首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Throughout the northern hemisphere old forests with high abundance of dead wood are rare features in most landscapes today, and the loss of dead wood constitutes a serious threat to the existence of many species. This study, using field surveys and dendrochronology, examines the relationship between wood-inhabiting fungi and past forest utilisation along a gradient of early logging activity. Data were collected in three late-successional Scots pine forests in northern Sweden. Nonmetric Multidimensional Scaling (NMS) was then used to assess differences in species composition among the forests. Our results show that minor forest logging (22-26 cut stumps ha−1) carried out a century ago may have continuing effects on forest characteristics, including dead wood dynamics and the wood-inhabiting fungal community - especially the abundance of red-listed species. The most important effects are lower numbers of logs in early and intermediate stages of decomposition. Additionally, numbers of species (including red-listed species) can be high in forests that have been subject to low levels of logging. Overall, the high species numbers recorded in this study (= 60-87) show that old, low-productivity pine forests harbour a considerable fraction of the total diversity of Basidiomycetes in northern Fennoscandian boreal forests. We conclude that the formation of a framework linking forest history and environmental data is vital for understanding the ecology and formulating goals for future management of these forests.  相似文献   

2.
We investigated the influence of fire return interval length on the ectomycorrhizal (ECM) community of a Pinus pinaster dominated forest and on the potential for common ECM networks (CMNs) between understorey shrubs and P. pinaster. ECM root tips were sampled from five shrub species belonging to the genera Arbutus, Cistus and Halimium and from maritime pine in four areas of central Portugal characterized by differing fire return interval length. Fungal symbionts were identified using molecular techniques with direct sequencing of the nrDNA ITS region.Twenty nine ECM species and sixteen non-ECM root inhabitants were identified. Six years after wildfire disturbance ECM species richness did not differ significantly between unburnt and burnt areas. Nine ECM fungal species were common to pine and shrubs and both their frequency of occurrence and proportion were significantly higher in the unburnt area when compared with both areas subjected to fire.Our study revealed that while the potential for CMNs between understorey shrub species and pine seemed to be maintained in the long fire return interval area, recurrent fires significantly reduced the frequency of occurrence and the proportion of common symbiont species. High fire frequencies could therefore delay the process of re-colonization by pine seedlings limiting their dispersal in new settings.  相似文献   

3.
The distribution of heterotrophic flagellates, naked amoebae, testate amoebae and ciliates was investigated in habitats created by Scots pine-Paxillus involutus and -Suillus bovinus ectomycorrhizospheres. The protozoa living on plant and fungal surfaces preferred the non-mycorrhizal pine roots over mycorrhizal roots or external mycelium. The testate amoebae were more abundant on external mycelium than on mycorrhizae regardless of the mycorrhizal fungal species. Numbers of protozoa were higher in the different habitats provided by S. bovinus mycorrhizospheres when compared with P. involutus mycorrhizospheres. Interestingly, the quality of the bacterial flora as food for the protozoa was affected by the mycorrhizal fungi even in the soils adjacent to non-mycorrhizal root tips of pine. These results demonstrate that mycorrhizal fungi create habitats differently suitable for protozoa living in boreal forest soil.  相似文献   

4.
Fine root (<2 mm) processes contribute to and exhibit control over a large pool of labile carbon (C) in boreal forest ecosystems because of the high proportion of C allocated to fine root net primary production (NPP), and the rapid decomposition of fine roots relative to aboveground counterparts. The objective of this study was to determine the contribution of fine roots to ecosystem biomass and NPP in a mature black spruce (Picea mariana Mill.) (OBS), aspen (Populus tremuloides Michx.) (OA), and jack pine (Pinus banksiana Lamb.) (OJP) stand, and an 11-year-old harvested jack pine (HJP) stand in Saskatchewan. Estimates of fine root biomass and NPP were obtained from nine minirhizotron (MR) tubes at each of the four Boreal Ecosystem Research and Monitoring Sites (BERMS). Fine root data were collected once a month for May–September in 2003 and 2004. Additional C biomass and NPP data for various components of the forest stands were obtained from Gower et al. (1997) and Howard et al. (2004). Annual fine root biomass averaged 3.10 ± 0.89, 1.71 ± 0.49, 1.62 ± 0.32, and 2.96 ± 0.67 Mg C ha−1 (means ± S.D.) at OBS, OA, OJP, and HJP, respectively, comprising between 1 and 6% of total stand biomass. Annual fine root NPP averaged 2.66 ± 0.97, 2.03 ± 0.43, 1.44 ± 0.43, and 2.16 ± 0.81 Mg C ha−1 year−1 (means ± S.D.) at OBS, OA, OJP, and HJP, respectively, constituting between 41 and 71% of total stand NPP. Results of this study indicate that fine roots produce a large amount of C in boreal forests. It is speculated that fine root NPP may control a large amount of labile C-cycling in boreal forests and that fine root responses to environmental and anthropogenic stress may be an early indicator of impaired ecosystem functioning.  相似文献   

