首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of different tank colours (white, yellow sandy and black) on the growth, mortality and biomass production were studied for hatchling and early juvenile cuttlefish. For hatchlings, the use of different colour tanks did not promote differences in growth due to the higher variability (standard deviation) found in the white‐ and sand‐coloured tanks. Black tanks promoted the lowest and highest values for total mortality and biomass respectively. For juveniles, the use of different tank colours promoted different growth (P<0.05), but not mortality. Black tanks promoted the best results in terms of growth and biomass. The results obtained in the present study advise the use of black (or dark colour) tanks in the hatchling and early juvenile stages to reduce the standard deviations associated with growth, mortality and biomass production. This will contribute to minimize problems associated with slow and fast growers and competition.  相似文献   

2.
利用青岛近岸海域连续监测数据,分析金乌贼繁殖群体及补充群体结构特征,比较不同洄游时期繁殖亲体的绝对生殖力与卵子规格,以及补充群体的扩散迁移过程,为金乌贼繁殖亲体筛选、增殖模式优化及放流海域合理规划等提供参考。结果显示,5—7月陆续洄游至青岛近岸的金乌贼繁殖亲体的胴长、体质量及其怀卵量随采样时间推移均呈逐渐下降趋势,前期繁殖亲体成熟卵细胞的卵径和卵重显著高于中期和后期亲体。金乌贼产黏性卵,通常将受精卵黏附于海藻或其他附着物上,其幼体生长迅速。受繁殖亲体结群期长及分批产卵等繁殖习性影响,补充群体的胴长、体质量离散水平亦随秋季采样时间推移不断升高。补充群体规格的离散可促进空间生态位分化,增加营养生态位宽幅,该生殖策略有利于减小种内摄食压力。基于金乌贼繁殖生态学特征,建议集中采集前期洄游亲体开展人工苗种繁育,以提升繁育效率,保证大规格苗种供应;依据其分批产卵习性,大规模增殖放流可分批进行,以减小种内饵料竞争,提高放流群体成活率;5—7月在近岸水深15~20 m的缓流区投放人工产卵附着基,也是一种有效的资源原位修复手段。今后应进一步探究金乌贼受精卵放流技术,优化其资源修复模式,降低增殖成本,提高资源增殖效率。  相似文献   

3.
为揭示金乌贼精子进入纳精囊及产卵过程中的精子利用方式,丰富金乌贼繁殖生物学研究内容,本研究利用实验生态学和组织切片技术,检测了交配后不同时间段雌性口膜表面精子囊和纳精囊中精子数量的变化,观察分析了雌性金乌贼纳精囊的组织结构。结果显示,金乌贼纳精囊位于繁殖期雌性个体口膜腹面的突起处,共1对。纳精囊开口于口膜内表面,通过一根中央管连通整个纳精囊。中央管内壁含有大量褶皱和纤毛。在中央管两端,有12~20个储精小囊与之相连。储精小囊四周具有发达的环肌,其中储存有大量精子,并且大部分精子头部均朝向腔室内壁。完成一次交配后,雌性金乌贼对精子囊和纳精囊中精子的利用可以分为三个阶段,主要利用精子囊中的精子(交配后1~2 d);由利用精子囊中的精子向纳精囊中的精子过渡(交配后2~3 d);主要利用纳精囊中的精子(交配后3 d以上)。研究表明,从精子囊释放出的精子进入雌性口膜表面的褶皱中,通过自身运动到达纳精囊。进入纳精囊的精子通过自身运动及中央管内壁纤毛的摆动进入储精小囊,其中大部分精子头部朝向储精小囊内壁有规律地分布。在产卵过程中,雌性优先利用精子囊中的精子,而在精子囊中精子不足时,纳精囊通过肌肉收缩以及纤毛摆动将其中的精子逐渐释放出来,卵子在雌性口膜附近完成体外受精。  相似文献   

