首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Practical testing of the feasibility of cyanobacterial inoculation to speed up the recovery of biological soil crusts in the field was conducted in this experiment. Results showed that cyanobacterial and algal cover climbed up to 48.5% and a total of 14 cyanobacterial and algal species were identified at the termination of inoculation experiment; biological crusts' thickness, compressive and chlorophyll a content increased with inoculation time among 3 years; moss species appeared in the second year; cyanobacterial inoculation increased organic carbon and total nitrogen of the soil; total salt, calcium carbonate and electrical conductivity in the soil also increased after inoculation. Diverse vascular plant communities composed of 10 and 9 species are established by cyanobacterial inoculation on the windward and leeward surface of the dunes, respectively, after 3 years. The Simpson index for the above two communities are 0.842 and 0.852, while the Shannon-Weiner index are 2.097 and 2.053, respectively. In conclusion, we suggest that cyanobacterial inoculation would be a suitable and effective technique to recover biological soil crusts, and may further restore the ecological system.  相似文献   

2.
It has been suggested that the dominance of N forms should shift from dissolved organic nitrogen (DON) to nitrate along a gradient of increasing N availability. We aimed to apply this model at a local scale within a semi-arid ecosystem showing a high spatial heterogeneity in the distribution of vegetation and soil resources. By doing this, we seek a better understanding of the N cycling in spatially heterogeneous ecosystems. We took soil samples from the three major sources of spatial heterogeneity: the grass Stipa tenacíssima, the N-fixing shrub Retama sphaerocarpa, and open areas. We also sampled the biological soil crust (BSC) located in the latter areas as another source of spatial heterogeneity. BSC microsites were classified by four levels of soil coverage, ranging from high coverage (66%) to bare soil. The proportion of nitrate, ammonium and DON was determined in all microsites. DON was the dominant N form for open areas, while nitrate was dominant under the canopy of Retama; these microsites contained the lowest and highest N availability, respectively. Under BSC, DON was the dominant N form. We found high temporal variability in the dominance of N forms for all microsites. Our results suggest that the biome-derived model of Schimel and Bennett (2004) explaining N form dominance across N availability gradients may be extended to local gradients.  相似文献   

3.
4.
研究了腾格里沙漠东南缘沙坡头地区不同建植年限(16、21、27、44和52a)人工植被区中发育藻结皮的净光合速率、年固碳量和累计固碳量变化特征,并分析了其与结皮生物学参数(盖度和生物量)和土壤表层0~3 cm有机碳含量的相关关系。结果表明:1)随着人工植被区建植年限的增加,藻结皮的最大净光合速率显著增加,从植被建植16a藻结皮的1.63μmol m-2s-1增加至植被建植52a的2.81μmol m-2s-1;藻结皮的最大光合速率与结皮生物量和结皮盖度呈显著正相关关系;2)藻结皮的年固碳量随植被区建植年限的延长呈指数增加,随着人工植被区建植年限的增加,藻结皮的年固碳量显著增加,从建植16a藻结皮的C 0.2 g m-2a-1增加到52a的C 2.78 g m-2a-1;3)植被区建植后,藻结皮的固碳总量经历两个阶段的变化,建植16a到27a,藻结皮固碳总量在C 2.2~6.2 g m-2,建植44a后,固碳总量增加到C 23.9 g m-2;并且,藻结皮的固碳总量与土壤表层有机碳含量呈显著线性正相关关系。以上研究结果说明,随着人工植被固沙区的演替,藻结皮发育成熟度逐渐提高,其光合固碳能力显著提高,有利于干旱区土壤有机碳的累计。  相似文献   

5.
生物结皮对荒漠地区土壤及植物的影响研究述评   总被引:4,自引:0,他引:4       下载免费PDF全文
 生物结皮是目前防沙治沙的一种重要措施。通过对国内外生物结皮研究的回顾,简要总结了生物结皮对荒漠地区土壤理化性质及植物的影响。生物结皮对其下层土壤的影响主要表现在土壤的机械组成、土壤盐分、土壤养分等方面。生物结皮具有明显的养分、盐分和细粒物质的聚集作用,对表层土壤发育有积极的意义。生物结皮及下部土壤细粒的增加,提高了土壤的吸湿性和持水性,但对降雨入渗的影响尚无定论。在生物结皮的发育过程中,其与维管植物萌发和定居间的关系也存在几种不同的观点。对生物结皮的研究是目前防沙治沙研究的一个重要领域,其对荒漠地区的土壤及植被某些方面的影响目前并未形成一致的结论,其形成机制、生物组成、演替规律、对后续植物定居的影响等,均是需要进一步深入研究的科学问题。  相似文献   

