共查询到20条相似文献,搜索用时 33 毫秒
1.
While dissolved organic matter (DOM) in soil solution is a small but reactive fraction of soil organic matter, its source and dynamics are unclear. A laboratory incubation experiment was set up with an agricultural topsoil amended with 13C labelled maize straw. The dissolved organic carbon (DOC) concentration in soil solution increased sharply from 25 to 186 mg C L−1 4 h after maize amendment, but rapidly decreased to 42 mg C L−1 and reached control values at and beyond 2 months. About 65% of DOM was straw derived after 4 h, decreasing to 29% after one day and only 1.3% after 240 days. A significant priming effect of the straw on the release of autochthonous DOM was found. The DOM fractionation with DAX-8 resin revealed that 98% of the straw derived DOM was hydrophilic in the initial pulse while this hydrophilic fraction was 20-30% in control samples. This was in line with the specific UV absorbance of the DOM which was significantly lower in the samples amended with maize residues than in the control samples. The δ13C of the respired CO2 matched that of DOC in the first day after amendment but exceeded it in following days. The straw derived C fractions in respired CO2 and in microbial biomass were similar between 57 and 240 days after amendment but were 3-10 fold above those in the DOM. This suggests that the solubilisation of C from the straw is in steady state with the DOM degradation or that part of the straw is directly mineralised without going into solution. This study shows that residue application releases a pulse of hydrophilic DOM that temporarily (<3 days) dominates the soil DOM pool and the degradable C. However, beyond that pulse the majority of DOM is derived from soil organic matter and its isotope signature differs from microbial biomass and respired C, casting doubt that the DOM pool in the soil solution is the major bioaccessible C pool in soil. 相似文献
2.
Marc Marx Franz Buegger Bernd Marschner Jean Charles Munch 《Soil biology & biochemistry》2007,39(12):3043-3055
A deeper understanding of the contribution of carbon (C) released by plant roots (rhizodeposition) to soil organic matter (SOM) can help to increase our knowledge of global C-cycling. These insights can eventually lead to sustainable management of SOM especially in agricultural systems. This study was conducted to determine the fate of 13C labelled rhizodeposit-C of maize and wheat plants. They were grown in a greenhouse in permeable nylon bags filled with upper soil material from two agricultural soils of the same location, but with different crop yields. The bags were placed into pots, which were also filled with soil surrounding the bags. Soil inside the bags was considered as rhizosphere soil, wheras the one outside the bags represented bulk soil. The contributions of rhizodeposits to water extractable organic carbon (WEOC), microbial biomass-C (MB-C), CO2-C evolution, and total organic carbon (Corg) were investigated during a 7-week growing period. The WEOC, MB-C, CO2-C, Corg contents and the respective δ13C values were determined regularly, and a newly developed method for determining δ13C values in soil extracts was applied.In both soils, regardless of crop yield potential, significant incorporation of rhizodeposition-derived C was observed in the MB-C, CO2-C, and Corg pool, but not in the WEOC. The pattern of C incorporation into the different pools was the same for both soils with both plants, and rhizodeposit-derived C was recovered in the order MB-C<Corg<CO2-C. This showed that rhizodeposits were mainly respired, but since Corg was the second largest pool of the overall balances, they were also stabilized in the soils at least in the short term. It is suggested that the increased SOM mineralization observed in this study (positive priming effects) was probably induced by C exchange processes between the soil matrix and soluble rhizodeposits. Moreover, soluble rhizodeposit-C was detected in MB-C and CO2-C evolved outside the direct root zone, showing the availability of these C-components in the bulk soil. 相似文献
3.