4.
Feeding rates, growth rates and feed efficiency ratios were studied in experimentally reared juvenile cuttlefish Sepia officinalis which had been hatched from eggs collected from three different locations, Plymouth, North Wales and Southampton. Groups of newly hatched cuttlefish were either maintained at 19°C and well fed (experiment 1) or were maintained at ambient seawater temperature (7–16°C) with little food for 6 months so that their development was delayed and then transferred to optimum conditions (experiment 2). In the first investigation (expt 1), no significant differences in growth rates (3.72±0.08%, 3.75±0.04% and 3.55±0.04% body weight (BW) day?1 respectively), feeding rates (9.53±0.36%, 9.28±0.36% and 8.95±0.37% BW day?1 respectively) and feed efficiency ratios (38.11±1.67%, 40.52±1.78% and 39.96±1.78% respectively) were observed between cuttlefish from the 3 locations. During the second investigation (expt 2), cuttlefish, whose development was initially delayed after hatching and then were stimulated to grow under optimum conditions (19°C and fed), showed growth rates (3.46±0.08% BW day?1) similar to those held under optimum conditions of seawater temperature (19°C) and food supply shortly after hatching. Feeding rates and feed efficiency ratios were however significantly higher in cuttlefish maintained at 19°C compared to 11°C (8.27±0.14% BW day?1, 41.25±0.52% and 2.75±0.09% BW day?1, 24.87±1.87% respectively).  相似文献   

5.
We are presently culturing the 4th generation of thecuttlefish, Sepia officinalis in our laboratory. A firstgeneration (F1) was grown from eggs collected from the wild (Ria Formosa–South Portugal) during the summer, at mean temperatures of 27°C ± 3°. In the present study, a second generation(F2), originated from eggs laid in the laboratory by females from F1 wascultured between the start of autumn and the end of spring, at meantemperaturesof 15 °C ± 4 °C. The life cycle ofcuttlefish from F2 was compared to F1. Populations of 30 cuttlefish were usedineach experiment. Cuttlefish were grown from one day old until the cycle wascompleted (when the last female in each population had died). Cuttlefish fromF2cultured at much lower temperatures had a longer life cycle, of almost 9 months(260 days) compared to cuttlefish from F1, which completed their cycle in lessthan 6 months (165 days). Cuttlefish from F2 grew significantly larger (U =0.00; p < 0.01) with mean weights of 343.3 ± 80.5 g and248 ± 33.1 g for males and females, respectively, comparedtoF1 (199.6 ± 40 g and 143.3 ± 30.9 g formales and females, respectively). Females from F2 had higher fecundity (225eggsfemale–1) compared to females from F1 (144 eggs perfemale–1), produced bigger eggs (t = 45.60752; p < 0.0001),weighing 0.74 ± 0.18 g, compared to 0.46 ± 0.11 fromF1,and bigger hatchlings (t = 7,144783; p < 0.0001), weighing 0.10 ±0.02g, compared to 0.09 ± 0.02 g for the summerpopulation.  相似文献   