5.
We compare forest floor microbial communities in pure plots of four tree species (Thuja plicata, Tsuga heterophylla, Pseudotsuga menziesii, and Picea sitchensis) replicated at three sites on Vancouver Island. Microbial communities were characterised through community level physiological profiles (CLPP), and profiling of phospholipid fatty acids (PLFA).Microbial communities from cedar forest floors had higher potential C utilisation than the other species. The F layer of the forest floor under cedar contained significantly higher bacterial biomass (PLFA) than the F layer under the other three tree species. There were differences in microbial communities among the three sites: Upper Klanawa had the highest bacterial biomass and potential C utilisation; this site also had the highest N availability in the forest floors. Forest floor H layers under hemlock and Douglas-fir contained greater biomass of Gram positive, Gram negative bacteria and actinomycetes than F layers based on PLFA, and H layers under spruce contained greater biomass of Gram negative bacteria than F layers. There were no significant differences in bacterial biomass between forest floor layers under cedar. Fungal biomass displayed opposite trends to bacteria and actinomycetes, being lowest in cedar forest floors, and highest in the F layer and at the site with lowest N availability. There were also differences in community composition among species and sites, with cedar forest floors having a much lower fungal:bacterial ratio than spruce, hemlock and Douglas-fir. The least fertile Sarita Lake site had a much greater fungal:bacterial ratio than the more fertile San Juan and Upper Klanawa sites. Forest floor layer had the greatest effect on microbial community structure and potential function, followed by site, and tree species. The similarity in trends among measures of N availability and microbial communities is further evidence that these techniques provide information on microbial communities that is relevant to N cycling processes in the forest floor.  相似文献   

6.
The conversion of single-species coniferous forest stands into mixed stands by promoting the natural regeneration of indigenous broadleaved tree species was studied in a forest-heathland on the Veluwe, in the central part of the Netherlands. Red deer (Cervus elaphus), roe deer (Capreolus capreolus) and wild boar (Sus scrofa) had a large impact on regeneration dynamics, as was established by comparing 20 pairs of fenced and unfenced plots (40 × 40 m) during a 10-year period. A fivefold reduction of total herbivore biomass to 500 kg per km2, resulted in a strong increase of shrub and tree sapling numbers in all vegetation types. However, height growth of the most palatable broadleaved tree species was still strongly impeded. Under the present-day grazing pressure, Scots pine (Pinus sylvestris) and beech (Fagus sylvatica) will become the dominant canopy species in the forests in the near future. It is argued that the most browse-sensitive woody species such as pedunculate and sessile oak (Quercus robur and Q. petraea) will successfully regenerate, only if temporal and spatial variation in browsing pressure is allowed to occur.  相似文献   

