost was added at the recommended and twice the recommended dosage (12, 24 t ha−1). Amendments of cropped plots with MSW compost increased the contents of organic C from 13.3 to 15.0 g kg−1 soil and total N from 1.55 to 1.65 g kg−1 soil. There were significant increases in dehydrogenase (9.6%), β-glucosidase (13.5%), urease (15.4%), nitrate reductase (21.4%) and phosphatase (9.7%) activities. A significant reduction in protease activity (from 3.6 to 2.8 U g−1 soil) was measured when a double dose of compost was added to the cropped plots. No dosage effect was detected for the other enzymes. Changes in the microbial community, as a consequence of MSW amendment, were minimal as determined using denaturing gradient gel electrophoresis, rDNA internal spacer analysis and amplified ribosomal DNA restriction analysis of bacteria, archaea, actinomycetes, and ammonia oxidizers. This indicates that there was no significant variation in the overall bacterial communities nor in selected taxonomic groups deemed to be essential for soil fertility.  相似文献   

9.
Copper-based fungicides have been applied in apple orchards for a long time, which has resulted in increasing soil Cu concentration. However, the microbial and enzyme properties of the orchard soils remain poorly understood. This study aimed to evaluate the effect of long-term application of Cu-based fungicides on soil microbial (microbial biomass carbon (Cmic), C mineralization, and specific respiration rate) and enzyme (urease, acid phosphatase, and invertase activities) properties in apple orchards. Soil samples studied were collected from apple orchards 5, 15, 20, 30, and 45 years old, and one adjacent forest soil as for reference. The mean Cu concentrations of orchard soils significantly increased with increasing orchard ages ranging from 21.8 to 141 mg kg−1, and the CaCl2-extractable soil Cu concentrations varied from 0.00 to 4.26 mg kg−1. The soil mean Cmic values varied from 43.6 to 116 mg kg−1 in the orchard soils, and were lower than the value of the reference soil (144 mg kg−1). The ratio of soil Cmic to total organic C (Corg) increased from 8.10 to 18.3 mg Cmic g−1 Corg with decreasing orchard ages, and was 26.1 mg Cmic g−1 Corg for the reference soil. A significant correlation was observed between total- or CaCl2-extractable soil Cu and soil Cmic or Cmic/Corg, suggesting that the soil Cu was responsible for the significant reductions in Cmic and Cmic/Corg. The three enzyme activity assays also showed the similar phenomena, and declined with the increasing orchard ages. The mean soil C mineralization rates were elevated from 110 to 150 mg CO2-C kg−1 soil d−1 compared with the reference soil (80 mg CO2-C kg−1 soil d−1), and the mean specific respiration rate of the reference soil (0.63 mg CO2-C mg−1 biomass C d−1) was significantly smaller than the orchard soils from 1.19 to 3.55 mg CO2-C mg−1 biomass C d−1. The soil C mineralization rate and the specific respiration rate can be well explained by the CaCl2-extractable soil Cu. Thus, the long-term application of copper-based fungicides has shown adverse effects on soil microbial and enzyme properties.  相似文献   

10.
A short-term mesocosm experiment was conducted to ascertain the impact of tebuconazole on soil microbial communities. Tebuconazole was applied to soil samples with no previous pesticide history at three rates: 5, 50 and 500 mg kg−1 DW soil. Soil sampling was carried out after 0, 7, 30, 60 and 90 days of incubation to determine tebuconazole concentration and microbial properties with potential as bioindicators of soil health [i.e., basal respiration, substrate-induced respiration, microbial biomass C, enzyme activities (urease, arylsulfatase, β-glucosidase, alkaline phosphatase, dehydrogenase), nitrification rate, and functional community profiling]. Tebuconazole degradation was accurately described by a bi-exponential model (degradation half-lives varied from 9 to 263 days depending on the concentration tested). Basal respiration, substrate-induced respiration, microbial biomass C and enzyme activities were inhibited by tebuconazole. Nitrification rate was also inhibited but only during the first 30 days. Different functional community profiles were observed depending on the tebuconazole concentration used. It was concluded that tebuconazole application decreases soil microbial biomass and activity.  相似文献   