6.
The culture of Sepia officinalis hatchlings and juveniles at different densities and enriched environments was investigated. Experiments were conducted to determine effects of culture density and the use of a substrate on growth and survival. Experiment I studied the effect of three different densities (52, 515 and 1544 hatchlings m−2). Experiment II tested the effects of the enriched environment, using a sandy bottom with pvc shelters. Experiment III tested the effects of density on growth, survival, feeding rates and food conversions. Cuttlefish were fed live grass shrimp at rates of 20% body weight per day (BW d−1). Grass shrimp (Palaemonetes varians) was supplied ad libitum as food in all experiments. In experiment I, growth was different between the three densities, with highest growth for density of 515 hatchlings m−2. IGR was of 8.8, 9.6 and 9.2% BW d−1 for the three densities tested, respectively. Both groups of experiment II had similar growth. IGR was of 10.1 and 9.7% BW d−1 for enriched and non-enriched environments, respectively. Densities of 10, 45 and 120 juvenile m−2 were used in experiment III. Significant differences in feeding rates were only found between densities of 10 and 120 cuttlefish m−2 during the last week. Results indicate that culture of cuttlefish hatchlings could be done in a non-enriched environment, with densities not exceeding 500 hatchlings m−2 and minimum bottom areas of about 600 cm2. Densities of 120 juveniles m−2 in a minimum area of about 1083 cm2 should be considered for juveniles between 5 and 25 g. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
急性氨氮胁迫对虎斑乌贼肝脏、鳃和脑组织结构的影响   总被引:1,自引:0,他引:1  
为了探讨氨氮对虎斑乌贼器官组织结构的影响,以体质量为(13.80±0.65)g的幼虎斑乌贼为对象,研究了氨氮胁迫对其肝脏、鳃和脑组织结构的影响。根据96 h的LC50实验结果设计5个梯度(0、1、3、6和12 mg/L)进行96 h的氨氮胁迫后,利用光学显微镜和透射电子显微镜观察其肝脏、鳃和脑组织结构。结果显示,在相同浓度的氨氮胁迫下,虎斑乌贼不同组织器官之间损伤程度存在差异,其中肝脏损伤的程度最大,对氨氮胁迫表现最敏感,其次是鳃组织和脑组织,组织器官损伤程度与氨氮浓度呈现正相关。氨氮胁迫浓度越大或胁迫时间越长,肉眼观察发现肝脏颜色越鲜红,肿胀和易糜烂程度越明显,可通过肉眼观察肝脏颜色和肿胀程度初步判断机体氨中毒程度;氨氮胁迫后,对肝脏和鳃组织造成较为严重的损伤,可能是虎斑乌贼氨中毒致死的原因。当氨氮高于或等于6 mg/L时胁迫96 h后,通过显微观察发现肝小叶轮廓模糊不完整、排列不紧密和胞浆疏松透明,大量的细胞核溶解,细胞出现空泡化,肝血窦扩张;通过电镜观察发现细胞核皱缩变形、核仁消失、线粒体嵴紊乱、线粒体空泡化、线粒体外室肿胀,高尔基体数量减少;显微观察发现鳃组织的泌氯细胞和上皮细胞核溶解,细胞出现空泡化、排列紊乱,鳃丝肿胀淤血、轮廓模糊不完整,并出现坏死脱落和缺损;通过透射电镜观察,发现细胞核皱缩、核膜破损和细胞核裂解,线粒体出现了皱缩变形、空泡化和不完整破损现象;观察脑组织的神经团和视叶,未发现脑组织的细胞有显著损伤。  相似文献   

8.
The effects of feeding live or frozen grass shrimp (Palaemonetes varians) to the cuttlefish, Sepia officinalis, were determined in two experiments. During Experiment I, two populations of 30 cuttlefish (aged 90 days old) were fed either live or frozen grass shrimp. Cuttlefish fed live shrimp grew larger, matured earlier, had a shorter life cycle (255 days) than the ones fed frozen shrimp (282 days), and had lower mortality. Females from the group fed frozen shrimp matured a month later but were significantly larger, 130.9 ± 38.5 g, compared to 74.2 ± 16.0 g, laid larger eggs, 0.47 ± 0.11 g, compared to 0.28 ± 0.10 g, and had higher individual fecundity (411 eggs female−1, compared to 150 eggs female−1). Newly born hatchlings from both groups had similar weights. During Experiment II, six replicates of 15 cuttlefish (50 days old) were used, three for each of the two diets tested. The exact same amount of live or frozen shrimp was provided to both populations twice a day. No differences in growth and feeding rates or food conversions were found at the end of the experiment. During the first week, cuttlefish fed frozen shrimp grew larger, and had higher conversion rates, compared to the ones fed live shrimp. Mortality was higher for the group fed live shrimp (36.6%) in Experiment II, mainly occurring during the last week. Mortality for cuttlefish fed frozen shrimp in Experiment II was 2.2%. Results obtained here indicate that freezing the grass shrimp only had a negative effect on the survival of S. officinalis in Experiment I. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
黎婷婷  周敏华  王超  方舟 《水产学报》2023,32(8):089306-1-089306-13
为了探究个体发育和食性对金乌贼角质颚形态的影响。实验采用几何形态测量学地标点法对2018年11月—2019年3月在黄海南部采集的金乌贼角质颚进行形态分析,共对138对金乌贼的上、下颚分别定义了27个地标点进行分析。结果显示,①不同发育阶段的金乌贼上、下颚的大小、形态及异速生长模式均存在显著差异,并且不同性别的上颚形态存在显著差异。②未成熟期的金乌贼角质颚的喙部较弯曲和尖锐,亚成熟期的角质颚头盖和翼部变宽,喙部也较尖锐,而成熟期的角质颚喙部短钝,侧壁较尖长,下颚翼部宽大。研究表明,不同发育阶段角质颚的发育机制可能是为更好地适应摄食对象变更,满足摄食需求做出的响应。这些与个体生长发育和摄食习性相关的表型可塑性反映了金乌贼角质颚的生长规律和金乌贼对食物资源的适应性利用。本研究通过分析金乌贼角质颚形态的生长变化,完善了金乌贼的基础生物学信息,为金乌贼资源的合理利用提供一定的科学依据。  相似文献   