We used a continuous labeling method of naturally 13C-depleted CO2 in a growth chamber to test for rhizosphere effects on soil organic matter (SOM) decomposition. Two C3 plant species, soybean (Glycine max) and sunflower (Helianthus annus), were grown in two previously differently managed soils, an organically farmed soil and a soil from an annual grassland. We maintained a constant atmospheric CO2 concentration at 400±5 ppm and δ13C signature at −24.4‰ by regulating the flow of naturally 13C-depleted CO2 and CO2-free air into the growth chamber, which allowed us to separate new plant-derived CO2-C from original soil-derived CO2-C in soil respiration. Rhizosphere priming effects on SOM decomposition, i.e., differences in soil-derived CO2-C between planted and non-planted treatments, were significantly different between the two soils, but not between the two plant species. Soil-derived CO2-C efflux in the organically farmed soil increased up to 61% compared to the no-plant control, while the annual grassland soil showed a negligible increase (up to 5% increase), despite an overall larger efflux of soil-derived CO2-C and total soil C content. Differences in rhizosphere priming effects on SOM decomposition between the two soils could be largely explained by differences in plant biomass, and in particular leaf biomass, explaining 49% and 74% of the variation in primed soil C among soils and plant species, respectively. Nitrogen uptake rates by soybean and sunflower was relatively high compared to soil C respiration and associated N mineralization, while inorganic N pools were significantly depleted in the organic farm soil by the end of the experiment. Despite relatively large increases in SOM decomposition caused by rhizosphere effects in the organic farm soil, the fast-growing soybean and sunflower plants gained little extra N from the increase in SOM decomposition caused by rhizosphere effects. We conclude that rhizosphere priming effects of annual plants on SOM decomposition are largely driven by plant biomass, especially in soils of high fertility that can sustain high plant productivity. 相似文献
4.
A greenhouse experiment was conducted by growing oats (Avenasativa L.) in a continuously 13CO2 labeled atmosphere. The allocation of 13C-labeled photosynthates in plants, microbial biomass in rhizosphere and root-free soil, pools of soil organic C, and CO2 emissions were examined over the plant's life cycle. To isolate rhizosphere from root-free soil, plant seedlings were placed into bags made of nylon monofilament screen tissue (16 μm mesh) filled with soil. Two peaks of 13C in rhizosphere pools of microbial biomass and dissolved organic carbon (DOC), as well as in CO2 emissions at the earing and ripeness stages were revealed. These 13C maxima corresponded to: (i) the end of rapid root growth and (ii) beginning of root decomposition, respectively. The δ13C values of microbial biomass were higher than those of DOC and of soil organic matter (SOM). The microbial biomass C accounted for up to 56 and 39% of 13C recovered in the rhizosphere and root-free soil, respectively. Between 4 and 28% of 13C assimilated was recovered in the root-free soil. Depending on the phenological stage, the contribution of root-derived C to total CO2 emission from soil varied from 61 to 92% of total CO2 evolved, including 4-23% attributed to rhizomicrobial respiration. While 81-91% of C substrates used for microbial growth in the root-free soil and rhizosphere came from SOM, the remaining 9-19% of C substrates utilized by the microbial biomass was attributable to rhizodeposition. The use of continuous isotopic labelling and physical separation of root-free and rhizosphere soil, combined with natural 13C abundance were effective in gaining new insight on soil and rhizosphere C-cycling. 相似文献
5.
砂姜黑土是我国典型的中低产土壤,提升土壤有机质是砂姜黑土改良的重要环节,然而砂姜黑土有机质与微生物之间的关联关系尚不明确。本文采集40个代表性苏北平原砂姜黑土样品,测定土壤有机碳、全氮、可溶性有机碳、微生物生物量碳氮,利用稳定性同位素13C标记的谷氨酸测定微生物碳利用率、16SrRNA基因高通量测序分析微生物群落结构,研究苏北平原砂姜黑土有机质及关键微生物的关联关系。结果显示:苏北平原砂姜黑土有机碳含量为15.82 g/kg,可溶性有机碳占土壤有机碳含量的2‰,表明有机质的碳有效性较低;砂姜黑土优势菌门为变形菌门,优势菌科以黄单胞菌科、Gaiellaceae、酸杆菌科细菌为主,但高效的碳转化菌群(如酸杆菌纲和放线菌)较少;微生物碳利用率普遍较低,在0.07~0.20之间,与有机碳、可溶性有机碳和微生物生物量碳含量显著相关。因此,较低的微生物碳利用率、较低的碳转化菌群组成比例制约了砂姜黑土有机质的形成与提升。 相似文献
6.