6.
Biological soil crusts (BSC), most notably lichen crusts, develop and diversify in the Gurbantunggut Desert, the largest fixed and semi-fixed desert in China. Four different successional stages of BSC, including bare sand, microalgal crusts, lichen crusts, and moss crusts, were selected to determine successional changes in microalgal species composition and biomass and formation of BSC. A 10 × 10-m observation plot was established in an interdune region of the Gurbantunggut Desert and data were collected over an 8-year study period. The main results were: (1) different successional stages of BSC significantly affected the content of soil organic C and total and available N but not the total and available P and K content of soil; (2) composition of microalgal communities differed among the four successional stages; (3) significant differences in microalgal biomass were observed among the four successional stages; (4) bare sand was mainly uncompacted sand gains; (5) filamentous cyanobacteria, particularly Microcoleus vaginatus, were the dominant species in the early phase of crust succession. The presence of fungal mycelium and moss rhizoids prevented water and wind erosion.  相似文献   

7.
黄土丘陵区不同降水量带生物结皮对土壤氮素的影响   总被引:2,自引:0,他引:2  
黄土丘陵区生物结皮广泛发育,可通过固氮作用影响土壤氮素水平,但该区生物结皮对土壤氮素水平的影响鲜见报道.本文通过野外调查结合采样分析,研究了黄土丘陵区不同降水量带生物结皮组成、覆盖度差异及其对土壤氮素水平的影响.结果表明,1)黄土丘陵区不同降水量带生物结皮覆盖度无显著差异,但组成有差别;2)不同降水量带土壤氮素含量剖面分布具有明显的分层特征,生物结皮显著增加了结皮层土壤氮素含量,对下层土壤影响较小,结皮层下0-2 cm、2-5 cm、5-10 cm土层中氮素含量差异不显著;3)生物结皮层土壤全氮、碱解氮及微生物氮在不同降水量带差异不显著,而0-2 cm、2-5 cm、5-10 cm土壤全氮、碱解氮及土壤微生物氮含量在200~300 mm降水量带小于300~600 mm降水量带.研究结果揭示了黄土丘陵区生物结皮对土壤氮素的贡献,而不同降水量带生物结皮对土壤氮素的贡献差异不显著的原因有待于进一步研究.  相似文献   

8.
黄土丘陵区退耕地生物结皮影响下的土壤腐殖质分异特征   总被引:2,自引:0,他引:2  
张健  刘国彬  许明祥 《土壤》2010,42(4):541-547
本文对黄土丘陵区退耕地生物结皮影响下的土壤腐殖质分异特征进行了研究。结果表明,①该区生物结皮影响下的土壤腐殖质组分HA、FA和HM含量均有明显的分层特征,土层间均表现出:结皮层0~2cm土层2~5cm土层;不同年限生物结皮土壤腐殖质含量总体表现出:16年8年32年12年,表明退耕地生物结皮影响下的土壤腐殖质含量随时间变化呈非线性变化趋势;HA/FA平均值变化范围为0.34~0.70,低于1,该区生物结皮影响下的土壤腐殖质胡敏酸含量不高,腐殖酸以富啡酸为主;②结皮层土壤腐殖酸E4/E6值随时间变化总体上呈"抛物线"型变化趋势;而0~2cm和2~5cm土层土壤腐殖酸E4/E6值呈缓慢增长的趋势;③腐殖质组分与土壤养分因子的全N、NO3--N、NH4+-N和有效Zn之间存在极显著的线性相关关系(p0.01);④土壤腐殖质组分含量的变化与全N、NO3--N、NH4+-N和有效Zn含量间存在满足二项式的函数回归关系(p0.01),表明生物结皮对土壤C素与N素和有效Zn的影响密切相关。  相似文献   