10.
The life cycle of cuttlefish fed ad libitum exclusively on live grass shrimp (Palaemonetes varians) was studied during 5 consecutive generations. Different culture temperatures promoted different (P < 0.05) exponential growth for each life cycle, being summer generations shorter than those of winter. Higher temperatures promoted higher IGR’s and mortality, while lower temperatures promoted increased life span, reproduction stages, total fecundity and total egg biomass. Increased generations also seemed to increase fertility. A “hybrid” generation promoted the best results in terms of hatchling weight, individual fecundity and fertility. Mean egg weight was related to female size and embryonic development took longer at lower temperatures. Brood stock sex ratios seemed to be temperature related. All of these culture aspects were also compared between themselves in order to establish future brood stock methodologies. Grass shrimp proved to be a good diet for the culture of cuttlefish throughout the life cycle. The use of only one species reduces costs and labor associated to cuttlefish culture.  相似文献   

11.
The effects of artificial diets on growth and body condition of adult cuttlefish, Sepia officinalis were tested in two experiments. Supplemented prepared diets (fish myofibrillar protein concentrate) were fed during a 30-day and a 21-day experiments. Growth, feeding rate and food conversion of group-reared cuttlefish were analyzed. The first of these experiments tested four artificial diets, made with increasing levels of lysine, on adult cuttlefish. According to the chemical analysis, diets 1–3 had limiting concentrations of lysine and other essential amino acids (compared to mantle composition of the cuttlefish), while diet 4 was the only one where almost all essential amino acids were present in concentrations similar or higher than the ones present in cuttlefish mantle. A second experiment was conducted by isolating 16 adult cuttlefish individually, and feeding them the same four artificial diets, in order to obtain individual data. During Experiment 1, only the diet with the best chemical score (diet 4) produced growth (p < 0.05), with a mean instantaneous growth rate (MIGR) of 0.30% wet body weight (BW) d−1. Similarly, individually reared cuttlefish fed diet 4 produced the highest IGR’s (0.26, 0.38 and 0.48% BW d−1) and grew larger (p < 0.01). Comparison of cuttlefish fed the artificial diets vs. thawed shrimp and unfed cuttlefish indicated that cuttlefish fed the artificial diets were in an intermediate state. Growth rates obtained with the artificial diets (<0.4% BW d−1) were considerably lower compared to natural prey, live or frozen, reported by other authors.  相似文献   