Soil food webs are mainly based on three primary carbon (C) sources: root exudates, litter, and recalcitrant soil organic matter (SOM). These C sources vary in their availability and accessibility to soil organisms, which could lead to different pathways in soil food webs. The presence of three C isotopes (12C, 13C and 14C) offers an unique opportunity to investigate all three C sources simultaneously. In a microcosm experiment we studied the effect of food web complexity on the utilization of the three carbon sources. We choose an incomplete three factorial design with (i) living plants, (ii) litter and (iii) food web complexity. The most complex food web consisted of autochthonous microorganisms, nematodes, collembola, predatory mites, endogeic and anecic earthworms. We traced C from all three sources in soil, in CO2 efflux and in individual organism groups by using maize grown on soil developed under C3 vegetation and application of 14C labelled ryegrass shoots as a litter layer. The presence of living plants had a much greater effect on C pathways than food web complexity. Litter decomposition, measured as 14CO2 efflux, was decreased in the presence of living plants from 71% to 33%. However, living plants increased the incorporation of litter C into microbial biomass and arrested carbon in the litter layer and in the upper soil layer. The only significant effect of food web complexity was on the litter C distribution in the soil layers. In treatments with fungivorous microarthropods (Collembola) the incorporation of litter carbon into mineral soil was reduced. Root exudates as C source were passed through rhizosphere microorganisms to the predator level (at least to the third trophic level). We conclude that living plants strongly affected C flows, directly by being a source of additional C, and indirectly by modifying the existing C flows within the food web including CO2 efflux from the soil and litter decomposition. 相似文献
7.
Microbial biomass C immobilisation and turnover were studied under field and laboratory conditions in soils of high yield (HY) and low yield (LY) areas within an agricultural field. We compared the size and activity of soil microbial biomass (SMB) in the soils of the different yield areas under field and laboratory conditions. Soils were amended with 13C labelled mustard (Sinapis alba) residues (both experiments) and labelled glucose (laboratory only) at 500 μg C g−1 dry soil. SMB-C, dissolved organic carbon (DOC) and total C content were monitored in the field and the laboratory. CO2-efflux was also measured in laboratory treatments. Isotope ratios were determined for SMB in both experiments, but other variables only in the laboratory treatments. A positive priming effect was measured in three of four laboratory treatments. Priming was induced after a significant increase of soil derived C in the microbial biomass. Thereafter, the total C loss through priming was always smaller than or equal to the decline in microbial biomass C. In field and laboratory experiments SMB in the HY soil immobilised less of the added substrate C than LY soil SMB. Calculated turnover times in the laboratory glucose amendment were 0.24 (HY) and 0.31 y (LY), in the laboratory mustard treatment 0.58 (HY) and 0.44 y (LY) and in the field mustard amendments 1.09 (HY) and 1.25 y (LY). In both the field mustard and laboratory glucose treatments turnover in the HY soil tended to exceed that in the LY soil. These turnover times as well as the reaction of SMB-C to drying-rewetting and substrate addition, indicated that the HY soil possessed a more active microbial community with a more rapid C turnover than the LY soil. As C turnover is considered to be closely linked to nutrient cycles, faster turnover in the HY soil may involve a better nutrient supply for crops resulting in higher agricultural yield. 相似文献
8.
J. Esperschütz F. Buegger J.B. Winkler J.C. Munch M. Schloter A. Gattinger 《Soil biology & biochemistry》2009,41(9):1976-1985
Plants act as an important link between atmosphere and soil: CO2 is transformed into carbohydrates by photosynthesis. These assimilates are distributed within the plant and translocated via roots into the rhizosphere and soil microorganisms. In this study, 3 year old European beech trees (Fagus sylvatica L.) were exposed after the chilling period to an enriched 13C–CO2 atmosphere (δ13C = 60‰ – 80‰) at the time point when leaves development started. Temporal dynamics of assimilated carbon distribution in different plant parts, as well as into dissolved organic carbon and microbial communities in the rhizosphere and bulk soil have been investigated for a 20 days period. Photosynthetically fixed carbon could be traced into plant tissue, dissolved organic carbon and total microbial biomass, where it was utilized by different microbial communities. Due to carbon allocation into the rhizosphere, nutrient stress decreased; exudates were preferentially used by Gram-negative bacteria and (mycorrhizal) fungi, resulting in an enhanced growth. Other microorganisms, like Gram-positive bacteria and mainly micro eucaryotes benefited from the exudates via food web development. Overall our results indicate a fast turnover of exudates and the development of initial food web structures. Additionally a transport of assimilated carbon into bulk soil by (mycrorhizal) fungi was observed. 相似文献
9.