9.
黄土区坡耕地土壤结皮对入渗的影响   总被引:8,自引:2,他引:8  
黄土高原地区,坡面土壤水分是生态建设的关键问题。以黄土高原坡耕地人为管理方式为背景,在室内人工模拟降雨条件下采用等高耕作和人工掏挖两种措施,并且设计直线坡作为对照,研究不同耕作措施下土壤结皮的形成特征,同时从降雨-入渗的角度研究两种类型结皮(结构结皮和沉积结皮)对坡面土壤水分入渗的影响。研究结果表明:土壤结皮阻碍坡面土壤水分入渗,结皮坡面产流时间早,且土壤累积入渗量明显低于无结皮坡面;采用Kostiakov模型、Horton模型、蒋定生模型对坡面土壤水分入渗过程进行优化模拟的结果表明蒋定生模型适用于描述本研究坡面土壤水分入渗的特征;耕作措施造成的微地形对土壤结皮的类型有很大影响,在洼地径流携带泥沙堆积形成沉积结皮,地势较高处降雨雨滴直接打击形成结构结皮。研究两种类型结皮发现,沉积结皮相对于结构结皮密度高且孔隙度低,并且两种类型结皮对坡面土壤水分入渗的影响存在差异,沉积结皮平均减渗效应为37.13%,结构结皮平均减渗效应为19.79%,因此,沉积结皮更大程度影响坡面土壤水分入渗。  相似文献   

10.
Many studies have shown that changes in nitrogen (N) availability affect the diversity and composition of soil microbial community in a variety of terrestrial systems, but less is known about the responses of microbes specific to biological soil crusts (BSCs) to increasing N additions. After seven years of field experiment, the bacterial diversity in lichen-dominated crusts decreased linearly with increasing inorganic N additions (ambient N deposition; low N addition, 3.5 g N m−2 y−1; medium N addition, 7.0 g N m−2 y−1; high N addition, 14.0 g N m−2 y−1), whereas the fungal diversity exhibited a distinctive pattern, with the low N-added crust containing a higher diversity than the other crusts. Pyrosequencing data revealed that the bacterial community shifted to more Cyanobacteria with modest N additions (low N and medium N) and to more Actinobacteria and Proteobacteria and much less Cyanobacteria with excess N addition (high N). Our results suggest that soil pH, together with soil organic carbon (C), structures the bacterial communities with N additions. Among the fungal communities, the relative abundance of Ascomycota increased with modest N but decreased with excess N. However, increasing N additions favored Basidiomycota, which may be ascribed to increases in substrate availability with low lignin and high cellulose contents under elevated N conditions. Bacteria/fungi ratios were higher in the N-added samples than in the control, suggesting that the bacterial biomass tends to dominate over that of fungi in lichen-dominated crusts after N additions, which is especially evident in the excess N condition. Because bacteria and fungi are important components and important decomposers in BSCs, the alterations of the bacterial and fungal communities may have implications in the formation and persistence of BSCs and the cycling and storage of C in desert ecosystems.  相似文献   

11.
Biological soil crusts (BSCs) cover up to 70% of the sparsely-vegetated areas in arid and semiarid regions throughout the world and play a vital role in dune stabilization in desert ecosystems. Soil enzyme activities could be used as significant bioindicators of soil recovery after sand burial. However, little is known about the relationship between BSCs and soil enzyme activities. The objective of this study was to determine whether BSCs could affect soil enzyme activities in revegetated areas of the Tengger Desert. The results showed that BSCs significantly promoted the activities of soil urease, invertase, catalase and dehydrogenase. The effects also varied with crust type and the elapsed time since sand dune stabilization. All the soil enzyme activities tested in this study were greater under moss crusts than under cyanobacteria–lichen crusts. The elapsed time since sand dune stabilization correlated positively with the four enzyme activities. The enzyme activities varied with soil depth and season, regardless of crust type. Cyanobacteria–lichen and moss crusts significantly enhanced all test enzyme activities in the 0–20 cm soil layer, but negatively correlated with soil depth. All four enzyme activities were greater in the summer and autumn than in spring and winter due to the vigorous growth of the crusts. Our study demonstrated that the colonization and development of BSCs could improve soil quality and promote soil recovery in degraded areas of the Tengger Desert.  相似文献   