11.
Long-term effects of high Cd concentrations on enzyme activities, microbial biomass and respiration and bacterial community structure of soils were assessed in sandy soils where Cd was added between 1988 and 1990 as Cd(NO3)2 to reach concentrations ranging from 0 to 0.36 mmol Cd kg−1 dry weight soil. Soils were mantained under maize and grass cultivation, or ‘set-aside’ regimes, for 1 year. Solubility of Cd and its bioavailability were measured by chemical extractions or by the BIOMET bacterial biosensor system. Cadmium solubility was very low, and Cd bioavailability was barely detectable even in soils polluted with 0.36 mmol Cd kg−1. Soil microbial biomass carbon (BC) was slightly decreased and respiration was increased significantly even at the lower Cd concentration and as a consequence the metabolic quotient (qCO2) was increased, indicating a stressful condition for soil microflora. However, Cd-contaminated soils also had a lower total organic C (TOC) content and thus the microbial biomass C-to-TOC ratio was unaffected by Cd. Alkaline phosphomonoesterase, arylsulphatase and protease activities were significantly reduced in all Cd-contaminated soils whereas acid phosphomonoesterase, β-glucosidase and urease activites were unaffected by Cd. Neither changes in physiological groups of bacteria, nor of Cd resistant bacteria could be detected in numbers of the culturable bacterial community. Denaturing gradient gel electrophoresis analysis of the bacterial community showed slight changes in maize cropped soils containing 0.18 and 0.36 mmol Cd kg−1 soil as compared to the control. It was concluded that high Cd concentrations induced mainly physiological adaptations rather than selection for metal-resistant culturable soil microflora, regardless of Cd concentration, and that some biochemical parameters were more sensitive to stress than others.  相似文献   

12.
Enzyme activities have the potential to indicate biological functioning of soils. In this study, soil urease, dehydrogenase, acid phosphatase and invertase activities and fluorescein diacetate(FDA) hydrolysis were measured in two red soils spiked with Pb^2+ ranging from 0 to 2 400 mg kg^-1 to relate the enzyme activity values to both plant growth and the levels of available and total Pb^2+ concentrations in soils, and to examine the potential use of soil enzymes to assess the degrees of Pb contamination. Soil samples were taken for enzyme activities assaying during 3 month’s incubation and then after planting of celery(Apium graveolens L.) and Chinese cabbage(Brassica chinensis L.). Enzyme activities in the red soil derived from arenaceous rock(RAR) were generally lower than those in the red soil developed on Quaternary red earths(REQ). At high Pb^2+ loadings, in both incubation and greenhouse studies, urease activity and FDA hydrolysis were significantly inhibited. But there were no significant relationships between soil dehydrogenase, acid phosphatase or invertase activity and soil Pb^2+ loadings in both RAR and REQ soils. The growth of celery and Chinese cabbage increased soil urease activity and FDA hydrolysis, but had minimal effect on dehydrogenase and invertase activities. There were positive correlations between celery biomass and soil urease activity and FDA hydrolysis. These results demonstrate that urease activity and FDA hydrolysis are more sensitive to Pb^2+ than acid phosphatase, dehydrogenase and invertase activities in the RAR and REQ soils.  相似文献   