We investigated contributions of leaf litter, root litter and root-derived organic material to tundra soil carbon (C) storage and transformations. 14C-labeled materials were incubated for 32 weeks in moist tussock tundra soil cores under controlled climate conditions in growth chambers, which simulated arctic fall, winter, spring and summer temperatures and photoperiods. In addition, we tested whether the presence of living plants altered litter and soil organic matter (SOM) decomposition by planting shoots of the sedge Eriophorum vaginatum in half of the cores. Our results suggest that root litter accounted for the greatest C input and storage in these tundra soils, while leaf litter was rapidly decomposed and much of the C lost to respiration. We observed transformations of 14C between fractions even when total C appeared unchanged, allowing us to elucidate sources and sinks of C used by soil microorganisms. Initial sources of C included both water soluble (WS) and acid-soluble (AS) fractions, primarily comprised of carbohydrates and cellulose, respectively. The acid-insoluble (AIS) fraction appeared to be a sink for C when conditions were favorable for plant growth. However, decreases in 14C activity from the AIS fraction between the fall and spring harvests in all treatments indicated that microorganisms consumed recalcitrant C compounds when soil temperatures were below 0 °C. In planted leaf litter cores and in both planted and unplanted SOM cores, the greatest amounts of 14C at the end of the experiment were found in the AIS fraction, suggesting a high rate of humification or accumulation of decay-resistant plant tissues. In unplanted leaf litter cores and planted and unplanted root litter cores most of the 14C remaining at the end of the experiment was in the AS fraction suggesting less extensive humification of leaf and root detritus. Overall, the presence of living plants stimulated decomposition of leaf litter by creating favorable conditions for microbial activity at the soil surface. In contrast, plants appeared to inhibit decomposition of root litter and SOM, perhaps because of microbial preferences for newer, more labile inputs from live roots. 相似文献
10.
Altered rates of native soil organic matter (SOM) mineralisation in the presence of labile C substrate (‘priming’), is increasingly recognised as central to the coupling of plant and soil-biological productivity and potentially as a key process mediating the C-balance of soils. However, the mechanisms and controls of SOM-priming are not well understood. In this study we manipulated microbial biomass size and composition (chloroform fumigation) and mineral nutrient availability to investigate controls of SOM-priming. Effects of applied substrate (13C-glucose) on mineralisation of native SOM were quantified by isotopic partitioning of soil respiration. In addition, the respective contributions of SOM-C and substrate-derived C to microbial biomass carbon (MBC) were quantified to account for pool-substitution effects (‘apparent priming’). Phospholipid fatty acid (PLFA) profiles of the soils were determined to establish treatment effects on microbial community structure, while the 13C-enrichment of PLFA biomarkers was used to establish pathways of substrate-derived C-flux through the microbial communities. The results indicated that glucose additions increased SOM-mineralisation in all treatments (positive priming). The magnitude of priming was reduced in fumigated soils, concurrent with reduced substrate-derived C-flux through putative SOM-mineralising organisms (fungi and actinomycetes). Nutrient additions reduced the magnitude of positive priming in non-fumigated soils, but did not affect the distribution of substrate-derived C in microbial communities. The results support the view that microbial community composition is a determinant of SOM-mineralisation, with evidence that utilisation of labile substrate by fungal and actinomycete (but not Gram-negative) populations promotes positive SOM-priming. 相似文献
11.
An arable soil with organic matter formed from C3-vegetation was amended initially with maize cellulose (C4-cellulose) and sugarcane sucrose (C4-sucrose) in a 67-day laboratory incubation experiment with microcosms at 25 °C. The amount and isotopic composition (13C/12C) of soil organic C, CO2 evolved, microbial biomass C, and microbial residue C were determined to prove whether the formation of microbial residues depends on the quality of the added C source adjusted with NH4NO3 to the same C/N ratio of 15. In a subsequent step, C3-cellulose (3 mg C g−1 soil) was added without N to soil to determine whether the microbial residues formed initially from C4-substrate are preferentially decomposed to maintain the N-demand of the soil microbial community. At the end of the experiment, 23% of the two C4-substrates added was left in the soil, while 3% and 4% of the added C4-cellulose and C4-sucrose, respectively, were found in the microbial biomass. The addition of the two C4-substrates caused a significant 100% increase in C3-derived CO2 evolution during the 5-33 day incubation period. The addition of C3-cellulose caused a significant 50% increase in C4-derived CO2 evolution during the 38-67 day incubation period. The decrease in microbial biomass C4-C accounted for roughly 60% of this increase. Cellulose addition promoted microorganisms strongly able to recycle N immediately from their own tissue by “cryptic growth” instead of incorporating NO3− from the soil solution. The differences in quality of the microbial residues produced by C4-cellulose and C4-sucrose decomposing microorganisms are also reflected by the difference in the rates of CO2 evolution, but not in the rates of net N mineralization. 相似文献
12.