7.
Soil respiration is the largest terrestrial source of CO2 to the atmosphere. In forests, roughly half of the soil respiration is autotrophic (mainly root respiration) while the remainder is heterotrophic, originating from decomposition of soil organic matter. Decomposition is an important process for cycling of nutrients in forest ecosystems. Hence, tree species induced changes may have a great impact on atmospheric CO2 concentrations. Since studies on the combined effects of beech-spruce mixtures are very rare, we firstly measured CO2 emission rates in three adjacent stands of pure spruce (Picea abies), mixed spruce-beech and pure beech (Fagus sylvatica) on three base-rich sites (Flysch) and three base-poor sites (Molasse; yielding a total of 18 stands) during two summer periods using the closed chamber method. CO2 emissions were higher on the well-aerated sandy soils on Molasse than on the clayey soils on Flysch, characterized by frequent water logging. Mean CO2 effluxes increased from spruce (41) over the mixed (55) to the beech (59) stands on Molasse, while tree species effects were lower on Flysch (30-35, mixed > beech = spruce; all data in mg CO2-C m−2 h−1). Secondly, we studied decomposition after fourfold litter manipulations at the 6 mixed species stands: the Oi - and Oe horizons were removed and replaced by additions of beech -, spruce - and mixed litter of the adjacent pure stands of known chemical quality and one zero addition (blank) in open rings (20 cm inner diameter), which were covered with meshes to exclude fresh litter fall. Mass loss within two years amounted to 61-68% on Flysch and 36-44% on Molasse, indicating non-additive mixed species effects (mixed litter showed highest mass loss). However, base cation release showed a linear response, increasing from the spruce - over the mixed - to the beech litter. The differences in N release (immobilization) resulted in a characteristic converging trend in C/N ratios for all litter compositions on both bedrocks during decomposition. In the summers 2006 and 2007 we measured CO2 efflux from these manipulated areas (a closed chamber fits exactly over such a ring) as field indicator of the microbial activity. Net fluxes (subtracting the so-called blank values) are considered an indicator of litter induced changes only and increased on both bedrocks from the spruce - over the mixed - to the beech litter. According to these measurements, decomposing litter contributed between 22-32% (Flysch) and 11-28% (Molasse) to total soil respiration, strengthening its role within the global carbon cycle.  相似文献   

8.
Soil organic matter(SOM)in boreal forests is an important carbon sink.The aim of this study was to assess and to detect factors controlling the temperature sensitivity of SOM decomposition.Soils were collected from Scots pine,Norway spruce,silver birch,and mixed forests(O horizon)in northern Finland,and their basal respiration rates at five different temperatures(from 4 to 28℃)were measured.The Q_(10) values,showing the respiration rate changes with a 10℃ increase,were calculated using a Gaussian function and were based on temperature-dependent changes.Several soil physicochemical parameters were measured,and the functional diversity of the soil microbial communities was assessed using the MicroResp?method.The temperature sensitivity of SOM decomposition differed under the studied forest stands.Pine forests had the highest temperature sensitivity for SOM decomposition at the low temperature range(0–12℃).Within this temperature range,the Q_(10) values were positively correlated with the microbial functional diversity index(H'_(mic))and the soil C-to-P ratio.This suggested that the metabolic abilities of the soil microbial communities and the soil nutrient content were important controls of temperature sensitivity in taiga soils.  相似文献   

9.
Nitrogen mineralisation in soils of various forest sites (pine plantation, natural and thinned oak) at Uluda? University campus in Bursa, Turkey was investigated continuously over a year by the field incubation method. Net nitrogen mineralisation and nitrification rates varied depending on sampling dates. Although nitrogen mineralisation and nitrification rates increased in the spring and summer months, there was no seasonal variation in the soils of the examined forests. Annual net nitrate (NO3?–N) accumulation in the upper soil layer (0–5 cm) was higher in Oak I and Oak II (14 kg ha y?1 and 12 kg ha y?1) than in the pine plantation (8 kg ha y?1). While annual net NO3?–N accumulation (0–5 cm) varied between the oak forests (possibly due to forest management practices), annual net Nmin values were similar in these forests. No significant correlation was found between the examined soil parameters and net nitrification and mineralisation rates in the soils (P > 0.05). These results indicate that tree species and forest management practices play important roles in N cycling in forest ecosystems.  相似文献   