13.
Soil enzyme activities are useful indicators of soil quality as they are very sensitive to disturbance. Sample storage or pre-treatments could affect the results in these assays, which are normally determined in fresh samples, kept cold or frozen. The objectives of this study were to (i) evaluate the effect of air-drying or air-drying and rewetting on β-glucosidase, acid phosphatase and urease activities in soils from different locations, degradation status and sampling seasons, and (ii) assess if air-drying or air-drying and rewetting is an accurate sample storage and pre-treatment procedure for enzyme activities in soil quality evaluations under semiarid Mediterranean conditions. Our results showed that urease, phosphatase and β-glucosidase activities were hardly affected by air-drying of degraded and non-degraded soils from the two locations studied in all seasons. Short incubations (4, 8 and 12 d at 23 °C) of rewetted air-dried soil at 55% of water-holding capacity showed different patterns depending on the enzyme studied. Urease and β-glucosidase activities were relatively stable during incubation, with several significant (P<0.05) shifts up and down in some soils and samplings. However, acid phosphatase showed an increase in activity with incubation, of between 5% and 50% relative to air-dried samples. These increases followed no pattern and were unrelated to soil characteristics or sampling date. Hence, urease, phosphatase and β-glucosidase activities determined in air-dried soil samples seem to be representative of those obtained under field-moist conditions. In contrast, short incubations of rewetted soil samples can produce fluctuations in these enzyme activities, mainly of acid phosphatase, and estimations in these conditions are not so representative of field-moist soil values.  相似文献   

14.
The purpose of this experiment was to evaluate whether soil storage and processing methods significantly influence measurements of potential in situ enzyme activity in acidic forest soils. More specifically, the objectives were to determine if: (1) duration and temperature of soil storage; (2) duration of soil slurry in buffer; and (3) age of model substrates significantly influence the activity of six commonly measured soil extracellular enzymes using methylumbelliferone (MUB)-linked substrates and l-dihydroxyphenylalanine (l-DOPA). Soil collected and analyzed for enzyme activity within 2 h was considered the best measure of potential in situ enzyme activity and the benchmark for all statistical comparisons. Sub-samples of the same soil were stored at either 4 °C or −20 °C. In addition to the temperature manipulation, soils experienced two more experimental treatments. First, enzyme activity was analyzed 2, 7, 14, and 21 days after collection. Second, MUB-linked substrate was added immediately (i.e. <20 min) or 2 h after mixing soil with buffer. Enzyme activity of soil stored at 4 °C was not significantly different from soil stored at −20 °C. The duration of soil storage was minimal for β-glucosidase, β-xylosidase, and peroxidase activity. N-acetyl-glucosaminidase (NAGase), phosphatase, and phenol oxidase activity appeared to change the most when compared to fresh soils, but the direction of change varied. Likewise, the activities of these enzymes were most sensitive to extended time in buffer. Fluorometric MUB and MUB-linked substrates generally had a 3-day shelf life before they start to significantly suppress reported activities when kept at 4 °C. These findings suggest that the manner in which acidic forest soils are stored and processed are site and enzyme specific and should not initially be trivialized when conducting enzyme assays focusing on NAGase, phosphatase, and phenol oxidase. The activities of β-glucosidase, β-xylosidase, and peroxidase are insensitive to storage and processing methods.  相似文献   

15.
Pollution induced community tolerance (PICT) has been suggested as an end-point measurement less affected by confounding environmental factors compared to standard methods of microbial growth, activity and community composition. We evaluated the use of PICT to determine Cu toxicity in vineyard soils polluted with Cu based fungicides (25-1120 mg Cu kg−1). These soils also varied in pH (4.3-7.3), organic C (0.31-6.91%) and texture (14-56% silt). PICT was estimated as bacterial community tolerance to Cu measured by the [3H]leucine incorporation method. Bacterial tolerance to Cu increased 9 times in the most polluted compared to the unpolluted soils. Cu tolerance was also affected to a minor degree by pH, organic C and soil texture. Lower bacterial tolerance was found in soils with high pH and organic C, probably due to Cu becoming less bioavailable in soils with high pH and organic C content. The silt content appeared to increase bacterial tolerance, probably due to fine soil particles decreasing Cu bioavailability during the PICT detection phase. Despite the effects of other environmental factors, the main determinant of increased bacterial community tolerance to Cu was the pollution level. PICT measured with the leucine incorporation technique thus appears to be a sensitive and stable concept to evaluate toxic impacts, unless soils with very different pH, organic C or texture are studied.  相似文献   