12.
This study aimed to evaluate the use of phytoremediation and soil conditioners in the recovery of physical attributes of a saline-sodic Fluvic Neossol in Brazil Northeast. The applied treatments were: Atriplex nummularia L., as phytoremediation plant, due to its ability to extract salts from the soil; organic conditioners, such as bovine and sheep manure; gypsum and polymer, as chemical conditioners. Samples with preserved structure were collected at the time of the experiment installation and 18 months after in the layers 0–10 cm and 10–30 cm. The analyzed attributes were: water dispersed clay, dispersion index, bulk density, penetration resistance, soil porosity, and saturated hydraulic conductivity. The use of sheep manure, gypsum and polymer promoted an increase in saturated hydraulic conductivity in the 0–10 cm layer from 4.51 to 16.37 cm day?1, 11.26 to 23.95 cm day?1 and 7.24 to 22.77 cm day?1, respectively. Gypsum increased the macroporosity in the superficial layer by 42.6%. Atriplex and polymer were more efficient at reducing soil penetration resistance. The polymer was more efficient at improving the physical properties. However, it is necessary to consider phytoremediation with Atriplex as a more sustainable alternative that can still be used as complementary fodder in animal feed.  相似文献   

13.
Fixation of N by biological soil crusts and free-living heterotrophic soil microbes provides a significant proportion of ecosystem N in arid lands. To gain a better understanding of how elevated CO2 may affect N2-fixation in aridland ecosystems, we measured C2H2 reduction as a proxy for nitrogenase activity in biological soil crusts for 2 yr, and in soils either with or without dextrose-C additions for 1 yr, in an intact Mojave Desert ecosystem exposed to elevated CO2. We also measured crust and soil δ15N and total N to assess changes in N sources, and δ13C of crusts to determine a functional shift in crust species, with elevated CO2. The mean rate of C2H2 reduction by biological soil crusts was 76.9±5.6 μmol C2H4 m−2 h−1. There was no significant CO2 effect, but crusts from plant interspaces showed high variability in nitrogenase activity with elevated CO2. Additions of dextrose-C had a positive effect on rates of C2H2 reduction in soil. There was no elevated CO2 effect on soil nitrogenase activity. Plant cover affected soil response to C addition, with the largest response in plant interspaces. The mean rate of C2H2 reduction in soils either with or without C additions were 8.5±3.6 μmol C2H4 m−2 h−1 and 4.8±2.1 μmol m−2 h−1, respectively. Crust and soil δ15N and δ13C values were not affected by CO2 treatment, but did show an effect of cover type. Crust and soil samples in plant interspaces had the lowest values for both measurements. Analysis of soil and crust [N] and δ15N data with the Rayleigh distillation model suggests that any plant community changes with elevated CO2 and concomitant changes in litter composition likely will overwhelm any physiological changes in N2-fixation.  相似文献   

14.
Soil erosion and subsequent degradation has been a contributor to societal collapse in the past and is one of the major expressions of desertification in arid regions. The revised universal soil loss equation (RUSLE) models soil lost to water erosion as a function of climate erosivity (the degree to which rainfall can result in erosion), topography, soil erodibility, and land use/management. The soil erodibility factor (K) is primarily based upon inherent soil properties (those which change slowly or not at all) such as soil texture and organic matter content, while the cover/management factor (C) is based on several parameters including biological soil crust (BSC) cover. We examined the effect of two more precise indicators of BSC development, chlorophyll a and exopolysaccharides (EPS), upon soil stability, which is closely inversely related to soil loss in an erosion event. To examine the relative influence of these elements of the C factor to the K factor, we conducted our investigation across eight strongly differing soils in the 0.8 million ha Grand Staircase-Escalante National Monument. We found that within every soil group, chlorophyll a was a moderate to excellent predictor of soil stability (R2 = 0.21–0.75), and consistently better than EPS. Using a simple structural equation model, we explained over half of the variance in soil stability and determined that the direct effect of chlorophyll a was 3× more important than soil group in determining soil stability. Our results suggest that, holding the intensity of erosive forces constant, the acceleration or reduction of soil erosion in arid landscapes will primarily be an outcome of management practices. This is because the factor which is most influential to soil erosion, BSC development, is also among the most manageable, implying that water erosion in drylands has a solution.  相似文献   