10.
Climate warming and associated increases in nutrient mineralization may increase the availability of soil nitrogen (N) in high latitude ecosystems, such as boreal forests. These changes in N availability could feed back to affect the decomposition of litter and organic matter by soil microbes. Since fungi are important decomposers in boreal forest ecosystems, we conducted a 69-day incubation study to examine N constraints on fungal decomposition of organic substrates common in boreal ecosystems, including cellulose, lignin, spruce wood, spruce needle litter, and moss litter. We added 0, 20, or 200 μg N to vials containing 200 mg substrate in factorial combination with five fungal species isolated from boreal soil, including an Ascomycete, a Zygomycete, and three Basidiomycetes. We hypothesized that N addition would increase CO2 mineralization from the substrates, particularly those with low N concentrations. In addition we predicted that Basidiomycetes would be more effective decomposers than the other fungi, but would respond weakly or negatively to N additions. In support of the first hypothesis, cumulative CO2 mineralization increased from 635 ± 117 to 806 + 108 μg C across all fungal species and substrates in response to 20 μg added N; however, there was no significant increase at the highest level of N addition. The positive effect of N addition was only significant on cellulose and wood substrates which contained very little N. We also observed clear differences in the substrate preferences of the fungal species. The Zygomycete mineralized little CO2 from any of the substrates, while the Basidiomycetes mineralized all of the substrates except spruce needles. However, the Ascomycete (Penicillium) was surprisingly efficient at mineralizing spruce wood and was the only species that substantially mineralized spruce litter. The activities of β-glucosidase and N-acetyl-glucosaminidase were strongly correlated with cumulative respiration (r = 0.78 and 0.74, respectively), and Penicillium was particularly effective at producing these enzymes. On moss litter, the different fungal species produced enzymes that targeted different chemical components. Overall, our results suggest that fungal species specialize on different organic substrates, and only respond to N addition on low N substrates, such as wood. Furthermore, the response to N addition is non-linear, with the greatest substrate mineralization at intermediate N levels.  相似文献   

11.
Many northern forests are limited by nitrogen (N) availability, slight changes in which can have profound effects on ecosystem function and the activity of ectomycorrhizal (EcM) fungi. Increasing N and phosphorus (P) availability, an analog to accelerated soil organic matter decomposition in a warming climate, could decrease plant dependency on EcM fungi and increase plant productivity as a result of greater carbon use efficiency. However, the impact of altered N and P availability on the growth and activity of EcM fungi in boreal forests remains poorly understood despite recognition of their importance to host plant nutrition and soil carbon sequestration. To address such uncertainty we examined above and belowground ecosystem properties in a boreal black spruce forest following five years of factorial N and P additions. By combining detailed soil, fungal, and plant δ15N measurements with in situ metrics of fungal biomass, growth, and activity, we found both expected and unexpected patterns. Soil nitrate isotope values became 15N enriched in response to both N and P additions; fungal biomass was repressed by N yet both biomass and growth were stimulated by P; and, black spruce dependency on EcM derived N increased slightly when N and P were added alone yet significantly declined when added in combination. These findings contradict predictions that N fertilization would increase plant P demands and P fertilization would further exacerbate plant N demands. As a result, the prediction that EcM fungi predictably respond to plant N limitation was not supported. These findings highlight P as an under appreciated mediator of the activity of denitrifying bacteria, EcM fungi, and the dynamics of N cycles in boreal forests. Further, use of δ15N values from bulk soils, plants, and fungi to understand how EcM systems respond to changing nutrient availabilities will often require additional ecological information.  相似文献   

12.
The influence of individual trees in monocrop forests on soil microbial communities is poorly understood. We measured basal respiration, substrate-induced respiration and phospholipid fatty acids (PLFA), bacterial growth rate with the 3H-thymidine incorporation technique and fungal growth rate as 14C-acetate incorporation into ergosterol to investigate whether slow- and fast-growing 12-year-old Norway spruce (Picea abies) clones have affected differently on their associated soil microbial communities. Understorey vegetation, soil chemical properties and elemental concentrations of needles were also determined. The slow- and fast-growing spruce clones differed in PLFA profiles, understorey vegetation and elemental concentrations in needles suggesting that spruce clones have directly or indirectly affected soil microbes.  相似文献   