16.
The ability of a degraded soil to respond to successive additions of a toxic organic waste (olive-mill solid waste) and its vermicompost was studied in a controlled incubation experiment for 32 weeks. Hydrolytic enzyme activities (phosphatase, β-glucosidase), oxidoreductase activities (dehydrogenase, o-diphenol oxidase) and indole acetic acid production, were used as measures of soil perturbation. No microbial activity, indicated by the total lack of dehydrogenase activity, was detected when the olive-mill solid waste was added to the soil. However, after 16 weeks, the activity returned to the original soil levels (1.35 μg INTF g−1 h−1). The addition of vermicomposted olive-mill solid waste increased the original soil dehydrogenase activity by five-fold, indicating a loss of toxicity of the waste during the vermicomposting process; the activity remained high throughout the experiment. At week 21, a second addition of olive solid waste, was made to both olive waste and vermicompost-amended soils, when the soil originally amended with olive waste had reached the activity measured in soil amended with vermicompost. Dehydrogenase activity recovered immediately, reaching levels up to seven-fold higher than the background levels of the soil. The ability of soil to respond to a toxic waste clearly differed after a period of exposure to the waste. The faster response was probably related to the increased pool of stabilized organic matter present in soil, arising from the stabilization of added olive waste in the soil or through the amended vermicompost. The amplitude (period of recovery to the initial state after disturbance) and the elasticity (speed of recovery) of the soil could also be monitored by o-diphenol oxidase and β-glucosidase activities. However, indole-3-acetic acid production proved to be a useful measure of perturbation only following the second addition of the olive waste.  相似文献   

17.
 Soil organic matter level, mineralizable C and N, microbial biomass C and dehydrogenase, urease and alkaline phosphatase activities were studied in soils from a field experiment under a pearl millet-wheat cropping sequence receiving inorganic fertilizers and a combination of inorganic fertilizers and organic amendments for the last 11 years. The amounts of soil organic matter and mineralizable C and N increased with the application of inorganic fertilizers. However, there were greater increases of these parameters when farmyard manure, wheat straw or Sesbania bispinosa green manure was applied along with inorganic fertilizers. Microbial biomass C increased from 147 mg kg–1 soil in unfertilized soil to 423 mg kg–1 soil in soil amended with wheat straw and inorganic fertilizers. The urease and alkaline phosphatase activities of soils increased significantly with a combination of inorganic fertilizers and organic amendments. The results indicate that soil organic matter level and soil microbial activities, vital for the nutrient turnover and long-term productivity of the soil, are enhanced by use of organic amendments along with inorganic fertilizers. Received: 6 May 1998  相似文献   

18.
Heavy metal contamination can inhibit soil functions but it is often difficult to determine the degree of pollution or when soil reclamation is complete. Enzyme assays offer potential as indicators of biological functioning of soils. However, antecedent water content of soil samples may affect the outcome of biological measurements. In Mediterranean regions, for much of the year ‘field moist’ surface soil can have water content similar to that of air-dry samples. The objectives of this study were to: (1) determine the sensitivity of a range of enzyme assays to detect the degree of pollution from a heavy metal mine spill; (2) evaluate rewetting field-dry soil as a pre-treatment for enzyme assays; and (3) test multivariate analysis for improving discrimination between polluted, reclaimed and non-polluted soils. The Aznalcóllar mining effluent spill provided a unique opportunity to address these objectives. This accident released toxic, heavy metal-contaminated (As, Bi, Cd, Cu, Pb, Tl, Zn…) and acid tailings into the Guadiamar watershed (SW Spain) in 1998, severely affecting the riparian zone along more than 4000 ha. Contaminated soils were collected from the highly polluted upper watershed and less polluted lower watershed along with reclaimed soil at both sites. Enzyme activities (phosphatases, arylsulfatase, β-glucosidase, urease and dehydrogenase) were assessed on both field-moist samples and soils rewetted to 80% of water-holding capacity and then incubated at 21 °C for 7 d prior to the assay. The reclaimed soils had higher activities than polluted soils but, typically, 1.5-3 times lower levels of activity than the non-polluted soil. Regardless of the moisture pre-treatment, all enzymes showed significant effects due to pollution, with urease and β-glucosidase showing the greatest discrimination between degrees of contamination. In general, rewetting field-dried soils increased activities on non-polluted and reclaimed soils which improved discrimination with polluted soils. Another method to increase the potential of soil enzyme activities to detect soil contamination could be to combine them in multivariate analysis, which provides a more holistic representation of the biochemical and microbial functionality of a soil.  相似文献   