The objective of this work was to investigate the usefulness of near infrared reflectance spectroscopy (NIRS) in determining some C and N fractions of soils: labile compounds, microbial biomass, compounds derived from added 13C- and 15N-labelled straw. Soil samples were obtained from a previous experiment where soils were labelled by addition of 13C- and 15N-labelled wheat straw and incubated in coniferous forests in northern Sweden (64-60°N) and south France (43°N). The incubation lasted three years with 7-9 samplings at regular time steps and four replicates at each sampling (204 samples). Samples were scanned using a near infrared reflectance spectrophotometer (NIRSystem 6500). Calibrations were obtained by using a modified partial least squares regression technique with reference data on total C and N, 13C, 15N, control extract-C, -N, -13C and -15N, fumigated extract-C, -N, -13C and -15N, biomass-C, -N, -13C and -15N contents. Mathematical treatments of the absorbance data were first or second derivative with a gap from 4 to 10 nm. The standard error of calibration (SEC)-to-standard deviation of the reference measurements ratio was ≤0.2 for 10 models, namely total C and N, 13C, 15N, control extract-C, fumigated extract-C and -N, biomass-C and -N and biomass-15N models and therefore considered as very good. With an R2=0.955, the fumigated extract-15N model is also good. The standard error of performance calculated on the independent set of data and SEC were within 20% of each other for all the best equations except for the biomass-15N model. The ability of NIRS to detect 13C and 15N in total C and N and in the extracts is noteworthy, not because of its predictive function that is not really of interest in this case, but because it indicates that the spectra kept the signature of the properties of the organic matter derived from the straw even after two- or three-year decomposition. The incorporation of the 13C in the biomass was less well predicted than that of the 15N. This could indicate that the biomass derived from the straw was characterised by a particular protein or amino acid composition compared to the total biomass that includes a large proportion of dormant micro-organisms. The predictive ability of NIRS for microbial biomass-C and -N is particularly interesting because the conventional analyses are time consuming. In addition, NIRS allows detecting analytical errors. 相似文献
13.
We studied the effects of the terrestrial isopod Armadillidium vulgare on organic matter decomposition and stabilization in a long-term (65-week) laboratory experiment. We quantified the microbial activity in leaf litter (Acer pseudoplatanus) which did not come into contact with isopods, in A. vulgare feces produced from the same litter, and in unconsumed leftover of this litter. Freshly fallen leaf litter and up to 3 day old feces and leftover of litter were used. All materials were air dried immediately after collection and rewetted 1 day before use. Simultaneously, we measured how microbial activity in litter and feces are affected by fluctuations in humidity and temperature and by the addition of easily decomposed substances (starch and glucose).Microbial respiration was lower in feces than in litter or unconsumed leaf fragments. At the same time, moisture and temperature fluctuations and addition of glucose or starch increased respiration much more in litter than in feces. The results indicate that the processing of litter by A. vulgare reduces microbial respiration and reduces the sensitivity of microbial respiration to environmental fluctuations. 13C NMR spectra from feces indicated preferential loss of polysaccharide-carbon and accumulation of lignin with some modification to the aromatic-carbon. TMAH-Py-GC MS showed that lignin content was higher in feces than in litter and that lignin quality differed between the two substrates. Guaiacyl units were depleted in the feces, which indicated breakdown of guaiacyl associated with gut passage. As a conclusion, the results suggest that this common isopod greatly affects leaf litter decomposition. Decomposition of isopod feces in a long-term experiment is lower than litter decomposition which may support stabilization of organic matter in soil. This is caused mainly due to higher content of aromatic carbon in feces, which may cause its considerable resistance to bacterial degradation. 相似文献
14.