13.
Fungal breakdown of plant material rich in lignin and cellulose (i.e. lignocellulose) is of central importance to terrestrial carbon (C) cycling due to the abundance of lignocellulose above and below-ground. Fungal growth on lignocellulose is particularly influential in tropical forests, as woody debris and plant litter contain between 50% and 75% lignocellulose by weight, and can account for 20% of the C stored in these ecosystems. In this study, we evaluated factors affecting fungal growth on a common wood substrate along a wet tropical elevation gradient in the Peruvian Andes. We had three objectives: 1) to determine the temperature sensitivity of fungal growth - i.e. Q10, the factor by which fungal biomass increases given a 10 °C temperature increase; 2) to assess the potential for above-ground fungal colonization and growth on lignocellulose in a wet tropical forest; and 3) to characterize the community composition of fungal wood decomposers across the elevation gradient. We found that fungal growth had a Q10 of 3.93 (95% CI of 2.76-5.61), indicating that fungal biomass accumulation on the wood substrate nearly quadrupled with a 10 °C increase in temperature. The Q10 for fungal growth on wood at our site is higher than Q10 values reported for litter decomposition in other tropical forests. Moreover, we found that above-ground fungal growth on the wood substrate ranged between 37% and 50% of that measured in the soil, suggesting above-ground breakdown of lignocellulose represents an unexplored component of the C cycle in wet tropical forests. Fungal community composition also changed significantly along the elevation gradient, and Ascomycota were the dominant wood decomposers at all elevations. Fungal richness did not change significantly with elevation, directly contrasting with diversity patterns observed for plant and animal taxa across this gradient. Significant variation in fungal community composition across the gradient suggests that the characteristics of fungal decomposer communities are, directly or indirectly, influenced by temperature.  相似文献   

14.
Nitrogen mineralisation and available nitrogen (NO3 + NH4+) in two evergreen forests species, viz. Quercus leucotrichophora and Pinus roxburghii, were examined. The plant available N ranged from 7.7–35.8 μg·g–1·m–1 with maximum values in March and minimum in November. The trend for N-mineralisation was opposite to that of the size of the available N-pool. N-Mineralisation rates ranged from 1.7–30.3 μg·g–1·m–1 within an annual cycle. Inorganic-N uptake was calculated for each incubated period, and for an entire year showed that in an oak forest site, nitrate-N was the dominant form of mineral nitrogen taken up by plants from soil. However, in a chir pine forest, nitrate-N and ammonium-N are equally taken up by plants from the soil. In both oak and pine forest sites, the nitrate-N uptake was maximum in the month of July and ranged between 2.4–11 μg·g–1·m–1 in the pine forest site and from 0–25 μg·g–1·m–1 in the oak forest site. In addition, ammonium-N varied from 0–12 μg·g–1·m–1 in the pine forest site and from 1–20 μg·g–1·m–1 in the oak forest site. N-Mineralisation was greater in N-rich forests and was moisture (soil) dependent and inversely related to bulk density.  相似文献   

15.
Changes from natural tree species to rapidly growing exotic species as well as intensification of forestry operations with heavy machinery can lead to changes in the quantity and quality of organic matter inputs to soil and to disruption of soil physical structure. These two ecosystem properties are tightly linked to organic matter dynamics. Five adjacent forest stands were selected to study soil organic matter dynamics in soil physical fractions. On one hand, two semi-natural broadleaved forests (Quercus robur, Fagus sylvatica) and an adult radiata pine plantation (40-year-old,) in order to study the effect of species change on these parameters, and on the other, a chronosequence of Pinus radiata plantations (40-year-old; 3-year-old; 16-year-old), to study the effect of mechanization during harvesting and intense site preparation. Samples of intact topsoil (0-5 cm) were collected and aggregate-size distribution, mean weight diameter (MWD), total C and N, particulate organic matter (POM)-C, POM-N and microbial biomass-C were determined in each aggregate size fraction. Microbial respiration and nitrogen mineralization were also assessed in each aggregate size fraction, during a 28 day incubation period.Losses of POM-C and POM-N in the bulk soil due to mechanical site preparation were high relative to total soil C and N, which suggests that POM is a sensitive parameter to the effect of mechanization. The ratio C-POM:SOM was significantly related to MWD (R2 = 0.75, P < 0.001) reflecting that POM may play a key role in the topsoil aggregate formation in these stands. Semi-natural stands had a higher proportion of macroaggregates (0.25-2 mm) than the cultivated adult one. Megaaggregates (>2 mm) were the most abundant class in mature stands (82-92%), whereas macro- and microaggregates (<2 mm) were the most abundant ones in the intensely soil prepared P. radiata plantation (49%).Indicators for sustainable forest management related to soil organic matter should not only be assessed in terms of total C stocks but also with respect to sensitive organic matter and its degradability in different size classes.  相似文献   