19.
Phosphorus losses by surface runoff from agricultural lands have been of public concern due to increasing P contamination to surface waters. Five representative commercial citrus groves (C1-C5) located in South Florida were studied to evaluate the relationships between P fractions in soils, surface runoff P, and soil phosphatase activity. A modified Hedley P sequential fractionation procedure was employed to fractionate soil P. Soil P consisted of mainly organically- and Ca/Mg-bound P fractions. The organically-bound P (biological P, sum of organic P in the water, NaHCO3 and NaOH extracts) was dominant in the acidic sandy soils from the C2 and C3 sites (18% and 24% of total soil P), whereas the Ca/Mg-bound P (HCl-extractable P) accounted for 45-60% of soil total P in the neutral and alkaline soils (C1, C4 and C5 soils). Plant-available P (sum of water and NaHCO3 extractable P fractions) ranged from 27 to 61 mg P kg−1 and decreased in the order of C3>C4>C1>C2>C5. The mean total P concentrations (TP) in surface runoff water samples ranged from 0.51 to 2.64 mg L−1. Total P, total dissolved P (TDP), and PO43−-P in surface runoff were significantly correlated with soil biological P and plant-available P forms (p<0.01), suggesting that surface runoff P was directly derived from soil available P pools, including H2O- and NaHCO3- extractable inorganic P, water-soluble organic P, and NaHCO3- and NaOH-extractable organic P fractions, which are readily mineralized by soil microorganisms and/or enzyme mediated processes. Soil neutral (55-190 mg phenol kg−1 3 h−1) and natural (measured at soil pH) phosphatase activities (77-295 mg phenol kg−1 3 h−1) were related to TP, TDP, and PO43−-P in surface runoff, and plant-available P and biological P forms in soils. These results indicate that there is a potential relationship between soil P availability and phosphatase activities, relating to P loss by surface runoff. Therefore, the neutral and natural phosphatase activities, especially the natural phosphatase activity, may serve as an index of surface runoff P loss potential and soil P availability.  相似文献   

20.
Biochemical characterization of urban soil profiles from Stuttgart, Germany   总被引:1,自引:0,他引:1  
The knowledge of biochemical properties of urban soils can help to understand nutrient cycling in urban areas and provide a database for urban soil management. Soil samples were taken from 10 soil profiles in the city of Stuttgart, Germany, differing in land use—from an essentially undisturbed garden area to highly disturbed high-density and railway areas. A variety of soil biotic (microbial biomass, enzyme activities) and abiotic properties (total organic C, elemental C, total N) were measured up to 1.9 m depth. Soil organic matter was frequently enriched in the subsoil. Microbial biomass in the top horizons ranged from 0.17 to 1.64 g C kg−1, and from 0.01 to 0.30 g N kg−1, respectively. The deepest soil horizon at 170-190 cm, however, contained 0.12 g C kg−1 and 0.05 kg N kg−1 in the microbial biomass. In general, arylsulphatase and urease activity decreased with depth but in three profiles potentially mineralizable N in the deepest horizons was higher than in soil layers directly overlying. In deeply modified urban soils, subsoil beside topsoil properties have to be included in the evaluation of soil quality. This knowledge is essential because consumption of natural soils for housing and traffic has to be reduced by promoting inner city densification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号