Martin Potthoff Jens Dyckmans Heiner Flessa Friedrich Beese 《Soil biology & biochemistry》2005,37(7):1259-1266
An incubation experiment was carried out with maize (Zea mays L.) leaf straw to analyze the effects of mixing the residues with soil and N amendment on the decomposition process. In order to distinguish between soil effects and nitrogen effects for both the phyllospheric microorganisms already present on the surface of maize straw and soil microorganisms the N amendment was applied in two different placements: directly to the straw or to the soil. The experiment was performed in dynamic, automated microcosms for 22 days at 15 °C with 7 treatments: (1) untreated soil, (2) non-amended maize leaf straw without soil, (3) N amended maize leaf straw without soil, (4) soil mixed with maize leaf straw, (5) N amended soil, (6) N amended soil mixed with maize leaf straw, and (7) soil mixed with N amended maize leaf straw. 15NH415NO3 (5 at%) was added. Gas emissions (CO2, 13CO2 and N2O) were continuously recorded throughout the experiment. Microbial biomass C, biomass N, ergosterol, δ13C of soil organic C and of microbial biomass C as well as 15N in soil total N, mineral N and microbial biomass N were determined in soil samples at the end of the incubation. The CO2 evolution rate showed a lag-phase of two days in the non-amended maize leaf straw treatment without soil, which was completely eliminated when mineral N was added. The addition of N generally increased the CO2 evolution rate during the initial stages of maize leaf straw decomposition, but not the cumulative CO2 production. The presence of soil caused roughly a 50% increase in cumulative CO2 production within 22 days in the maize straw treatments due to a slower decrease of CO2 evolution after the initial activity peak. Since there are no limitations of water or N, we suggest that soil provides a microbial community ensuring an effective succession of straw decomposing microorganisms. In the treatments where maize and soil was mixed, 75% of microbial biomass C was derived from maize. We concluded that this high contribution of maize using microbiota indicates a strong influence of organisms of phyllospheric origin to the microbial community in the soil after plant residues enter the soil. 相似文献
15.
Incomplete combustion of organics such as vegetation or fossil fuel led to accumulation of charred products in the upper soil horizon. Such charred products, frequently called pyrogenic carbon or black carbon (BC), may act as an important long-term carbon (C) sink because its microbial decomposition and chemical transformation is probably very slow. Direct estimations of BC decomposition rates are absent because the BC content changes are too small for any relevant experimental period. Estimations based on CO2 efflux are also unsuitable because the contribution of BC to CO2 is too small compared to soil organic matter (SOM) and other sources.We produced BC by charring 14C labeled residues of perennial ryegrass (Lolium perenne). We then incubated this 14C labeled BC in Ah of a Haplic Luvisol soil originated from loess or in loess for 3.2 years. The decomposition rates of BC were estimated based on 14CO2 sampled 44 times during the 3.2 years incubation period (1181 days). Additionally we introduced five repeated treatments with either 1) addition of glucose as an energy source for microorganisms to initiate cometabolic BC decomposition or 2) intensive mixing of the soil to check the effect of mechanical disturbance of aggregates on BC decomposition. Black carbon addition amounting to 20% of Corg of the soil or 200% of Corg of loess did not change total CO2 efflux from the soil and slightly decreased it from the loess. This shows a very low BC contribution to recent CO2 fluxes. The decomposition rates of BC calculated based on 14C in CO2 were similar in soil and in loess and amounted to 1.36 10−5 d−1 (=1.36 10−3% d−1). This corresponds to a decomposition of about 0.5% BC per year under optimal conditions. Considering about 10 times slower decomposition of BC under natural conditions, the mean residence time (MRT) of BC is about 2000 years, and the half-life is about 1400 years. Considering the short duration of the incubation and the typical decreasing decomposition rates with time, we conclude that the MRT of BC in soils is in the range of millennia.The strong increase in BC decomposition rates (up to 6 times) after adding glucose and the decrease of this stimulation after 2 weeks in the soil (and after 3 months in loess) allowed us to conclude cometabolic BC decomposition. This was supported by higher stimulation of BC decomposition by glucose addition compared to mechanical disturbance as well as higher glucose effects in loess compared to the soil. The effect of mechanical disturbance was over within 2 weeks. The incorporation of BC into microorganisms (fumigation/extraction) after 624 days of incubation amounted to 2.6 and 1.5% of 14C input into soil and loess, respectively. The amount of BC in dissolved organic carbon (DOC) was below the detection limit (<0.01%) showing no BC decomposition products in water leached from the soil.We conclude that applying 14C labeled BC opens new ways for very sensitive tracing of BC transformation products in released CO2, microbial biomass, DOC, and SOM pools with various properties. 相似文献
16.