16.
Mika Räty 《Pedobiologia》2004,48(3):283-291
The aim of the study was to compare earthworm communities in anthropogenous birch stands with different origin in Finland. A total of nine forest sites were investigated: three birch stands (Betula pendula) planted ca. 30 years prior to the study after clear-cutting of spruce stands (“Birch after Spruce”, BS), three birch stands planted ca. 30 years earlier on arable soil that had been under normal cultivation until forestation (“Birch after Field”, BF), and three “Natural Deciduous” forests (D). Earthworms were sampled in May and October 1999 using a combination of formaline extraction and modified wet funnels. There were conspicuous differences between replicates of similarly managed forests. Earthworms were totally lacking in one of the D sites, while another had an abundant and diverse community. Only Dendrobaena octaedra was present in one BS site, while the two others harboured also Aporrectodea caliginosa and three Lumbricus species. All these species were also present in the BF sites, where their total biomass (ranging from 70 to 138 g (f.w.)/m2) was 2.6 times the average in BS, and of the same magnitude as the average in natural deciduous stands. A separate experiment revealed that L. terresris and A. caliginosa, which are not found in the surrounding coniferous forest, are able to live and reproduce in the soil of the D site where they were absent. It was concluded that earthworm species survive and reproduce in birch stands established on arable soil, where they have invaded during the long cultivation. On the other hand, their possibilities to disperse from cultural landscapes determine their presence not only in birch stands established in earlier coniferous forests, but also in “natural deciduous” forests where source populations are not present in the surroundings.  相似文献   

17.
This study was designed to examine whether or not specific tree species (Picea glauca, Picea mariana, Pinus banksiana, Populus tremuloides), their post-fire stand age, or their position in a successional pathway had any significant effect on the functional diversity of associated soil microbial communities in a typical mixed boreal forest ecosystem (Duck Mountain Provincial Forest, Manitoba, Canada). Multivariate analyses designed to identify significant biotic and/or abiotic variables associated with patterns of organic substrate utilization (assessed using the BIOLOG™ System) revealed the overall similarity in substrate utilization by the soil microbial communities. The five clusters identified differed mainly by their substrate-utilization value rather than by specific substrate utilization. Variability in community functional diversity was not strongly associated to tree species or post-fire stand age; however, redundancy analysis indicated a stronger association between substrate utilization and successional pathway and soil pH. For example, microbial communities associated with the relatively high pH soils of the P. tremuloides-P. glauca successional pathway, exhibited a greater degree of substrate utilization than those associated with the P. banksiana-P. mariana successional pathway and more acidic soils. Differences in functional diversity specific to tree species were not observed and this may have reflected the mixed nature of the forest stands and of their heterogeneous forest floor. In a densely treed, mixed boreal forest ecosystem, great overlap in tree and understory species occur making it difficult to assign a definitive microbial community to any particular tree species. The presence of P. tremuloides in all stand types and post fire stand ages has probably contributed to the large amount of overlap in utilization profiles among soil samples.  相似文献   