12.
为探究虎斑乌贼养殖过程中,社会等级因素存在下优势大个体对劣势小个体的生长是否产生胁迫影响,本实验在室内小网筐(Φ=60 cm,高20 cm)控制条件下,采用单因子实验,研究了不同规格(大规格L:体质量为4~5 g,中规格M:体质量为2.5~3.5 g,小规格S:体质量为1~2 g)的虎斑乌贼单一规格养殖和混合规格养殖(LMS比1∶1∶1)条件下的存活率、特定生长率、耗氧率、排氨率和代谢酶(ATP酶、丙酮酸激酶和己糖激酶)的变化,培养时间40 d。结果显示,单一规格养殖和混合规格养殖条件下L乌贼特定生长率差异不明显,但混合规格养殖组M和S乌贼特定生长率明显低于单一规格养殖组M和S乌贼特定生长率,各组乌贼特定生长率排序:LMS-M(3.12±0.35)%/dM(5.21±0.24)%/d,LMS-S(1.39±0.28)%/dS(4.37±0.42)%/d;养殖10 d,单一规格养殖组和混合规格养殖组乌贼成活率差异不明显,从20 d开始,混合规格养殖组成活率明显低于单一规格养殖组,养殖40 d各组乌贼成活率排序:LMS(41%±5.35%)M(60%±4.58%)L(61%±6.43%)S(63%±5.57%);单一规格养殖和混合规格养殖条件下L乌贼耗氧率差异不明显,但混合规格养殖组M和S乌贼耗氧率明显低于单一规格养殖组M和S乌贼耗氧率,各组乌贼耗氧率排序:LMS-M[(0.48±0.03)mg/(g·h)]M[(0.69±0.02)mg/(g·h)],LMSS[(0.75±0.04)mg/(g·h)]S[(0.94±0.04)mg/(g·h)];单一规格养殖和混合规格养殖条件下L乌贼排氨率差异不明显,但混合规格养殖组M和S乌贼排氨率明显低于单一规格养殖组M和S乌贼排氨率,各组乌贼排氨率排序:LMS-M[(0.057±0.004)mg/(g·h)]M[(0.082±0.007)mg/(g·h)],LMS-S[(0.085±0.007)mg/(g·h)]S[(0.135±0.007)mg/(g·h)];单一规格养殖和混合规格养殖条件下L乌贼ATP酶、丙酮酸酶和己糖激酶活性差异不明显,但混合规格养殖组M和S乌贼3种酶活性明显低于单一规格养殖组M和S乌贼,各组乌贼ATP酶活性LMS-M[(1.25±0.16)U/mg prot]M[(2.74±0.26)U/mg prot],LMS-S[(0.77±0.11)U/mg prot]S[(1.94±0.09)U/mg prot];各组乌贼丙酮酸酶活性HET-M[(51.14±6.24)U/mg prot]M[(78.05±8.38)U/mg prot],LMS-S[(27.94±6.65)U/mg prot]S[(55.92±2.81)U/mg prot];各组乌贼己糖激酶活性LMS-M[(10.71±1.24)U/mg prot]M[(23.59±1.67)U/mg prot],LMSS[(5.91±0.83)U/mg prot]S[(13.82±1.66)U/mg prot]。研究表明,在混合规格养殖条件下L乌贼对M和S乌贼的正常生长产生显著影响,对养殖十分不利,因此在人工养殖虎斑乌贼的过程中,要定期地挑拣分级,保证规格的均一性,以减轻大个体乌贼对小个体乌贼的胁迫作用,进而提高乌贼养殖的生产效率。  相似文献   

13.
The suitability of early weaning cuttlefish using frozen grass shrimp, and its effects on growth and mortality was determined in a 50‐day experiment. Three food groups were used. One group (C) was fed with live prey until 25th DAH and weaned with frozen prey until the end of the experiment. In the other two groups, weaning started at the fifth DAH (W5) and first DAH (W1), also with frozen diet. Significant differences were found between C and the remaining treatments (P < 0.05) for mean wet weight (MWW), instantaneous growth rate (IGR), biomass (B) and mortality at the 25th and the 50th DAH. Despite the lower growth (~1/3 of the achieved with live food) and higher mortality (3% obtained by C versus 23% in the W1 and W5 groups), C cuttlefish presented a similar weight gain tendency to W1 and W5 groups after weaning. This is the first record of early acceptance (at the first DAH) of frozen food by cuttlefish hatchlings. These differences could be related with digestive enzymes of cuttlefish and prey, changes in nutritional composition and amount of captured prey, etc. Future research should also address the effects of this early weaning on cuttlefish life cycle.  相似文献   