A theoretical approach to the partitioning of carbon dioxide (CO2) efflux from soil with a C3 vegetation history planted with maize (Zea mays), a C4 plant, into three sources, root respiration (RR), rhizomicrobial respiration (RMR), and microbial soil organic matter (SOM) decomposition (SOMD), was examined. The δ13C values of SOM, roots, microbial biomass, and total CO2 efflux were measured during a 40-day growing period. A three-source isotopic mass balance based on the measured δ13C values and on assumptions made in other studies showed that RR, RMR, and SOMD amounted to 91%, 4%, and 5%, respectively. Two assumptions were thoroughly examined in a sensitivity analysis: the absence of 13C fractionation and the conformity of δ13C of microbial CO2 and that of microbial biomass. This approach strongly overestimated RR and underestimated RMR and microbial SOMD. CO2 efflux from unplanted soil was enriched in 13C by 2.0‰ compared to microbial biomass. The consideration of this 13C fractionation in the mass balance equation changed the proportions of RR and RMR by only 4% and did not affect SOMD. A calculated δ13C value of microbial CO2 by a mass balance equation including active and inactive parts of microbial biomass was used to adjust a hypothetical below-ground CO2 partitioning to the measured and literature data. The active microbial biomass in the rhizosphere amounted to 37% to achieve an appropriate ratio between RR and RMR compared to measured data. Therefore, the three-source partitioning approach failed due to a low active portion of microbial biomass, which is the main microbial CO2 source controlling the δ13C value of total microbial biomass. Since fumigation-extraction reflects total microbial biomass, its δ13C value was unsuitable to predict δ13C of released microbial CO2 after a C3-C4 vegetation change. The second adjustment to the CO2 partitioning results in the literature showed that at least 71% of the active microbial biomass utilizing maize rhizodeposits would be necessary to achieve that proportion between RR and RMR observed by other approaches based on 14C labelling. The method for partitioning total below-ground CO2 efflux into three sources using a natural 13C labelling technique failed due to the small proportion of active microbial biomass in the rhizosphere. This small active fraction led to a discrepancy between δ13C values of microbial biomass and of microbially respired CO2. 相似文献
17.
以7年氮肥定位试验地玉米根茬为研究对象,通过把玉米根茬按2%比例与15 cm和45 cm土层深度的土壤混合后田间埋袋的方法,研究长期不同施氮量处理[分别为0 kg(N)?hm?2、120 kg(N)?hm?2和240 kg(N)?hm?2]的玉米根茬(分别用R0、R120、R240表示),在陕西省长武黑垆土中埋藏分解1 a后对土壤碳、氮组分的影响及根茬有机碳的分解特性。与未添加玉米根茬的对照土壤相比,玉米根茬加入能够显著增加各层土壤的微生物量碳、可溶性有机碳和矿质态氮含量,3种施氮量处理间差异不显著。随着分解时间延长,土壤可溶性有机物中结构相对复杂的芳香类化合物比例逐渐增加。分解1 a后,R0、R120和R240根茬的有机碳残留率在15 cm土层中分别为44.4%、35.3%和34.9%,在45 cm土层中分别为53.3%、44.3%和42.5%。R0根茬的碳残留率显著高于R120和R240;玉米根茬在15 cm土层的碳分解率和分解速率常数显著高于45 cm土层。采用一级动力学方程拟合玉米根茬碳残留率变化结果显示,R0、R120和R240根茬有机碳分解95%所需要的时间在45 cm土层比15cm土层分别长3.2 a、2.3 a和1.9 a。氮肥施用量影响玉米根茬在土壤中的分解特性,在评价农田氮肥施用与土壤固碳时,应考虑不同氮肥用量下残茬养分组成及其在土壤中分解的差异。 相似文献
18.