15.
The agricultural soil carbon pool plays an important role in mitigating greenhouse gas emission ana unaerstanamg the son orgamc carbon-climate-soil texture relationship is of great significance for estimating cropland soil carbon pool responses to climate change. Using data from 900 soil profiles, obtained from the Second National Soil Survey of China, we investigated the soil organic carbon (SOC) depth distribution in relation to climate and soil texture under various climate regimes of the cold northeast region (NER) and the warmer Huang-Huai-Hai region (HHHR) of China. The results demonstrated that the SOC content was higher in NER than in HHHR. For both regions, the SOC content at all soil depths had significant negative relationships with mean annual temperature (MAT), but was related to mean annual precipitation (MAP) just at the surface 0-20 cm. The climate effect on SOC content was more pronounced in NER than in HHHR. Regional differences in the effect of soil texture on SOC content were not found. However, the dominant texture factors were different. The effect of sand content on SOC was more pronounced than that of clay content in NER. Conversely, the effect of clay on SOC was more pronounced than sand in HHHR. Climate and soil texture jointly explained the greatest SOC variability of 49.0% (0-20 cm) and 33.5% (20-30 cm) in NER and HHHR, respectively. Moreover, regional differences occurred in the importance of climate vs. soil texture in explaining SOC variability. In NER, the SOC content of the shallow layers (0-30 cm) was mainly determined by climate factor, specifically MAT, but the SOC content of the deeper soil layers (30-100 cm) was more affected by texture factor, specifically sand content. In HHHR, all the SOC variability in all soil layers was predominantly best explained by clay content. Therefore, when temperature was colder, the climate effect became stronger and this trend was restricted by soil depth. The regional differences and soil depth influence underscored the importance of explicitly considering them in modeling long-term soil responses to climate change and predicting potential soil carbon sequestration.  相似文献   

16.
Despite that soils may be the greatest repository of biodiversity on Earth, and that most terrestrial ecosystem functions occur in the soil, research on the role of soil biodiversity in ecosystem function has lagged behind corresponding research on aboveground organisms. Soil organisms pose special problems to biodiversity-function research, including the fact that we usually do not know their identity nor what they do in soil ecosystems, cannot easily estimate their biodiversity, and cannot culture the majority of the organisms for use in manipulative experiments. We propose here that biological soil crusts (BSCs) of deserts and many other ecosystems may serve as a useful model system for diversity-function research because the species concept is relatively well-defined within BSC organisms, their functional attributes are relatively well-known, and estimation and manipulation of biodiversity in experiments are feasible, at least within some groups of BSC biota. In spite of these features, there is a pronounced lack of research on biodiversity-function using these organisms. At least two complementary approaches are possible: experiments using artificially-constructed BSCs, and observational studies which statistically control for the effects of other factors which are likely to covary with biodiversity. We applied the latter to four observational datasets collected at multiple spatial scales in Spain and the United States using structural equation models or path analysis using ecosystem function indicators relating to hydrology, trapping and retention of soil resources, and nutrient cycling. We found that, even when total BSC abundance and key environmental gradients are controlled for, direct and approximately linear relationships between species richness and/or evenness and indicators of ecosystem functioning were common. Such relationships appear to vary independently of region or spatial scale, but their strength seems to differ in every dataset. Functional group richness did not seem to adequately capture biodiversity-function relationships, suggesting that bryophyte and lichen components of BSC may exhibit low redundancy. More research employing the multi-trophic, multi-functional, and manipulable BSC system may enable more rapid understanding of the consequences of biodiversity loss in soils, and help enable a biodiversity-function theory that is pertinent to the numerous ecosystem services provided by soil organisms.  相似文献   