14.
This investigation examined the effect of prey condition on the growth and survival of juvenile cuttlefish ( Sepia officinalis ). In the first group, cuttlefish were fed with daily captured live Palaeomonetes varians from the wild [daily prey (DP)], the second group was fed 5 days stocked and starved P. varians [starved prey (SP)], while in the third group, cuttlefish were fed 8 days stocked P. varians fed with an artificial diet [fed prey (FP)]. Mean instantaneous growth rate (IGR) was 2.8±1% body weight day−1 (bw day−1), 3.3±1.1% bw day−1 and 4.9±0.5% bw day−1 for SP, DP and FP respectively. At the end of the experiment, final weight gain ( W g) was 121±21.6%, 153.8±17.3% and 295±29.8% for SP, DP and FP respectively. No significant differences were found ( P >0.05) between growth curves for every group tested, or for the food conversions between those same groups ( P >0.05), but statistical differences ( P <0.05) were found in IGR between DP vs. FP and SP vs. FP. Mortality was 2 and 1 for SP and DP respectively. Results indicate that prey starvation should not be considered when feeding juvenile cuttlefish, as prey can only be stocked if proper artificial diets are provided, to obtain optimal growth.  相似文献   

15.
Cuttlefish are currently the highest yielding cephalopod group harvested in the north‐east Atlantic. English Channel cuttlefish show seasonal migrations to and from deep offshore wintering grounds, which results in a large number of smaller cuttlefish within the offshore stocks, some of which are caught by trawlers. Discarding small cuttlefish from trawls may give them the opportunity to migrate inshore and spawn, but only if they survive. This study examined survival rates of small (<15‐cm dorsal mantle length) cuttlefish caught on board a commercial beam trawler. Overall, 31% of the small cuttlefish caught remained alive by the time they reached the sorting table (immediate survival rate). This survival rate dropped to 16% after specimens were subsequently held in an on‐board aquarium system for up to 72 h (short‐term survival rate). Measures that reduce the capture of small cuttlefish in the first place and/or increase their survival could potentially benefit the stocks.  相似文献   

16.
Individual growth rates, feeding rates (%BWd?1) and food conversions for cuttlefish (S. officinalis) hatchlings and juveniles were determined during this study. A flow‐through system was used. Water temperature reached 30 °C during the hottest part of the day, gradually decreasing to 25 °C during the night; salinity varied between 37 ± 3 ppt and lights were kept on for 14 h day?1. Hatchlings were placed in separate compartments with a water volume of 1.2 L. Juvenile cuttlefish (from 0.5 to 25 g) were placed in bigger baskets, with a water volume of 5.2 L. Water flow was 120 L h?1. The biggest cuttlefish used in these experiments (> 25 g) were gathered in groups of five and placed in circular tanks (water volume of 250–300 L). Thus, results obtained in this case are means and not individual data. During the first 10, 20, 30 and 40 days, mean growth rates (of all individuals sampled by age group) decreased consistently (11.8 ± 4.1, 9.8 ± 1.8, 8.1 ± 2.2 and 7.3 ± 0.7%BW?1 respectively); in similar fashion, mean feeding rates decreased with age group (33.7 ± 13.5, 22.0 ± 7.9, 17.3 ± 3.9 and 16.7%BWd?1 respectively). Mean food conversions varied between 3.6 and 2.5 between the age groups. When grouping results by weight class, similar patterns occur, as growth and feeding rates decrease consistently as cuttlefish grow bigger. Highest mean growth and feeding rates are obtained by hatchlings (< 0.1 g) with 12.4 ± 4.5 and 35.3 ± 15.1%BWd?1, respectively, while the lowest growth and feeding rates were recorded for the largest animals, between 15 and 25 g (3.4 ± 1.1 and 10.8 ± 4.1%BWd?1 respectively). For these weight classes, mean food conversions varied between 2.7 ± 0.9 and 3.8 ± 2.8.  相似文献   