生物质炭是高度芳构化物质,具有极强的物理、化学、生物稳定性,被视为极具潜力的碳封存措施之一。然而,生物质炭施入土壤后,可能会加速土壤有机碳矿化,即产生激发效应。根据δ13C分析原理,向长期种植C3植物、pH为3.70和7.60的两种土壤中,分别加入利用C4植物芒草在350℃(BC350)和700℃(BC700)制成的生物质炭,室内培养180d,定期采样测定CO2和δ13C,以期证实并定量测定生物质炭的激发效应。结果表明,加入生物质炭的土壤,尤其是加入低温生物质炭(BC350)的土壤,有机质矿化明显加快,即产生明显的正激发效应,酸性和碱性土壤的激发效应分别为CO2-C 250和319 mg kg-1。此外,从物理、化学和生物学角度,探究生物质炭激发效应的机理。 相似文献
19.
Understanding how elevated atmospheric CO2 alters the formation and decomposition of soil organic carbon (SOC) is important but challenging. If elevated CO2 induces even small changes in rates of formation or decay of SOC, there could be substantial feedbacks on the atmosphere's concentration of CO2. However, the long turnover times of many SOC pools - decades to centuries - make the detection of changes in the soil's pool size difficult. Long-term CO2 enrichment experiments have offered unprecedented opportunities to explore these issues in intact ecosystems for more than a decade. Increased NPP with elevated CO2 has prompted the hypothesis that SOC may increase at the same time that increased vegetation nitrogen (N) uptake and accumulation indicates probable declines in SON. Varying investigators thus have hypothesized that SOC will increase and SON will decline to explain increased NPP with elevated CO2; researchers also invoke biogeochemical theory and stoichiometric constraints to argue for strong limitations on the co-occurrence of these phenomena. We call for researchers to investigate two broad research questions to elucidate the drivers of these processes. First, we ask how elevated CO2 influences compound structure and stoichiometry of that proportion of NPP retained by soil profiles for relatively long time periods. We also call for investigations of the mechanisms underlying the decomposition of mineralizable organic matter with elevated CO2. Specifically, we need to understand how elevated CO2 influences microbial priming (driven by enhanced microbial energy needs associated with increases in biomass or activity) and microbial mining of N (driven by enhanced microbial N demand associated with greater vegetative N uptake), two processes that necessarily will be constrained by the stoichiometry of both substrates and microbial demands. Applying technologies such as nuclear magnetic resonance and the detection of biomarkers that reveal organic matter structure and origins, and studying microbial stoichiometric constraints, will dramatically improve our ability to predict future patterns of ecosystem C and N cycling. 相似文献
20.
Compounds released by plant roots during growth can make up a high proportion of below-ground plant (BGP) carbon and nitrogen, and therefore influence soil organic matter turnover and plant nutrient availability by stimulating the soil microorganisms. The present study was conducted to examine the amount and fate of C (CdfR) and N rhizodeposits (NdfR), in this study defined as root-derived C or N present in the soil after removal of roots and root fragments, released during reproductive growth. BGP biomass of peas (Pisum sativum L.) and oats (Avena sativa L.) was successfully labelled in situ with a 13C-glucose-15N-urea mixture under field conditions using a stem feeding method. Pea plants were labelled at the beginning of flowering and harvested 36 and 52 days after labelling at pod filling (PP) and maturity (PM), respectively. Oat plants were labelled at grain filling and harvested 42 days after labelling at maturity (OM). CdfR was 24.2% (PP), 29.6% (PM) and 30.8% (OM) of total recovered plant C. NdfR was 32.1% (PP), 36.4% (PM) and 30.0% (OM) of total plant N. Due to higher N assimilation, amounts of NdfR were four times higher in peas in comparison with oats. The results for NdfR in peas were higher than results from other studies. The C-to-N ratio of rhizodeposits was lower under peas (17.3) than under oats (41.9) at maturity. At maturity, microbial CdfR at 0-30 cm soil depth was 37% of the microbial biomass C in peas and 59% in oats. Microbial NdfR was 15% of microbial N in peas and 5% in oats. Furthermore, inorganic NdfR was 34% in peas and 9% in oats at 0-30 cm at maturity. These results show that rhizodeposits of peas provide a more easily available substrate to soil microorganisms, which are incorporated to a greater extent and turned over faster in comparison with oats. Beside the higher amounts of N released from pea roots, this process contributes to the higher N-availability for subsequent crops. 相似文献