17.
生物土壤结皮是干旱地区地表景观的基本组成部分,对生物地球化学循环具有重要影响。在中国北方荒漠化地区,生物土壤结皮化学计量在很大程度上是未知的,特别是降雨如何影响荒漠草原生物土壤结皮化学计量仍然不确定。该研究以自然降雨为对照,通过使用遮雨棚和喷灌系统控制降水输入,开展增水和减水处理野外控制性试验,研究降雨量对荒漠草原生物土壤结皮化学计量的影响。试验结果表明:1)减水处理增加了结皮层C∶N、C∶P和N∶P的比率,增水处理增加了结皮层下垫面C∶N、C∶P和N∶P比率;2)减水处理增大了结皮层与下垫面之间C含量的差异,同时减小了N和P含量的差异,增水处理增大了结皮层与下垫面之间N和P含量的差异,减水处理有利于结皮层C的积累,而增水后结皮层中磷的有效性降低;3)适宜的土壤水分条件促进了结皮层及下垫面土壤微生物生物量碳(Soil Microbial Biomass Carbon,SMBC)和土壤微生物生物量氮(Soil Microbial Biomass Nitrogen,SMBN)的积累,而过高的降雨量导致土壤养分损失,不利于SMBC和SMBN的积累。相对干旱的土壤环境有利于结皮层土壤C、N的富集,为土壤微生物呼吸提供较多的营养物质,有利于SMBC和SMBN的积累。总之,在中国北方荒漠化地区,生物土壤结皮和下垫面的C∶N∶P化学计量对降雨量有不同的响应。  相似文献   

18.
In the desert areas of China investigated by the authors, various biological crusts were predominately associated with three blue-green algal (cyanobacterial) species, Microcoleus vaginatus Gom., Phormidium tenue (Menegh.) Gom. and Scytonema javanicum (Kütz.) Born et Flah. Their biomass and their compressive strength were measured simultaneously in the field in this study. It was also found that the compressive strength of algal crusts was enhanced with the increasing of algal biomass from an undetectable level to a value as high as 9.6 mg g−1 dry soil. However, when the algal biomass decreased, the compressive strength did not descend immediately, but remained relatively steady. The higher the algal biomass became, the thicker were the algal crusts formed. Given the same biomass, the highest compressive strength of man-made algal crusts in fields was found at an algal ratio of 62.5% M. vaginatus, 31.25% P. tenue and 6.25% S. javanicum, and it reached 0.89 kg cm−2. When the biomass of the crusts increased above the value of 8.16 mg chla g−1 dry soil, the compressive strength would not ascend easily. It indicated that the compressive strength of man-made algal crusts appeared temporarily saturated in the field.  相似文献   

19.
Microbiotic soil crusts are common features of the surface of fallow land in Western Niger. We investigated the interaction between these microbial covers and the porosity and water dynamics of soils at the surface of a Sahelian landscape. The soil pore system was examined by microscopic observations and mercury porosimetry. The soil water retention capacity was measured using a Richard pressure membrane apparatus. Runoff measurements were performed in situ at a 1 m2 scale under natural rainfall.  相似文献   

20.
The distribution of organic carbon, microbial biomass and activity, from the surface down to 70 cm, was investigated through three semiarid Mediterranean soils: (1) a Typic Calcixeroll covered with a native pinewood (NP), (2) a Typic Calcixerept under a mature pine plantation (PP) on abandoned agricultural terraces and (3) a Typic Haploxerept under a grassland (GS). NP and GS had the highest and lowest soil organic carbon (SOC) pools, respectively. Both of them had decreasing SOC contents with depth. PP, which held intermediate SOC levels, showed an increase in total organic C and humic substances C with depth due to their mineralization in the anciently ploughed topsoil layer. The soils were similarly ranked as regards their microbial biomass and activity: NP>PP>GS. In general, the microbial communities were less dense and active towards the deeper horizons. More specifically, PP and GS had a very populated and active top 20-cm layer, which was attributed to the dense root system of their grass cover. NP maintained high microbial biomass and activity levels from 0 to 70 cm, progressively diminishing along with shrub root density (e.g. microbial biomass C dropped from 2342 to 394 mg kg−1 soil). The latter soil presented the sharpest drop of its microbial properties with depth, what was considered an indicator of its quality. Generally decreasing patterns of microbial biomass and activity were not always coincident with previously published gradients of microbial metabolic abilities and genetic structure. This reinforces the need of combining biomass, activity and biodiversity measurements if the ecosystem's functioning is to be fully understood and a real monitoring of degradation processes and restoration strategies is to be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号