17.
This investigation examined the effects of live prey availability on growth and survival of Sepia officinalis. Two independent experiments, comprising two feed rations each, were performed, using adequate prey size. In the first experiment, cuttlefish hatchlings were fed live mysids, Paramysis nouvelli [(feed ratio I (fr I)], at 15% body weight per day (bw day?1) (fr I15) and 30% bw day?1 (fr I30). In the second experiment, juvenile cuttlefish were fed live Atlantic ditch shrimp, Paleomonetes varians (fr II), under the same experimental design. In both experiments, the final mean weight, feeding rate and instantaneous growth rate were higher when animals were fed feed ratio fr II15 and fr II30 (30% bw day?1). The results indicate that prey availability influenced weight gain, irrespective of the prey used, during the first 2 months of cuttlefish life cycle. This effect seems to be more noticeable when a certain limit of prey is achieved. For cuttlefish fed fr II, the optimal prey density is thought to be under 2.5 g prey L?1 (i.e. 14 shrimp L?1). Results indicate that cuttlefish can withstand prey densities up to 120 mysids L?1 for cuttlefish up to 3 weeks old and 19 shrimps L?1 for cuttlefish up to 6 weeks old.  相似文献   

18.
为了探明仔、稚鱼阶段红鳍笛鲷(Lutjanus erythopterus)投喂轮虫的最适密度和颗粒饲料驯化时间,文章研究了不同轮虫投喂密度下,红鳍笛鲷仔鱼的生长、存活和食物选择,并采用生长、存活、RNA/DNA比率和消化道上皮细胞高度等参数作为评价指标,研究了颗粒饲料驯化时间 [13 dph (孵化后天数,W13)、16 dph (W16)、19 dph (W19)和22 dph (W22)] 对红鳍笛鲷仔、稚鱼的影响。结果表明,轮虫投喂密度显著影响红鳍笛鲷仔鱼的摄食、饵料选择、生长和存活,轮虫投喂密度为10~20 个·mL–1时,仔鱼的生长和成活率均无显著差异但显著高于1个·mL–1和30个·mL–1处理组。颗粒饲料驯化实验中,W19和W22处理组个体的生长和成活率显著高于其他两组,W13处理组个体的RNA/DNA比率最低。22 dph时,W13和W16处理组个体消化道上皮细胞高度明显低于其他两组。根据研究结果,轮虫和卤虫无节幼体混合喂养期间,轮虫密度对仔、稚鱼的食物选择性存在显著影响,建议在红鳍笛鲷初始投喂阶段使用10~20 个·mL–1的轮虫密度投喂仔鱼,红鳍笛鲷13 dph即可驯料,而最佳驯料期为16~22 dph。  相似文献   

19.
Sea bream, Sparus aurata, is one of the most important fish species that is commonly cultured in the Mediterranean and the eastern coasts of the Atlantic Ocean. The life cycle of sea bream in its natural habitat passes through hyposaline and hypersaline lagoons. It is important to determine the tolerance of the fish to nitrogenous compounds for aquaculture at maximum stocking densities. In the present study, a series of acute experiments were performed to evaluate the effect of salinity on ammonia and nitrite toxicity to sea bream. The fish were exposed to different ammonia and nitrite concentrations according to the static renewal methodology at three different salinities (10, 20, and 30 ppt) and at a temperature of 20 C and a pH of 8.2. The toxic effect of total ammonia nitrogen (TAN) and nitrite nitrogen (NO2‐N) decreased with increasing salinity levels (P < 0.001). Acute toxicity (96‐h lethal concentration 50 [LC50]) values of TAN were determined to be 5.93, 11.72, and 19.38 mg/L at 10, 20, and 30 ppt salinity, respectively. The 96‐h LC50 values of NO2‐N were determined to be 370.80, 619.47, and 806.33 mg/L at 10, 20, and 30 ppt salinity, respectively. Results indicate that sea bream is less tolerant to ammonia but more tolerant to nitrite compared with some other fish species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号