18.
Dendrobaena octaedra (Lumbricidae) and Cognettia sphagnetorum (Enchytraeidae) are the two most dominating soil invertebrates in terms of biomass in boreal coniferous forest soils. A microcosm experiment was set up in order to study the influence of pH, moisture and resource addition on D. octaedra and C. sphagnetorum when both species are simultaneously present. Two kinds of coniferous forest humus were used as substrate, pine stand humus (pH 4.2), and spruce stand humus (pH 4.6); in the third treatment the pine stand humus was adjusted with slaked lime (CaOH2) to the same initial pH as the spruce stand humus. Each substrate was adjusted to water contents of 25%, 42.5% and 60% of WHC (referred to as ‘dry’, ‘moist’ and ‘wet’). In the second part of the experiment, spruce needle litter and birch leaf litter were separately added into the pine stand humus (‘moist’, unlimed) and compared with a control without litter. The microcosms were plastic jars with 75 g (d.m.) of humus, into which 4 specimens of D. octaedra and 70 specimens of C. sphagnetorum were added. D. octaedra showed the highest biomass and C. sphagnetorum the lowest biomass in the spruce stand humus with higher pH. Moisture did not affect earthworms, while C. sphagnetorum thrived best at the highest moisture. Addition of both kinds of litter increased the numbers and biomass of D. octaedra, while on C. sphagnetorum resource addition had little effect. The results help to explain the abundance of these two species in coniferous forests differing in soil acidity, moisture and fertility.  相似文献   

19.
In order to assess the capacity of the boreal forest ecosystem to intercept atmospheric carbon over a period of years, a climate-driven growth model (FinnFor, process-based) was applied to calculate the seasonal and inter-annual variability of net ecosystem CO2 exchange (NEE) and component carbon fluxes (gross primary production - GPP and total ecosystem respiration - TER) against a 10-year (1999-2008) period of eddy covariance (EC) measurements in a Scots pine (Pinus sylvestris L.) stand in Eastern Finland. Furthermore, the role of climatic factors, leaf area index (LAI) and physiological responses of trees regarding the ecosystem carbon fixation processes were evaluated. An hourly time-step was used to simulate the carbon exchange based on measured tree/stand characteristics and meteorological input for the experimental site, and the dynamic LAI was used throughout the 10-year simulations. The model predicted well the annual course of NEE compared to the measured values for most of the years, with the development of LAI (2.4-3.3 m2 m−2, as simulated). The simulated NEE over the study period shows that, on average, 62% of the variation refers to daily and 88% to monthly measured NEE. Both modeled and measured daily NEE showed similar responses to the temperature, photosynthetically active radiation and vapor pressure deficit during the growing seasons. In the simulation, the annual amount of GPP varied from 720.8 to 910.4 g C m−2 with a mean value of 825.3 g C m−2, and the annual mean TER/GPP ratio was 0.79, close to the measured value. Carbon efflux from the forest floor was the dominant contributor to the forest ecosystem respiration. The inter-annual variation of GPP mostly corresponded to the development of LAI, temperature sum and total incoming radiation over the 10-year simulation period. It was suggested that the process-based model could be applied to study the carbon processes for natural and management-induced dynamics of Scots pine forest ecosystem over longer periods across a wider climate gradient in the boreal zone.  相似文献   

20.
Red wood ants (Formica rufa group) are important elements in boreal forest ecosystems, where they occur in high abundance and build large and long-lasting, above-ground mounds of organic material. However, little is known on their role in the carbon (C) cycling in boreal forests. We measured temperature and carbon dioxide (CO2) efflux from three different-sized wood ant mounds and the surrounding forest floor from May 2004 to April 2005 in Norway spruce [Picea abies (L.) Karst.] dominated forests in eastern Finland. Additionally, mound and forest floor temperatures were measured continuously and CO2 effluxes at 2-4-week-intervals. During the ants’ active season (May-September), measurements were conducted in the morning, afternoon, evening and at night, while fluxes were measured once a day during the ants’ inactive season. CO2 emissions from the mounds were up to nearly eight times higher than those from the surrounding forest floor during the active season of the ants, but no statistically significant differences were observed during the period from October to February. Both mound and forest floor CO2 fluxes were highly correlated to mound or forest floor temperature. Based on our measurements, we are able to estimate the annual CO2 efflux from ant mounds and the surrounding forest floor, based on nonlinear regression analyses using CO2 flux as dependant and mound or forest floor temperatures as independent variables. Although red wood ant mounds were found to be “hot spots” for CO2 efflux, that increase the spatial heterogeneity of C emissions within a forest ecosystem, their annual emissions were only 0.30% of that from the forest floor. Thus, our results indicate that red wood ant mounds do not directly contribute significantly to the overall C budget of the boreal forest ecosystem studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号